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Abstract:
In this paper, we use the holographic method to compute the entanglement entropy for different regions in the fourth-order
scale-invariant theory of gravity. In four dimensions, the action of scale-invariant gravity contains a parameter where the
moduli space has some distinguished points, precisely, the space of solutions contains the Log-gravity and for this specific
solution, we compute the entanglement entropy. We also use the numerical method to investigate mutual information and
tripartite information. Moreover, we make a comment on the sign of these quantities.
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1. Introduction

In principle, scale-invariance is an important feature of a
theory implies that if the variables, such as energy, length
or other scales are multiplied by a certain factor, then the
content of the theory does not change, and in this sense, it
may present a universality of the theory. The underlying
transformation of scale-invariance is identified by the di-
latation, which dilatations can be considered as a subclass
of a larger family of transformations named by conformal
symmetry. The scale-invariant theories have many appli-
cations in most ares of physics: For example, the theory
of phase transitions in statistical mechanics; the strength
of particle interactions in elementary particle physics are
described by the scale-invariant theory. Moreover, it is ar-
gued that a scale-invariant function shall be used to describe
the power spectrum of the spatial distribution of the cosmic
microwave background. Additionally, this theory has its
own application in gravity theory in describing the issue
of dark matter [1–3]. Einstein’s theory of gravity is known
as a standard theory of gravity, however, at very large and
small distances. This theory needs to be modified in order to
be compatible with observation. The issues of dark matter
and dark energy and also the difficulties due to quantum
gravity are some problems that should be addressed by a
modified gravity theory. In this way, large-scale observation
forces us to eliminate any fixed scale of space-time, which
means a scale-invariant theory of gravity might be substitute

with a modified version of gravity. Even though there is
no satisfactory re-normalizable theory of gravity, the scale
and conformal techniques have been widely used in general
relativity.
In our previous paper [4, 5], we investigated the scale-
invariant gravity theory in four dimensions, and showed
that the theory has a critical point, in which, the theory
admits several non-trivial solutions such as a logarithmic
solution. In this paper, in order to investigate the other fea-
tures of the theory, we use the holographic methods which
based on Anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence, and consider some non-local probes of en-
tanglement. More precisely, we compute the holographic
entanglement entropy (HEE) and mutual information for
the logarithmic solution in the scale-invariant theory in four
dimensions. First, let us review the theory.
In four dimensions the action of the scale-invariant gravity
is given by

I =− κ

32π

∫ √
−g d4x×

[
(σ0 −6)R2

µνρσ −2(σ0 −12)R2
µν +(

σ0

3
−5)R2

]
(1)

in this notation, one receives conformal gravity at point
σ0 → ∞ on the other hand, at σ0 = 0 the R2 gravity is ob-
tained. We also argued there is a critical point at σ0 = 6
where the theory reduces to the log gravity . The corre-
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sponding equations of motion are given by(
∇

σ
∇

ρ − 1
2

Rσρ

)
Cµσνρ =

1
2σ0

×

(
RRµν −gµν

R2

4
−∇µ ∇ν R+gµν□R

)
(2)

where □=∇µ ∇µ . The model has some black hole solutions
[6]

ds2 =
L2

r2

(
−F(r) dt2 +

dr2

F(r)
+dΣ

2
2,k

)
,

F(r) = λ + kr2 + c3r3 (3)

where L stands for the radius of curvature and k = 1,−1
and 0 corresponds to Σ2,k = S2,H2 and R2, respectively. It
is worth mentioning that

Rµν =
3λ

L2 gµν , λ =±1,0

One can find that an AdS wave solution as follows (see
also [7, 8])

ds2 =
L2

r2

(
dr2 +dy2 −2dx−dx++ k(x+,r) dx2

+

)
k(x+,r) = c0(x+)+ c3(x+)r3 (4)

In order to explore the space of solutions, the AdS wave
Ansatz can be utilized as follows

ds2 =
L2

r2

(
dr2 +dy2 −2dx−dx++ k(x+,r) dx2

+

)
(5)

where this Ansatz together with Eq. (2) leads one to write

k(x+,r) = c0(x+)+ c3(x+)r3+

b1(x+)r
3
2−

1
2

√
σ0+48

σ0 +b2(x+)r
3
2+

1
2

√
σ0+48

σ0 (6)

Noting that the case σ0 = 6, a logarithmic solution is ob-
tained as follows

k(x+,r)= c0(x+)+b0(x+) logr+
(

c3(x+)+b3(x+) logr
)

r3

(7)
By making use of the Ansatz

ds2 = dr2 +dy2 −2dx−dx++ k(x+,r) dx2
+, (8)

the equations of motion reduces to

σ0
∂ 4k
∂ 4r

= 0, (9)

and for σ0 ̸= 0 the above equation has a non-trivial solution
given by

k(x+,r) = c0(x+)+ c1(x+)r+ c2(x+)r2 + c3(x+)r3. (10)

Moreover, the theory admits the Lifshitz solution which is
given by

ds2 =
L2

r2

(
−dt2

r2z +dr2 +dx2
1 +dx2

2

)
,

z =
σ0 −6+

√
(σ0 −6)(4σ0 +3)
σ0 +3

(11)

Therefore, at different points of moduli space, the model
has some non-trivial solutions. It is worth noting that for
σ0 = 6 the action Eq.1 reads

I =− 3κ

32π

∫
d4x

√
−g
[
4R2

µν −R2] . (12)

We note, however, that although the above action has de-
generate equations of motion giving rise to a logarithmic
solution, modifying the IR limit by adding a linear scalar
curvature term that would remove this solution. It is worth
to mention that at σ0 = 0, one obtains the R2 gravity. In
order to make the finite action, one might use the Gauss-
Bonnet term, where the corresponding equations of motion
become(

Rµν −
1
4

gµν R
)

R+

(
gµν□−∇µ ∇ν

)
R = 0 (13)

One can show that all the Einstein solutions, previously
mentioned, are the solutions to the above equations, as well.
However, R = 0 while Rµν ̸= 0 can be considered as a new
class of solutions. Namely, one can say that the theory has
a larger class of the solutions, such as the Ricci scalar flat
which is given by

ds2 =
L2

r2

(
−F(r) dt2 +

dr2

F(r)
+dΩ

2
2,k

)
,

F(r) = kr2 + c3r3 + c4r4, (14)

where c3 and c4 are two constant, noting that the Ricci scalar
becomes zero whereas, due to the c4 ̸= 0, the Ricci tensor
is non-zero. This can be stated as follows

Rµν =−c4r4

2L2 (η
ρ

µ gρν +η
ρ

ν gρµ),

with η
ν
µ = diag(−1,−1,1,1). (15)

It is important to mention that for k = 1,c4 = c2 and c3 =
−2c where F(r) = r2(1− cr)2 the solution reduces to an
extremal black hole solution and the near horizon geometry
is given by AdS2 ×S2. By making use of r = 1

ξ
one obtains

ds2 = L2

−(1− c
ξ

)2

dt2 +
dξ 2(

1− c
ξ

)2 +ξ
2dΩ

2
2

 ,
(16)

with the following geometry

ds2 = L2c2
(
−ρ

2dt2 +
dρ2

ρ2 +dΩ
2
2

)
, (17)

where we have used ξ − c = c2ρ .
By setting k = 0 one can obtain another class of solutions.
Let us set c4 = 1 and suppose c3 is a free parameter. There-
fore by setting r = 1

ρ
the corresponding metric is given

by

ds2 = L2
ρ

2
(
−(1+ c3ρ)

dt2

ρ4 +
dρ2

1+ c3ρ
+dx2

1 +dx2
2

)
.

(18)
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The above solution can be considered as the hyperscaling
violating metric with θ = 4,z = 3, noting that a d + 2 di-
mensional hyperscaling violating geometry is

ds2 =
L2

r2 r2 θ

d

(
− f (r)

dt2

r2(z−1) +
dr2

r
+ d⃗x2

d

)
,

with f (r) = 1−m rd−θ+z. (19)

The rest of the paper is organized as follows. In the next
section, we use holographic methods and study the entangle-
ment entropy for three different entangling regions: Strip,
circle and cusp. We also will explore different features of
the model, especially at the critical point, we compute the
mutual information and also the tripartite information. We
use numerical analysis, to explore the sign of these quan-
tities, which become important the monogamy of mutual
information.

2. Holographic entanglement entropy
In this section in order to further explore the scale-invariant
theory, let us use the holographic method and study the
HEE in this theory. As mentioned in the previous section
the theory has critical points leading to some non-trivial
solutions. It is worth to mention that due to higher order
terms, to compute the HEE one should use the generalized
Ryu-Takayanagi prescription, [9–11]. First let us review the
proposal briefly. For the following action

I =− κ

32π

∫ √
−gd4x

(
aR2+bRµν Rµν +cRµνρσ Rµνρσ

)
,

(20)
thus it is argued that in order to obtain the HEE one should
minimize the following functional

S=
κ

8

∫ √
γ d2

ζ

[
2aR+b

(
Rµν nµ

i nν
i −

1
2
K iKi

)
+

2c
(

Rµνρσ nµ

i nν
j nρ

i nσ
j −K i

µνK µν

i

)]
, (21)

where i = 1,2 refers to the two transverse directions to a
co-dimension two hypersurfaces in the bulk, nµ

i are two
mutually orthogonal unit vectors to the hypersurface. K (i)

are the traces of two extrinsic curvature tensors defined by

K
(i)

µν = π
σ
µ π

ρ

ν ∇ρ(ni)σ , with π
σ
µ = ε

σ
µ +ξ ∑

i=1,2
(ni)

σ (ni)µ .

(22)
In the above relation, γ is the induced metric on the hyper-
surface whose coordinates are denoted by ζ , and, ξ = 1
and ξ =−1 are used for time-like and space-like vectors,
receptively. Now we use this method and study the HEE for
three different entangling regions: circle, strip and cone.

2.1 HEE of a strip
In order to find HEE for a strip entangling region which is
given by (t = constant,)

− ℓ

2
≤ y ≤ ℓ

2
, 0 ≤ x ≤ H, (23)

it is useful to parametrize the AdS metric as follows

ds2 =
L2

r2 (−dt2 +dr2 +dx2 +dy2). (24)

The co-dimension two hypersurface in the bulk can be
parametrized by setting y = f (r). After doing some algebra,
one obtains

S= κH

[
(σ0 −6)

(
1
ε
−

2πΓ
( 3

4

)2

Γ
( 1

4

)2
1
ℓ

)
+(σ0 −6)

(
−1

ε

)]
.

(25)
The above equation can be divided in two terms: The first
term comes form the dynamical part of the action, whereas,
second term is due to the Gauss-Bonnet term. The second
one plays the role of regulator in the theory. Now let us
compare the HEE with that of Einstein gravity which is

SEin =
L2H
2G

(
1
ε
−

2πΓ
( 3

4

)2

Γ
( 1

4

)2
1
ℓ

)
, (26)

which by setting κ = L2

2(σ0−6)G , the dynamical part is repro-
duced.

2.2 HEE of a circle
To compute entanglement entropy for a circle it is useful to
parametrize the metric as follows

ds2 =
L2

r2 (−dt2 +dr2 +dρ
2 +ρ

2dφ), (27)

and the entangling region is given by

t = contant, ρ = H = constant, (28)

by which, using the symmetry of the system, the corre-
sponding co-dimension two hypersurface in the bulk may
be parametrized by ρ = f (r). Therefore two mutually or-
thogonal unit vectors to the hypersurface are given by

n1 =
L
r

(
1,0,0,0

)
,

n2 =
L

r
√

1+ f ′(r)2 +1

(
0,− f ′(r),1,0

)
. (29)

Using these vectors and going through the minimization
procedure one gets following expression for the holographic
entanglement entropy (see [12] for five dimensional case)

S =
πκH

2
(3(4λ1 +λ2)+2λ3)×

∫ H

ε

dr
1
r2 =

πκ

2
(3(4λ1 +λ2)+2λ3)

(
H
ε
−1
)
. (30)

Now going back to the scale-invariant case where λ1 =
σ0
3 − 5,λ2 = −2(σ0 − 12) and λ3 = σ0 − 6 one finds that

the corresponding entanglement entropy is identically zero.
Indeed this may be understood as follows. Let us write the
action as follows

I =− κ

32π

∫
d4x

√
−g×
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Figure 1. For three subsystem, in reading the holographic entanglement entropy of the union part, one must use the minimal
configuration. In this figure, we have plotted the configurations of the two and three regions.

(
2σ0(Rµν Rµν − 1

3
R2)+R2 +(σ −6)GB4

)
. (31)

Then one can find the contribution of each terms separately.
The result is as follows

S =−πκ

4

[
4σ0

(
−H

ε
+1
)
−24

(
−H

ε
+1
)
+

4(σ0 −6)
(

H
ε
−1
)]

=−πκ×[
(σ0 −6)

(
−H

ε
+1
)
+(σ0 −6)

(
H
ε
−1
)]

= 0. (32)

Therefore it is zero due to the contribution of the Gauss-
Bonnet term which plays the role of regulator. Indeed the
situation is the same as that in four-dimensional conformal
gravity [13]. Actually since the Gauss-Bonnet term does not
contribute to the equations of motion the whole dynamics
must be encoded in the two first terms in the above action.
Therefore if we would like to find the contributions of the
dynamical degrees of freedom to the entanglement entropy,
we should only consider the dynamical parts of the action
in which the corresponding entanglement entropy is found

S = πκ(σ0 −6)
(

H
ε
−1
)
, (33)

which clearly has UV divergent term.
It is also illustrative to compare the contribution of dynam-
ical part to that obtained from just Einstein gravity. Of
course for Einstein gravity the holographic entanglement
entropy is given by minimizing the area of a co-dimension
two hypersurface. The corresponding entanglement entropy
is [14, 15]

SEin =
πL2

2G

(
H
ε
−1
)
. (34)

which is the same as Eq. 33 if one identifies κ = L2

2(σ0−6)G . It
is obvious that this identification is valid as long as σ0 ̸= 6.

2.3 HEE of a cusp
Finally, it is also straightforward to compute the universal
term of the holographic entanglement entropy for the case
where the entangling region has a cusp. To proceed we will
parametrize the AdS metric as Eq. 27. In this case, the
entangling region is given by t = constant, −Ω ≤ φ ≤ Ω.

Indeed such computation has already been done for general
quadratic action in [16] where it was shown that the Gauss-
Bonnet term does not contribute to the universal term and
therefore one arrives at

Suniv = κ(σ0 −6)a(Ω) log
R
ε
, (35)

where

a(Ω) =
∫

∞

0
dy

[
1−

√
1+h2

0(1+ y2)

2+h2
0(1+ y2)

]
, (36)

and h0 can be found from the following equation

Ω =
∫ h0

0
dh

2h2
√

1+h2
0

√
1+h2

√
(h2

0 −h2).(h2
0 +(1+h2

0)h
2)

(37)

Again the result reduces to that of the Einstein gravity if
one identifies κ = L2

2(σ0−6)G .
An interesting feature of this new universal term is that
in the smooth limit where Ω → π

2 the coefficient of the
universal term vanishes, though with certain form. More
precisely one has

κ(σ0 −6)a(Ω) =
κ(σ0 −6)

4π

(
Ω− π

2

)2
≡C

(
Ω− π

2

)2
,

at Ω → π

2
. (38)

One can then show that C is related to CT which is the
central charge appearing in the two point function of stress
tensor: C = π2

24CT [16].

3. HEE for the logarithmic solution
The gauge/gravity duality tells us that the log term in the
AdS solution might be identified by deformed the dual CFT
by an irrelevant operator. This means that such term destroy
the conformal symmetry at UV and therefore, applying the
AdS/CFT correspondence should be clear. However, follow-
ing [17], let us assume that the deformation is sufficiently
small in a way that this term may be treated perturbatively.
Holographic entanglement entropy for logarithmic solution
in Log-gravity has been studied in [18]. In what follows we
will use the procedure of [18] for the action Eq. (12). To
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Figure 2. Numerical results for holographic mutual information (left plot) and tripartite information (right plot) as a
function of the separation distance: for ℓ= 1, · · · ,5. Note in all cases the mutual information is positive while for three
regions the tripartite information remains negative.

proceed let us set c0 = c3 = b3 = 0 and b0 = β ̸= 0 in the
solution Eq. (7) and therefore one arrives at

ds2 =
L2

r2

(
β log

( r
L

)
dx2

+−2dx−dx++dy2+dr2
)
. (39)

Although the constant β can be removed by a rescaling,
in order to trace the effect of logarithmic term we will
keep it in the metric. Obviously setting β = 0 the solution
reduces to an AdS metric. In what follows we will compute
holographic entanglement entropy for the above metric at
leading order in β → 0 limit.
We will consider an entangling region given by x++x− = 0
and ℓ

2 ≤ y ≤ ℓ
2 which is a strip with width ℓ along the y

direction. Then the co-dimension two hypersurafce in the
bulk may be parametrized by y = f (r). In this case the
induced metric reads

ds2 =
L2

r2

(
(1+ f ′2)dr2 +(2+β log

r
L
)dx2

+

)
. (40)

On the other hand two unit vectors normal to the co-
dimension two hypersurfaces are

x++x− = const. n1 =
L

r
√

2+β log r
L

(0,1,1,0) ,

ρ − f (r) = const. n2 =
L

r
√

1+ f ′2
(− f ′,0,0,1) .

(41)
It is then straightforward to compute the entropy functional

(21) for the case of λ1 =−3,λ2 = 12 and λ3 = 0 according
to the action Eq. (12). Setting F = 2+β log r

L one finds

SA =−κ

4
3H√

2

∫
dr

√
( f ′(r)2 +1)F

2F2r2 ×

((
2r f ′′(r)F +(β −4F)

(
f ′(r)3 + f ′(r)

))2

( f ′(r)2 +1)3 +12βF

)
(42)

where H comes from the integration over x+ and
√

2 is due
to our notation of light cone coordinates, x± = t±x√

2
. Now

the aim is to minimize the above entropy function and find

the corresponding profile of y = f (r) which we will do it
for in β = 0 limit. Indeed at leading order one finds

f ′(r) =
r2

r4
t − r4 +O(β ), (43)

where rt is the turning point of the hypersurface. Plugging
this expression into the above entropy functional one gets

SA =
9Hκβ

4
r2

t

∫ rt

ε

dr
1

r2
√

r4
t − r4

+O(β 2)

=
9Hκβ

4

(
1
ε
− v0

rt

)
+O(β 2). (44)

where v0 =
√

2π3/2

Γ( 1
4 )

2 . On the other hand using the fact that

ℓ= 2
∫ rt

0 dr f ′+O(β ) = 2rtv0 +O(β ), one arrives at

SA =
9κβ

4
H

(
1
ε
−

2πΓ
( 3

4

)2

Γ
( 1

4

)2
1
ℓ

)
+O(β 2). (45)

Interestingly enough if one choose the coupling constant
κ properly, the above expression at leading order exactly
reduces to that of Einstein gravity, even though the logarith-
mic solution is not an Einstein solution.

4. Concluding remarks: holographic mutual
information

Entanglement entropy as a probe of entanglement has a UV
divergence, and due to the UV cut-off, the entanglement
entropy can not be considered as an universal quantity. How-
ever, for a system that has two disjoint parts, one can define
the mutual information. The mutual information quantifies
the amount of information which is shared between two
systems. This quantity is finite given by

I(A1,A2) = S(A1)+S(A2)−S(A1 ∪A2), (46)

where for a region A, the S(A) is the entanglement entropy
whereas, the entanglement entropy for the union of the two
entangling regions is S(A1 ∪A2). For three regions, the
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Figure 3. The 3D plot of holographic mutual information and tripartite information as a function of the separation distance
and the length of the strips.

corresponding quantity is given by the tripartite information
defined as follows

I[3] (A1,A2,A3) = S (A1)+S (A2)+S (A3)−S (A1 ∪A2)−

S (A1 ∪A3)−S (A2 ∪A3)+S (A1 ∪A2 ∪A3) . (47)

Based on holographic method, the union parts of the regions
play a key role, and in order to investigate this point, it is
important to mention that the tripartite information can be
rewritten in terms of the mutual information as follows

I[3](A1,A2,A3) = I(A1,A2)+ I(A1,A3)− I(A1,A2 ∪A3),
(48)

and by this modification, the aim is to compute the mutual
information.
At the leading order for the logarithmic solution, the holo-
graphic entanglement entropy for a strip entanglement re-
gion one has

S(ℓ) =
9κβ

4
H

(
1
ε
−

2πΓ
( 3

4

)2

Γ
( 1

4

)2
1
ℓ

)
. (49)

In order to compute the mutual information, we should
consider two entangling regions; we assume two strips with
the same length of ℓ separated by distance h. After doing
some calculation, one obtains

I =
9κβ

4
H
( 1

2ℓ+h
+

1
h
− 2

ℓ

)
. (50)

Similarly, for three strips with the same length ℓ separated
by distance h, as mentioned, the key point is to identify the
union part of entanglement entropies, noting that the holo-
graphic principle forces us to find a minimal configuration
in the bulk. For three strips, we have plotted all the union
parts in Fig.1. In each case, in computing the S(Ai ∪A j)
and S (A1 ∪A2 ∪A3) one must find the minimum among the

possible diagrams. This needs a numerical computation and
the holographic tripartite information is given by

I[3] (A,B,C) = 3S (ℓ)−min{S1,S3}−

2min{S1,S2}+min{S4,S5,S6,S7} , (51)

noting that min{S1,S2} means that the minimum configu-
ration between S1 and S2 must be used. Note that we have
used the following simplifications:

S (Ai ∪A j) :

 2S (ℓ)≡ S1
S (2ℓ+h)+S (h)≡ S2
S (3ℓ+2h)+S (ℓ+2h)≡ S3

and for three entangling regions, one has

S (A1 ∪A2 ∪A3) :


3S (ℓ)≡ S4
S (3ℓ+2h)+S (ℓ+2h)+S (ℓ)≡ S5
S (2ℓ+h)+S (ℓ)+S (h)≡ S6
S (3ℓ+2h)+2S (h)≡ S7

We have used Mathematica software to compute the nu-
meric analysis of finding the minimal configuration and the
results are shown in figures 2 and 3 for mutual informa-
tion and tripartite information, receptively, for some certain
values of ℓ and h. Our numerical analysis shows that the
mutual information is always positive, whereas the tripartite
information becomes negative, at least this happens for the
range of parameters that we have used. Previously. we have
observed this feature for some specific gravity theories as
well [19–22].

5. Conclusion
In this paper, we have investigated some features of the
scale-invariant gravity theory in four dimensions by com-
puting the HEE for the logarithmic solution. Our numerical
results indicate that in a such theory, the measure of entan-
glement for two systems is always positive. On the other
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hand for three regions the corresponding measure becomes
negative. The latter quantity is named tripartite informa-
tion, and the negativity of tripartite information imposes a
condition on the mutual information. This statement can be
understood from the relation (48): when I[3](A1,A2,A3) is
negative one receives

I(A1,A2 ∪A3)≥ I(A1,A2)+ I(A1,A3).

It is worth mentioning that in a generic case in quantum
field theory, the above inequality does not hold, and
this inequality becomes very important in the context of
quantum information theory. This indicates a well-known
feature of quantum correlation, namely the monogamy of
mutual information. This characteristic of measures of
quantum entanglement completely comes from the nature
of quantum mechanics. In other words, correlations in the
holographic regimes arise from quantum entanglement
rather than classical correlations.
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