
Volume 17, Issue 1, 172315 (1-9)

Journal of Theoretical and Applied Physics (JTAP)

https://dx.doi.org/10.57647/j.jtap.2023.1701.15

Ion acoustic cnoidal waves in electron-positron-ion
plasmas with q-nonextensive electrons and positrons and

high relativistic ions

Forough Farhadkiyaei*

Physics Department, Islamic Azad Uni., Aligudarz Branch, Aligudarz, Iran.

*Corresponding author: foroughfarhadkiyaei@gmail.com

Received 12 October 2022; Accepted 24 December 2022; Published online 28 December 2022

Abstract:
In this paper propagation of the nonlinear cnoidal ion-acoustic waves in unmagnetized electron-positron-ion plasma have
been studied. The nonextensivity distribution function was used to describe the plasma electrons and positrons, while
plasma ions are taken high relativistic. We have used the reductive perturbation method (RPM) to study the characteristic
of ionacoustic cnoidal waves in this three-component plasma. The Korteweg-de Vries equation, which describes the
nonlinear waves in such plasma, has been derived. In this work, we have investigated the effects of relativistic ions and
q-nonextensive distribution of electrons and positrons on the characteristics of the ionacoustic periodic (cnoidal) wave,
such as the amplitude, wavelength, and frequency.

Keywords: Plasma nonextensivity; Electron-positron-ion plasma; Ion acoustic nonlinear wave; Cnoidal wave; Sagdeev
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1. Introduction

In plasma physics, an ion acoustic wave is one type of lon-
gitudinal oscillation of the ions and electrons in a plasma,
much like acoustic waves traveling in neutral gas. However,
because the waves propagate through positively charged
ions, ion acoustic waves can interact with their electromag-
netic fields, as well as simple collisions. In fluid dynamics,
a ion acoustic cnoidal wave (IACW) is a nonlinear and
exact periodic wave solution of the equation in terms of Ja-
cobin elliptical-functions cn, which is why they are coined
cnoidal waves. The cnoidal wave solutions were derived
by Korteweg and de Vries, in their 1895 paper in which
they also propose their dispersive long-wave equation, now
known as the Korteweg–de Vries equation [1]. In the limit
of infinite wavelength, the cnoidal wave becomes a solitary
wave. These periodic functions are believed to be generated
in defocusing regime of plasmas and have many important
applications in diverse areas of physics such as nonlinear
transport phenomena [2–4]. The characteristics of nonlin-
ear IACW in a field free or magnetized plasma has been
investigated frequently in recent years [5–8].
In this study, The IACW has been considered in electron-

positron-ion (e–p–i) plasma. Recently, the (e-p-i) plas-
mas have attracted the attention of several authors [9, 10].
They have studied linear and nonlinear wave propagation
in (e–p–i) plasmas using different models. The presence of
positrons can lead to the reduction in frequency and ampli-
tude wave in such system [11]. The response of plasma does
not exist in electron-ion (e–i) plasmas. Since the positron
annihilation time could be much larger than the characteris-
tic time scale for the ion acoustic wave, the (e–p–i) plasma
can also appear in laboratory plasma such as in tokamaks
to probe particle transport and other magnetic confinement
systems. It is well known that the e–p–i plasma may exist
in several astrophysical situations such as active galactic
nuclei, bipolar outflows, pulsars magnetosphere, early uni-
verse, etc [12–15].
Present long-range interactions, long-time memory or frac-
tality of the corresponding space-time/phase-space within
the conventional Boltzmann-Gibbs (BG) statistics are dis-
obedient [16, 17]. The main reason for this inability is
that BG statistics is an additive or extensive formalism.
In dealing with the statistical properties of systems with
long-range correlations, Tsallis extended BG thermodynam-
ics by generalizing the concept of entropy to nonextensive
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regimes [18]. Nonextensivity means that the entropy of the
composition (A+B) of two independent systems A and B is
equal to S(A+B)

Q = S(A)Q +S(b)Q +(1−Q)S(A)Q S(B)Q , where the
parameter Q that underpins the generalized entropy of Tsal-
lis is linked to the underlying dynamics of the system and
provides a measure of the degree of its correlation among
the various physical systems where connections with the
Tsallis entropy have been found are plasma physics, long-
range Hamiltonian systems, gravitational systems and many
other applications. As investigated by several researchers,
the Q-nonextensive formalism may be very important for
systems with long-range interactions such as astrophysics
and plasma physics. In this regard, they showed that the
experimental results point to non-Maxwellian velocity dis-
tribution. Since that, the Tsallis q-entropy and the gen-
eralized statistics have been used with success in plasma
physics [19–38]. To study all possible astrophysical sce-
narios,it is wise to follow the nonextensive distribution. As
electrons and positrons have the same mass but opposite
charge, it is expected that they will be described by a similar
distribution.
Most of investigations on linear and nonlinear phenom-
ena are limited to nonrelativistic plasmas. But when the
electron or ion velocity (Ve,i ) approaches the velocity of
light, relativistic effects may significantly modify the IACW
behavior [39–41]. In relativistic plasmas relativistic correc-
tions to a particle’s mass and velocity are important.Such
corrections typically become important when a significant
number of electrons or ion reach speeds greater than 0.86
c (Lorentz factor Γ=2).Such plasmas may be created either
by heating a gas to very high temperatures or by the impact
of a high-energy particle beam. Relativistic plasma with a
thermal distribution function has temperatures greater than
around 260 keV. The primary changes in plasma’s behavior
as it approaches the relativistic regime are slight modifi-
cations to the equations which describe a nonrelativistic
plasma and to collision and interaction cross sections. The
equations may also need modifications to account for pair
production of electron-positron pairs (or other particles at
the highest temperatures). Relativistic plasmas occur in a
variety of situations, e.g. in laser–plasma interaction [42],
space-plasma phenomena [43], plasma sheet boundary layer
of earth’s magnetosphere [44], in the Van Allen radiation
belts [45].
In 1984 Das and Paul studied ion-acoustic solitary waves in
relativistic plasmas and derived a Kortewag-de Vries (KdV)
equation for collisionless plasma with cold ions and with-
out electron inertia [46]. Nejoh has investigated the same
with warm plasma [47]. Kalita et al. have investigated the
existenceof solitons considering the complete fluid equation
of electrons [48].
In 1987 Roychoudhury and Sikha found solitary wave so-
lutions in a relativistic plasma [49] Gill et al. investigated
ion-acoustic solitary waves in weakly relativistic plasmas
containing electron-positron-ion plasma with Boltzmann
positrons and electrons and cold ions [50]. Pakzad re-
searched the same situation in weakly relativistic plasma
with thermal positrons, nonextensive electrons, and cold
ions [51] and in another paper Pakzad et al. studied ion-

acoustic solitary waves in electron-positron-ion plasmas
with Q-nonextensive electrons and high relativistic ions [52].
In 2006 Biswajit Sahu et al. studied electron acoustic soli-
tons in a relativistic plasma with nonthermal electrons [53].
Hafez et al. studied ion acoustic shock and solitary waves
in highly relativistic plasmas with nonextensive electrons
and positrons [54].
The research in this field includes two categories, one is
those that assume only ions to be relativistic and the role of
inertia of electrons in a relativistic plasma is usually ignored,
such as Nejoh and Sanuki have considered large amplitude
Langmuir and ion-acoustic waves in a relativistic two fluid
plasmas deriving the pseudopotential [55]. Of course, large
amplitude relativistic ion acoustic waves are discussed for
the simple case me= 0 and Ti= 0 without the pressure vari-
ation equation. The second are those that consider both
electrons and ions to be relativistic at simultaneously. The
equation of pressure changes is used. Such as Kuehl and
Zhang have considered first the effect of electron inertia
in a relativistic plasma [56]. No investigation has been re-
ported on the study of IACW in relativistic plasmas. As
electron–positron, plasmas with ion possessing relativis-
tic velocities are frequently observed in astrophysical and
space environments, so there is a need to study IACW in
such plasma system.
In this work, we study IACW in electron–positron plasma
with high relativistic ion it is assumed only ions to be rela-
tivistic and the role of inertia of electrons ignored. Our aim
of this study therefore to recognize effects of nonextensive
Q-parameter of electrons with relativistic ions on the IACW
in plasmas unmagnetized. Our research may be very helpful
for astronomers and can help us to find better knowledge
about the effects of relativistic particles in plasmas.
The manuscript is organized as follows: following the intro-
duction in Sec. 1 the basic equations, governing our plasma
system, are presented in Sec. 2. Using the reductive per-
turbation method, the KdV equation is derived in Sec. 3.
Cnoidal solution of the KdV equation is discussed in Sec. 4.
Sec. 5 is devoted to results and discussion, and finally, we
present our main conclusion in Sec. 6.

2. Basic equations
We assume unmagnetized and collision less plasma consist-
ing of a mixed fluid with nonextensive distributed positrons
and electrons and cold ions. Moreover, it is assumed that
ion velocity has high relativistic effect, and the ion acoustic
wave propagate in the z direction. The nonlinear dynamics
of the ion acoustic waves is governed by the continuity and
motion equations for ion fluid, and the Poisson’s equation:

∂tN +∂z(NV ) = 0 (1)

∂t(ΓV )+V ∂z(ΓV ) =−∂zΦ (2)

∂
2
z Φ = Ne −ΠNp − (1−Π)N (3)

Ne = [1+(Q−1)Φ]
Q+1

2(Q−1) (4)

Np = [1− (Q−1)T Φ]
Q+1

2(Q−1) (5)
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They approximated for small Φ

Ne = 1+
(

Q+1
2

)
Φ+

(Q+1)(3−q)
8

Φ
2 + ... (6)

Np = 1−
(

Q+1
2

)
T Φ+

(Q+1)(3−q)
8

T 2
Φ

2 + ... (7)

The normalization has been made by the following non-
dimensional variables:

V → V√
kTe
m

, Φ → eΦ

kTe

t → t√
mε0
N0e2

, z → z√
kTeε0
N0e2

Ion density N, electron density Ne, and positron density
Np are normalized with their corresponding equilibrium
densities respectively.
In the above equations:

Π =
Np0

Ne0
(8)

Π: The fractional concentration of positron with respect to
electron in the equilibrium

T =
Te

Tp
(9)

T : The temperature ratio of electron to positron.
Tp: The temperature of positron
Te: The temperature of electron
Ne: The density of electron
Ne0: The equilibrium density of electron
Np: The density of positron
Np0: The equilibrium density of positron
N: The density of ion
Φ: The electrostatic potential
k: Boltzmann’s constant
Γ is Lorentz relativistic factor and for weakly relativistic
plasma it is approximated by its expansion up to second
term (V ≪ c) .

Γ =

(
1− V 2

c2

)− 1
2 ∼= 1+

V 2

2c2 (10)

and for a high relativistic plasma it is approximated by its
expansion up to second term

Γ =

(
1− V 2

c2

)− 1
2 ∼= 1+

V 2

2c2 +
3V 4

8c4 (11)

To model the effect of electron nonextensivity, we refer
to the following Q-distribution function given by several
authors [57–60].

fe(ve) = PQ

[
1+(1−Q)

(
mev2

e

2Te
− eΦ

Te

)] 1
Q−1

(12)

The constant of normalization PQ is given by

PQ = Ne0
Γ( 1

1−Q )

Γ( 1
1−Q − 1

2 )

√
me(1−Q)

2πTe
, for −1 < Q < 1

(13)

PQ = Ne0(
1+Q

2
)

Γ( 1
Q−1 +

1
2 )

Γ( 1
Q−1 )

√
me(Q−1)

2πTe
, for Q > 1

(14)
Here, the parameter Q defines for the strength of nonex-
tensivity. It may be useful to note that for Q < −1, the
Q-distribution is unnormalizable. In the extensive limiting
case (Q = 1), the Q-distribution reduces to the well-known
Maxwell-Boltzmann distribution.

3. Derivation of KdV equation
To derive the KdV equation from the basic set of equations
(1)-(5), We have used reductive perturbation method (RPM)
in the present investigation. Besides RPM, homotopy per-
turbation method [61–66] and modified Lindstedt–Poincaré
method [67–70] can also be powerfully applied. Homo-
topy perturbation method make full advantages of tradi-
tional perturbation method and homotopy techniques. Sim-
ilarly, modified Lindstedt–Poincaré methods introduces a
new transformation of the independent variables so as to
avoid the occurrence of secular term in the perturbation
series solution. RPM used here enable us to look for long
waves. Mathematically we build scalelength in the origi-
nal equations of motion by rescaling both space and time
co-ordinates which are appropriate for the dispersion of the
long wave length phenomena. For large class of disper-
sion system, KdV equation is the equation which governs
such weak nonlinear long behavior. Suppose z is scaled
in a certain way, then it is dispersion relation which gives
information of how the time part of the system reacts. The
dispersion relation for harmonic waves is found from the lin-
earized version of the original set of equations. For example,
for solution of the form exp(iθ), we have

θ = kz−ω(k)t (15)

where ω(k) is dispersion relation and k are wave number.
For long wave (small k), we use limiting form of dispersion
relation and write k = ζ pK where K is new wave number
and p is unknown number to be determined later. Then Eq.
(8) becomes

θ = Kζ
pz−ω(ζ pk)t (16)

For dispersive system, Taylor expansion of ω(k) in Eq. (8)
yields

θ = Kζ
p(z− ώ(0)t)− k3

ζ
3p ´́́

ω(0)t (17)

First and third derivative terms are constant, then above
equation yield natural scaling for z and t as

ς = ζ
p(z−u0t), τ = ζ

3pt (18)

It often turns out that when KdV equation occurs, the p
usually takes the value of 1/2. It may further be noted that
this prescription is closely related to validity of hyperbolic
approximation and similarity transformation [71]. It may be
noticed that there are many complicated examples, where
different types of asymptotic expansions are used in differ-
ent regions of space. The scaling of space and time variables
may also change from region to region. After a above de-
scription, according to RPM, the independent variables are
scaled as [50]:

ς = ζ
1
2 (z−u0t) (19)
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and
τ = ζ

3
2 t (20)

where ζ is a small parameter that characterizes the strength
of the nonlinearity, and u0 is the phase velocity of the wave
to be determined later. Dependent variables are expanded
as follows:

N = 1+ζ N1 +ζ
2N2 +ζ

3N3 + ... (21)

V =V0 +ζV1 +ζ
2V2 +ζ

3V3 + ... (22)

Φ = ζ Φ1 +ζ
2
Φ2 +ζ

3
Φ3 + ... (23)

On substituting the expansion (22) into Eqs. (1)-(5), using
Eqs. (19) and (20), and equating terms with the same powers
of ζ , we obtain a set of equations. The set of equations at
the lowest order is;

−u0∂ς N1 +∂ς (V1 +N1V0) = 0 (24)

− (u0 −V0)Γ1∂ςV1 +∂ς Φ1 = 0 (25)

Φ1

(
Q+1

2
(1+ΠT )

)
− (1−Π)N1 = 0 (26)

Integrating Eqs. (24) and (25) with respect to ζ for con-
tinuous wave which can have finite perturbation ever at
ζ →±∞, we get a relationship among the first order per-
turbed quantities as

N1 =

[ Q+1
2 (1+ΠT )

1−Π

]
Φ1 (27)

V1 = (u0 −V0)

[ Q+1
2 (1+ΠT )

1−Π

]
Φ1 (28)

For the existence of a nontrivial solutions of the first order
quantities, from Eqs. (27) and (28), we require

u0 =

[ Q+1
2 (1+ΠT )Γ1

1−Π

]
Φ1 +V0 (29)

where u0 is the phase velocity of the cnoidal wave in the
ion-acoustic wave frame. Taking Q = 1, Eq. (29) will be
exactly the same with the equation which was reported by
Chawlaet. al for nonextensive plasma [72].
The next higher-order equations are

− (u0 −V0)∂ς N2 +∂τ N1 +∂ςV2 +∂ς (N1V1) = 0 (30)

−(u0−V0)Γ1∂ςV2+Γ1∂τV1+[Γ1−2Γ2(u0−V0)]V1∂ςV1+∂ς Φ2 = 0
(31)

∂
2
ς Φ1 =

(
Q+1

2
(1+ΠT )

)
Φ2

+

(
(3−Q)(Q+1)

4
(1−ΠT 2)

)
Φ2

1
2

− (1−Π)N2 (32)

where for high relativistic plasma we have

Γ1 = 1+
3V 2

0
2c2 +

15V 4
0

8c4 (33)

and

Γ2 =
3V0

2c2 +
30V 3

0
8c4 (34)

Figure 1. Plot of δ versus Q having T = 0.1, Π = 0.1, V =
0.0075, ζ = 0.8 and ε =−0.002

After some algebraic manipulations, second order quantities
are eliminated and Φ1 is found to satisfy the following KdV
equation

∂τ Φ1 +aΦ1∂ς Φ1 +b∂
3
ς Φ1 = 0 (35)

which is the required KdV equation and describes the evo-
lution of the first order perturbed potential (Φ1). The coeffi-
cients a and b are given by

a =
3

2Γ1(u0 −V0)
+

(u0 −V0)

2

[
(3−Q)(1−ΠT 2)

2(1+ΠT )

]
− Γ2

Γ1
(36)

b =
1
2

[
(u0 −V0)

Q+1
2 (1+ΠT )

]
(37)

a and b are the coefficient of nonlinear term and dispersion
term of KdV equation respectively. Taking V0 = 0, Eq. (36)
and (37) will be exactly the same with the equation which
was reported for nonrelativistic plasma and taking Q = 1,
Eq. (36) and (37) will be exactly the same with the equa-
tion which was reported by Chawla et al. for nonextensive
plasma [72]. Generally, the first term of a in Eq. (36) and
the relation of b in Eq. (37) have the same form in all un-
magnetized plasmas and the effect of electrons distribution
function appears in the second term. Of course, u0 is always
under the influence of electrons distribution functions.

4. Cnoidal wave solution of KdV equation
In order to find the steady state cnoidal and solitary wave
solutions of the KdV Eq. (35), we follow the same proce-
dure as already done in Refs [73, 74], we consider the new

Figure 2. Plot of δ versus ζ having T = 0.1, Π = 0.1, V =
0.0075, Q= 0.1 and ε =−0.002
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Figure 3. Plot of U(Φ) versus Φ for different Qs, having
T = 0.1, Π = 0.1, V = 0.0075, ζ = 0.8 and ε =−0.002

variable as k = ς −V τ where V is the velocity of the nonlin-
ear structure moving with the frame. Then for Φ1 = Φ1(k)
the function we obtain

b∂
3
k Φ1 +∂k(a

Φ2
1

2
−V Φ1) = 0 (38)

After integration of equation (38), we obtain the following
equation of the conservative nonlinear oscillator:

∂
2
k Φ1 =−∂Φ1U (39)

where its potential energy is defined as

U(Φ1) =
a

6b
Φ

3
1 −

V
2b

Φ
2
1 + εΦ1 (40)

Here ε is the integration constant and the potential are de-
fined to within the constant. To have the potential well, the
following condition should be ful filled:(

V 2

a2 −2ε
b
a

)
> 0 (41)

After the integration of equation (40), we obtain the follow-
ing energy conservation law:

1
2

(
∂Φ1

∂k

)2

=
1
2

e2
0 −U(Φ1) (42)

where e2
0/2 is the integration constant having the meaning

of total energy of oscillations. In other words, ε and e0 are

Figure 4. Plot of U(Φ) versus Φ for different ζ s having
T = 0.1, Π = 0.1, V = 0.0075, Q= 0.1 and ε =−0.002

Figure 5. Plot of frequency of periodic wave (cnoidal)
versus ζ for different Qs, having T = 0.1, Π = 0.1, V =
0.0075 and ε =−0.002

the charge density and the electric field when the potential
Φ1 vanishes, respectively Using Eq. (40) in Eq. (42), we
have (

∂Φ1

∂k

)2

= e2
0 −

a
3b

Φ
3
1 +

V
b

Φ
2
1 −2εΦ1 (43)

Let us consider the following initial conditions Φ1(0) = γ0
and (dΦ1(0)/dk = 0). Then we can define

e2
0 =

a
3b

γ
3
0 +

V
b

γ
2
0 −2εγ0 (44)

Substituting Eq. (44) into Eq. (43), and after factorization,
we have(

∂Φ1

∂k

)2

=
a

3b
(γ0 −Φ1)(Φ1 − γ1)(Φ1 − γ2) (45)

where

γ1,2 =
3
2

[
V
a
− γ0

3
±
√

1
3
(θ1 − γ0)(γ0 −θ2)

]
(46)

and
θ1,2 =

V
a
±2

√
δ (47)

and

δ =

(
V
a

)2

−2ε
b
a

(48)

The γ0, γ1 and γ2 are the real roots of Sagdeev potential the
following inequalities should be kept [58].

θ1 ≤ γ0 ≤ θ2 or θ2 ≤ γ0 ≤ θ1

From Eqs. (38)-(42), we have the following relation,

V =
a
3
(γ0 + γ1 + γ2) (49)

The periodic (cnoidal) wave solution of Eq. (38) is given
by [59, 60].

Φ(k) = γ1 +(γ0 − γ1)cn2(Dk,m) (50)

where cn is Jacobian elliptic function, whereas the parame-
ters J (0 < J < 1) and B are defined as

J2 =
γ0 − γ1

γ0 − γ2
0 < J < 1 (51)
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Figure 6. Plot of amplitude of periodic wave (cnoidal)
versus Q, having T = 0.1, Π = 0.1, V = 0.0075, ζ = 0.8
and ε =−0.002

B =

√
a

12b
(γ0 − γ2) (52)

Physically, the elliptic parameter J (the modulus) may be
viewed as a fair indicator of the nonlinearity with the linear
limit being J → 0 and the extreme nonlinear limit being
J → 0. The conditions for the existence of a cnoidal solution
of Eq. (48) require that

γ0 > γ1 > γ2 and γ1 ≤ Φ1 ≤ γ0

Furthermore, the amplitude A, the wavelength λ and the
frequency f of the cnoidal wave are defined as

A = γ0 − γ1 (53)

λ = 4

√
3b

a(γ0 − γ2)
K(J) (54)

f =
Λ

λ
(55)

where K(J) is the first kind of complete elliptic integral
and Λ = u0 + u is the velocity of the cnoidal wave in the
laboratory frame.

5. Results and discussion
We have considered the nonlinear propagation of IACW in
three component high relativistic plasma. Using the fluid
model for ions and reductive perturbation technique, we
have derived the KdV equation for investigating small am-
plitude cnoidals. The nonlinear coefficient of KdV equation
depends upon the strength of nonextensivity (Q), positron
density(Π), relative temperature (T ) and relativistic factor
(ζ = V0/c). In this paper, among of different parameters,
effects of relativistic factor (ζ ) and the strength of nonex-
tensivity (Q) have been investigated.
Effects of ζ and Q may be extracted from Eqs. (36) and (37).
A numerical computation has been performed to extract
more information and display the results from equations
to show that how these parameters influence the formation
of cnoidals. Cnoidal wave may generate and propagate in
plasma medium only if Sagdeev potential has three real
roots. In this case the domain of real roots should be found
from the inequalities δ > 0 and 0 < J < 1 [59]. The accept-
able values for Q in which Sagdeev potential [i.e. Eq. (40)]

Figure 7. Plot of amplitude of periodic wave (cnoidal)
versus ζ having T = 0.1, Π = 0.1, V = 0.0075, Q= 0.1 and
ε =−0.002

has three real roots are shown in Fig. 1. This figure shows
that for all values of Q >−1 periodic wave (Cnoidal) may
be formed. This investigation shows that the set of allow-
able Q values in relativity mode is more than non-relativity
state, which is determined by comparing the data of this
paper with the reference [11, 73]. δ versus ζ is shown in
Fig. 2. Ion relativity has no limiting effect on formation
of IACW and for all magnitudes of ζ periodic wave may
generate and propagate in plasma medium.
In Fig. 3 Sagdeev potential versus Φ for different values

of Q has been plotted. This figure shows that by increasing
plasma nonextensivity the width and depth of the potential
well is decreased. The width of Sagdeev potential well is
proportional with IACW amplitude. According to this result
with increasing the plasma nonextensivity, energy of IACW
will decrease. Furthermore, with increasing Q and the width
of Sagdeev potential well, three roots of potential equation
tend to each other, leads to formation of ion acoustic solitary
wave in the plasma medium.
In Fig. 4 Sagdeev potential versus Φ for different values of
Q has been plotted. This figure shows that by increasing
relativistic factor the width and depth of the potential well
is negligible increased.
Both the nonextensivity and the relativistic plasma have
a decreasing effect on the IACW frequency.In Fig. 5, the
frequency of ion acoustic periodic wave (cnoidal) versus ζ

for different values of Qs has been plotted. By increasing

Figure 8. Plot of the potential of the cnoidal wave Φ versus
k for different ζ s, having T = 0.1, Π = 0.1, V = 0.0075,
Q= 0.1 and ε =−0.002
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Figure 9. Plot of the potential of the cnoidal wave Φ versus
k for different Qs having T = 0.1, Π = 0.1, V = 0.0075,
ζ = 0.8 and ε =−0.002

Q and ζ the frequency of periodic wave (cnoidal) will de-
crease. With increasing ζ the mass of ions increases leads
to decrease the frequency of plasma ions oscillation, and
with increasing Q the stability of system deduces leads to
decrease the frequency of IACW.
Figures 6 and 7 present the amplitude of periodic wave

(cnoidal) versus Q and ζ respectively. By increasing the
nonextensiivity of plasma, the amplitude of periodic wave
(cnoidal) will decrease. Variation of the amplitude of IACW
mainly occurs in the super extensive regime when Q < 1. In
the subextensive regime, the amplitude of IACW is almost
independent of plasma nonextensivity. For all magnitudes
of Q, the amplitude is positive, in other words only the
compressive IACW may generates and propagated in the
plasma. By increasing ζ , the amplitude of periodic wave
(cnoidal) slightly increased. It can be explained by the fact
that with increasing ζ the energy of ions increases. For all
magnitudes of ζ also the amplitude if positive, this leads to
generation of compressive IACW in plasma medium. Com-
paring Figs. 6 and 7, it is clear that the amplitude of IACW
is under the influence of plasma nonextensivity rather than
the relativistic effect.
Effects of ζ and Q on the wave pattern of IACW are pre-
sented in Figs. 8 and 9. In any case, for all magnitudes of
Q and ζ , IACW is compressive. This is a general case and
in all nonextensive plasmas, ion acoustice waves (cnoidal
or solitary) are compressive [11, 51, 52, 73]. As was men-
tioned before, the amplitude and frequency of IACW varies
with Q rather that ζ . This was observed by Pakzad et al.
for the case of ion acoustic solitary waves in relativistic
plasma [51, 52, 74].

6. Conclusion
Propagation of IACW in collisionless, unmagnetized
high relativistic plasmas with nonextensive electrons and
positrons has been studied. Investigating the factors af-
fecting the cnoidal waves, it is found that the relativistic
effects of ions not only do not limit the formation of peri-
odic waves, but the range of permissible Q values for this
wave are formed is expanded compared to nonrelativistic
states. Amplitude of the cnoidal wave and its width has been
derived as functions of plasma parameters. An increase in
the nonextensive factor has a decreasing effect on the am-

plitude and energy of cnoidal waves, which occurs in the
subextensive regime, but with the increase in the energy of
ions and relativistic effects, the amplitude and energy of pe-
riodic wave increases, and finally, the nonextensive effects
are appeared more dominant than the relativistic effects.
In the investigation of the potential well, it was found that
the width and depth of the well decreases with the increase
of the nonextensive factor, which indicates the decrease
of the wave amplitude, With the decrease of the width of
the well, the three roots of the Sagdeev potential equation
become closer together and cause the periodic waves to
tend to solitons. While the increase of the relativistic factor,
the width and depth of the well negligible increased. With
the increase of relativistic effects and the velocity of ions,
which has a direct effect on mass of ions, as well as the
increase of the Q parameter, which reduces the stability of
the system, it is natural to see a decrease in the frequency
of the cnoidal waves. From the positive amplitude and the
pattern of the cnoidal waves it is shown that cnoidal waves
are also compressive in this the relativistic nonextensive
plasma. Results show that plasmas containing nonextensive
positrons and nonextensive electrons, high relativistic ions
are a capable medium for different modes, which has not
been studied yet. Investigating the propagation of cnoidal
waves in this medium can help us to find better knowledge
about the effects of relativistic particles in plasmas.
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