
240

Geoconservation Research
2022, Volume 5 / Issue 1 / pages(240-260)   

Original Article

Corresponding Author:
Ramin Arfania

Department of Geology, Isfahan 
(Khorasgan) Branch, 

Islamic Azad University, Isfahan, Iran
Email: arfania@khuisf.ac.ir

Abstract
Quantifying fire hazards in natural areas and their spatial patterns are essential for 
developing appropriate fire management strategies, especially in countries with lim-
ited historical data on past fires. In this study, a fire hazard map for the Andika 
region of Iran was constructed by examining the correlation of past fires with the 
criteria of topography, meteorology, land cover, and human factors. The locations of 
eight-year fire points from 2013 to 2020 of Nova satellite sensor VIIRS were received 
and the fire map of each was constructed using the NBR (Normalized Burn Ratio). 
The wildfire events distribution maps were randomly divided into 70 and 30 percent 
ratios for training (modeling) and testing (validation) data, respectively. Using the 
frequency ratio, a fire hazard map of the region was created. Four fire hazard areas 
ranging from very high to low were identified. The results of past fires and frequency 
ratio model showed that in the study area, land cover (2.982), elevation (2.778), and 
annual precipitation (2.419) have the greatest prediction rate and influence on fire oc-
currence. The results also showed that a large proportion of past fires (71.37%) were 
located in high and very high-risk areas. The evaluation results of the area under the 
curve method showed an accuracy of 71.1% using evaluation data and 74.4% using 
training data, which can be considered desirable. The small differences between the 
validation results using test and training data indicate an unbiased fire hazard map.
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Introduction
Forests are one of the most important land types 
and they play a key role in maintaining ecological 
balance, changing the appearance of the earth and 
biodiversity (Kayet et al. 2020; Clark 1990). Veg-
etation cover is a key factor in ecosystem health 
and environmental and land resources planning 
(Choubin et al. 2019). Since the forest is a complex 
and dynamic ecosystem whose components are in-
terconnected and in balance, its equilibrium or reg-
ulatory power can be weakened or disappear when 
this ecosystem is affected by one or more destruc-
tive factors, depending on its nature and intensity. 
Many factors contribute to the destruction of forests 
and pastures, and fire is one of the most important 
(Fischer et al. 2016). Wildfires are environmental 
disasters that threaten human safety, infrastructure, 
and biodiversity (Tien Bui et al. 2017). Fires also 
have significant economic and social consequenc-
es at regional and local levels, affecting lives and 
structures (Eskandari & Chuvieco 2015). The ef-
fects of global warming on temperature, precipita-
tion, and soil moisture mean that the number and 
area of fires worldwide are expected to continue to 
increase (Argañaraz et al. 2015; Westerling 2016). 

Iran, with its 14 million hectares of forest land lo-
cated in a dry tropical high-pressure belt, has the 
weather necessary for fires to occur in forests and 
pastures. According to statistics published by the 
Forests Range and Watershed Management Or-
ganization, 15,000 fires occur in Iran every year, 
so 0.06 % of the country’s forests are destroyed 
by this phenomenon every year (Ardakani 2009). 
Therefore, fire hazard assessment is very import-
ant to reduce the negative impacts of fire and im-
prove the preparedness of fire managers and rural 
areas that are more exposed to fire (Eastaugh & 
Hasenauer 2014).

In recent decades, much research has been conduct-
ed on the factors that cause and exacerbate fires, 
as well as the relationship between these factors in 
creating fire hazard maps and identifying areas at 
risk. For example, global climate change has led to 

an increase in the number of fires as precipitation 
has decreased significantly and temperatures have 
increased. Evidence of decreasing forest resilience 
to fire due to climate change has been studied ex-
tensively (Allen et al. 2010; Rother & Veblen 2016; 
Stevens-Rumann et al. 2018). Other factors may 
exacerbate forest fires, such as a long dry season 
and human activities (Argañaraz et al. 2015). In this 
context, by modeling weather conditions, Abatzo-
glou & Williams (2016) found that increases in fire 
activity in the western United States and Northern 
mountains have increased due to both temperatures 
and widespread drought, especially since 2000. In 
many parts of the world, wildfires are increasing 
at an alarming rate. After identifying the effective 
factors, it was necessary to study the relationships 
between these factors concerning the occurrence of 
fires or the increase of these disasters.

Several methods have been proposed and tested 
by researchers to map fire-prone areas in forests. 
The first modeling of fire hazards began in the 
1980s (Nami et al. 2018). Ivanilova (1985) intro-
duced a model based on probability concepts and 
partial derivatives for fire modeling, and Chuvie-
co & Congalton (1989) used a regression model to 
investigate the correlation between past fires and 
ecological and topographical factors on the Span-
ish Mediterranean coast. Jaafari et al. (2019) used 
a new comparative analysis of four hybrid artifi-
cial intelligence models for the spatially explicit 
prediction of wildfire probabilities. Other fire 
hazard mapping methods include artificial neural 
networks, Dong modeling, and fuzzy hierarchical 
analysis (Satir et al. 2016; Eskandari & Miesel 
2017; Güngöroğlu 2017). In general, these ap-
proaches can be classified into three main groups: 
physics-based techniques, statistical techniques, 
and machine learning techniques. Physics-based 
techniques, which combine equations from fluid 
mechanics, biomass combustion, and heat transfer 
mechanisms, are required to identify fire-prone 
areas. The major drawback of these approaches is 
the difficulty in measuring the inherent error rate 
(Bar Massada et al. 2011). Another disadvantage 
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of the physics-based method is the need for accu-
rate information. For example, data on tree loca-
tion and size, fuel mass, soil moisture, etc. must 
be collected over large areas, which is difficult 
(Pimont et al. 2016). Therefore, these methods 
may not be applicable in data-poor areas. Ma-
chine learning methods, such as artificial neural 
networks, support vector machines, and decision 
trees, are very time-consuming and depend on the 
high computing capacity. Moreover, these meth-
ods may not be practical for areas with limited 
resources and urgent need for action. Therefore, 
statistical methods for modeling wildfire suscep-
tibility are more suitable for large study areas, 
especially when combined with GIS technology 
(Teodoro et al. 2015).

The statistical method most commonly used in 
landslide modeling, and which will be tested in this 
study, is the frequency ratio model. For instance, 
Shahabi et al. (2015) carried out a remote sensing 
and geographic information system-based study to 
map areas susceptible to landslides using three sta-
tistical models. The basic principle of the frequency 
ratio model is based on the observed relationships 
between the distribution of the spatial event and 
its culprit and calculates the spatial correlation be-
tween the location of the fires and the culprits (Lee 
& Pradhan 2007). In other words, the frequency ra-
tio model is used to evaluate relationships between 
location-dependent and independent variables (Oh 
et al. 2011). Few studies use a frequency ratio mod-
el to construct a fire hazard map. In one study, Pra-
dan and coworkers modeled fire-prone areas in the 
Kuala Lumpur region of northern Malaysia using 
hotspots from previous fire accidents (2000-2005) 
and the frequency ratio method. In other studies, 
Pourtaghi et al. (2015) used entropy index and fre-
quency ratio for the forests of Minoodasht in the 
eastern part of Iran’s Golestan Province, Arca et 
al. (2020) for the forests of Carbuk in Turkey used 
multicriteria decision analysis and frequency ratio, 
Kayet et al. (2020) for the forest area of Malgat in 
the central regions of India used the frequency ratio 
model and hierarchical analysis process, and Tsher-

ing et al. (2020) for the forests in the Himalayan 
kingdom of Bhutan used the AHP and frequency 
ratio model to generate hazard maps.

In some studies, researchers have used ground sur-
veys such as GPS to map the area of historic fires. 
This can affect the accuracy of the model and the 
final fire hazard map because in many cases the 
disaster occurred a long time ago, and creating a 
map years later will not be free of error. It also 
does not account for smaller fires that started out 
of sight of people in inaccessible areas and died 
out naturally. Statistical methods and frequency 
ratio models are highly dependent on inputs of 
the exact number and range of historical fires. The 
researchers then used point-based data of histori-
cal fires provided by the U.S. space agency using 
the Nova and Modis satellites to solve the prob-
lem. However, since the data are only available 
as points, they determine the fire locations and 
the time of their occurrence, but not the boundary 
of fire occurrence. The purpose of this paper is to 
assess and evaluate the results of wildfire suscep-
tibility map obtained by combination of remote 
sensing and frequency ratio model for Andika re-
gion. We have tried to determine the exact extent 
of fires in the Andika region of the Zagros Moun-
tains in Iran and assess the correlation between the 
past wildfires and controlling factors.

Materials and Methods 
Study Area
The city of Andika, with an area of 2391 km2, is in 
the northeast of the Iranian province of Khuzestan 
and almost in the center of the Zagros Mountains 
between 31°43’N and 32°39’N and 49°52’E and 
49°53’E, with elevations ranging from 150–3743 
m. About 70% of the elevations of the Andika re-
gion include the hills and about 30% of the plains 
and plateaus between the mountains (Figure 1). An-
dika region is bordered by Chaharmahal Bakhtiari 
province to the north and northeast, Dezful city to 
the northwest, Lali city to the west, MasjedSoleiman 
city to the south, and Izeh city to the southwest and 
has 155 thousand hectares of rich forest area. Gen-
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erally, the vegetation of this area is classified into 
three different groups, including oaks trees in the 
mountainous part, very dense jazz trees and shrubs 
in the Shimbar sanctuary, and fragrant shrubs with 
high density in part of the southern plains. this area 
contains 246 plant species, belonging to 179 genera 
and 57 families. most species belong to the Aster-
aceae with 30, Fabaceae with 23, Iamiaceae with 
22, Apiaceae and Caryophyllaceae each with 11 
species. According to the results of the 2016 Popu-
lation and Housing Census of the Statistics Center 
of Iran, 47,000 people live in this city, whose tra-
ditional life is based on the nomadic social system 
and has a rural and nomadic structure. The forests 
of Anadika region have witnessed numerous and 
large fires in the past years. according to the Khu-
zestan Environmental Protection Department, only 
in the first half of 2019, twenty fires occurred in 
the forests and pastures of this region. The damage 
caused by one of these fires, which occurred in the 
Deli forests of the Shimbar protected area, is esti-
mated to be more than 200 hectares of pastures and 
forests in this area (Khabaronlione 2020).

Data Collection
To identify instances of past fires, a point file con-
taining 549 fire locations from the Nova satellite’s 
VIIRS sensor, covering the study area from 2013 
to 2020, was first downloaded from the website 
NASA (Figure 1). Of these 549 points, 146 final 
fires were used as the main data of previous fires 
in the area after combining the points related to 
a single fire, and Lands8 / OLI images were ob-
tained from the USGS website to extract the fire 
area of each case by the NBR index (Table 1). Fi-
nally, the number of fires was divided into 70 to 30 
as training data and evaluation data. To construct 
a fire hazard map, it is necessary to examine the 
factors that influence the occurrence of fires and 
their effects on the occurrence of fires that have 
occurred in the past.

The occurrence of fires in any area depends on a 
variety of factors, and an analysis of these primary 
factors is inevitable in the preparation of fire haz-
ard maps. In Andika, the primary factors for fire 
occurrence are as follows (Table 2).

Figure 1. Location of Andika region and VIIRS fire spots (2013-2020).
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Topography: Topographic data is among the most 
important factors in fire occurrence and the im-
portance of elevation, slope, and slope data in fire 
occurrence has been discussed in various sources 
(Kayet et al. 2020; Renard et al. 2012). Elevation 
is an important physio-graphic variable related to 
temperature, humidity, and wind and is one of the 
most important and effective factors correlating 
with fire phenomena and the determination of fire 
hazard in the study area. As altitude increases, the 
temperature and density of oxygen decrease, and 
due to the shallow depth of the soil and wind in-
tensity, the amount of fuel is less (Şen & Habib 
2000). It has also been reported that fires at high-
er altitudes are less intense due to higher rainfall 
(Chuvieco & Congalton 1989; Adab et al. 2011). 

It is important to consider the criterion of slope as 
steep slopes may increase the rate of fire spread. 
On the other hand, in the northern hemisphere, 
slopes in the south and southeast are more ex-
posed to the sun, resulting in higher temperatures, 
higher wind speeds, faster drying of vegetation, 
and thus an increased risk of fire. For this study, 
a digital elevation file (aster Gdem) with a pix-
el size of 30 m was downloaded from the United 
States Geological Survey (USGS) website. Using 
the aster Gdem file, slope and slope angle data 
were generated in ArcGIS 10.5 software. Eleva-
tion data were divided into five classes with 700 m 
intervals to be used in susceptibility analyses, (1) 
100-800, (2) 800-1500, (3) 1500-2200, (4) 2200-
2900, (5) 2900-3800 m. For slope map Based on 

Table 1. Satellite images used in fire hazard mapping

Satellite 
data

Acquisition time
Path
&
row

Spatial resolution (m) bands

Landsat8/
OLI1

25 August 2020
165/37
165/38

30
Blue (0.450–0.515)
Green (0.525–0.600)
Red (0.630–0.680)

7 July to 9 October 2013
6 June to 12 October 2014
25 June to 13 September 2015
8 April to 18 November 2016
27 April to 5 November 2017
1 June to 21 September 2018
19 May to 26 October 2019
21 May to 28 October 2020

165/37
165/38

30
NIR (0.845-0.885)
SWIR 2 (2.11-2.29)

1https://earthexplorer.usgs.gov/.

Table 2. Data used in fire hazard mapping

Data layers Data format Data source scale

Forest fire locations point
Fire Information for Resource Management System 
(NASA)1

1:25,000

Topographic map Raster Satellite image 30 × 30 m
land cover Raster Satellite image 30 × 30 m
settlement Point & Line GPS surveying -
Meteorological data Excel data Iranian meteorological Organization (IRIMO) -

1https://firms.modaps.eosdis.nasa.gov/download/.
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topographic changes of the area, four categories (1) 
0–10%, (2) 10–20%, (3) 20–50%, (4) > 50% were 
considered. For slope aspect map categorization, 
nine directions were used: flat, north, northeast, 
east, southeast, south, southwest, west, northwest, 
and north.

Meteorology: One of the most important criteria 
in fire hazard assessment is annual rainfall be-
cause in areas with more rainfall, fuel moisture is 
higher and ignition and emission rates are lower 
(Vadrevu et al. 2009). The amount of precipita-
tion also affects the density of vegetation and the 
evaporation of plant moisture in the dry season. 
The average annual rainfall in Andika ranges 
from 422–947 mm. Temperature is one of the 
most important factors determining the climate 
of the region. As temperature increases, the veg-
etation and surrounding air dry out, resulting in 
an increased rate of ignition and faster spread of 
fire. Therefore, temperature can be considered as 
one of the main factors for fire occurrence. Mean 
annual maps of precipitation and temperature of 
the Andika region were prepared using ten-year 
data from 33 synoptic stations in the region and 
using the kriging interpolation method in ArcGIS 
10.5 software (Table 3). The map of the mean an-
nual temperature in the region based on changes 
in temperature was classified into three catego-
ries: (1) < 19, (2) 19–25, and (3) > 25 degrees 
Celsius. Five categories of (1) < 500, (2) 600, (3) 
700, (4) 800, (5) > 900 mm were considered to 
classify the map of average annual rainfall of the 
region.

Land Cover: Land cover can be considered a 
very important factor in the development and 
progression of fire. Vegetation is the main com-
bustible fuel and one of the main sides of the fire 
triangle. Moreover, dense and dry vegetation 
is more flammable than low-dense vegetation. 
Therefore, the importance of the various aspects 
of this factor in the occurrence of fire hazards 
has been studied and considered in all fire haz-
ard studies. To produce the land cover map of 

the Andika region, the Landsat 8 2020 satellite 
image was obtained from the USGS website. Af-
ter performing radiometric and atmospheric cor-
rections, the mentioned image bands (RGB: 432) 
and supervised classification method were used 
to construct the vegetation map of the region in 
five categories of forests, shrublands, low-densi-
ty pastures, grasslands, and water.

Human Factors: Proximity to residences is di-
rectly related to fire accidents caused by human 
presence and other fire factors (Jiang 2011). 
Forests near villages experience intentional and 
unintentional fires all over the world. In recent 
years, the number of intentional fires has in-
creased due to population growth and increasing 
demand for agricultural products, and expansion 
of residential areas. Proximity to roads is anoth-
er factor that influences the occurrence of fires, 
and is directly related to contamination by com-
bustible materials such as oil and tire waste from 
cars and passengers (Gigović et al. 2018). in this 
study, maps of rural areas, residences, and roads 
in the area were obtained by GPS. Proximity to 
rural areas and residences in 500-m sections and 
six categories (1) 500, (2) 1000, (3) 1500, (4) 
2000, (5) 2500, (6) 3000 m were created  based 
on population distribution and topography of the 
area in ArcGIS software. Six categories of road 
proximity with sections of (1) 200, (2) 400, (3) 
600, (4) 800, (5) 1000 and (6) > 1000 m were 
considered.

The map of the eight factors and their classes used 
in this study, including elevation, slope, slope as-
pect, land cover, average annual temperature, av-
erage annual precipitation, proximity to roads, and 
proximity to villages, is shown in Figure 2.

Method
In this study, ENVI 5.3, ARCGIS 10.5, and Ex-
cel software were used to create a fire map of the 
study area. The method involves several steps, 
which are shown as a flowchart )Fig. 3). In the 
first stage, after identifying the important crite-
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ria, spatial and statistical data were converted 
into rasters with a pixel size of 30 m. Next, a 
map of fires in the last eight years was created 
by comparing Landsat 8 data before and after 
fires and using the NBR index. Next, a map of 
the frequency ratio of each criterion class and 

the weighting of each criterion was created us-
ing records of previous fires from the NBR in-
dex. Finally, the resulting fire hazard map was 
evaluated once with evaluation data and once 
with training data using the area under the curve 
method. 

Table 3. Synoptic stations

station mean precipitation mean temperature longitude latitude

Ahvaz agriculture 171.85 26.36083333 48.73188975 31.54626355
Ahvaz 213.8181818 26.22045455 48.66591535 31.30723224
Aligudarz 392.9464286 13.0452381 49.69620633 33.40499112
Ardal 451.46 15.76333333 50.66245652 31.99772681
Azna 215.4727273 14.04166667 49.45170243 33.44994761
Daran 333.7304348 10.99456522 50.41116637 32.98758003
Dehdez 549.56 19.81833333 50.2945989 31.7011103
Dezful 388.3938776 24.35187075 48.42358412 32.3830777
Dorud 620.1266667 16.82666667 49.0628794 33.49590076
Farokhshahr 264 13.26388889 50.98103876 32.27045972
Farsan 446.42 14.11833333 50.56430242 32.26079708
Fereydoun shahr 542 11.4 50.1241035 32.94011444
Golpayegan 252.6956522 15.55652174 50.27081631 33.45723581
Gotvand 273.5333333 27.07638889 48.80956059 32.24347813
Hoseinie 371.48 27.28 48.2468174 32.6763651
Iman abad 429.45 17.12916667 48.60586947 33.38570981
Izeh 634.8 23.36628788 49.8700857 31.82396216
Khansar 379.7333333 13.22962963 50.31727331 33.28119902
Khoram abad 496.9918033 17.31967213 48.33953246 33.4645161
Kouhrang 1351.182143 9.898214286 50.13616006 32.46139222
Lali 393.1125 26.73229167 49.0943433 32.3295438
Likak 460.7333333 25.80277778 50.09311944 30.91392778
Lordegan 551.53 16.37125 50.82614939 31.51700118
Masjedsoleyman 427.9827586 25.69396552 49.30016309 31.9497354
Omidieh 248.75 25.63972222 49.53922287 30.83580608
Ramhormoz 297.0444444 27.57345679 49.59929677 31.2775627
Saman 358.1333333 13.82569444 50.91069077 32.44850122
Sepid dasht 632.42 21.80666667 48.88439712 33.21728399
Sofla dezful 323.9666667 24.51234568 48.41582379 32.35121228
Shahr kord 323.0842105 12.22997076 50.8563515 32.32786675
Shol abad 780.8333333 16.36388889 49.19106156 33.18491053
Shush 211 27.26 48.25432741 32.19578409
Shushtar 295.35 27.92 48.84978482 32.05195236
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Figure 2. A) Elevation classes; B) Slope classes; C) Slope aspect classes; D) Precipitation classes; E) Land cover classes; F) 
settlement proximity classes; G) roads proximity classes; H) temperature classes.

Figure 3. Flowchart of used methodology in fire hazard mapping.
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NBR index
In this study, the Normal Burn Ratio (NBR) in-
dex and a combination of near-infrared (NIR) and 
shortwave infrared (SWIR) data from Landsat 8 
satellite imagery were used to create a map of past 
fires in the study area. NBR is an index developed 
to detect burned areas in large fires. In most cases, 
this method reliably separates burned areas from 
unburned areas and optimally identifies areas af-

fected by fire (Takayama 2018). Healthy vegeta-
tion shows very high reflectance in the near-infra-
red and low reflectance in the shortwave infrared. 
On the other hand, recently burned regions show 
low reflectance in the near-infrared and high re-
flectance in the shortwave infrared (Fig. 4). In 
other words, the difference between the spectral 
response of healthy vegetation and burned areas 
peaks in the near and short infrared.

Figure 4. Exploiting 
spectral response 
curves.

The NBR index was calculated according to Equa-
tion (1) (Key & Benson 2005), for the images tak-
en before and after each fire incident. The NBR 
index uses the ratio between near-infrared and 
short-infrared bands to represent spectral differ-
ences, a high NBR value in the results indicates 
healthy vegetation, while a low value indicates va-
cant land and recently burned areas. Non-burned 
areas are usually assigned a value close to zero.

NIR SWIRNBR
NIR SWIR

−
=

+
                                 (1)

After calculating the NBR index for the images 
before and after each firing, Equation (2) (dNBR 
or ∆NBR) was used to determine the difference 
between the pre- and post-fire results.

dNBR or ∆NBR                                                 (2)

In this formula, the pre-fire NBR raster is the NBR 
index created from the pre-fire area, and the post-
fire NBR raster is the NBR index of the post-fire 
area. Higher dNBR values indicate more severe 
damage, while areas with negative dNBR values 
may indicate vegetation regrowth after the fire. To 
better extract the results and amplitude of fire, the 
obtained dNBR map was classified using Table 
4, and areas with high dNBR (high fire intensity) 
were extracted as burned areas from the results.

Table 4. Burn severity levels obtained by calculat-
ing dNBR

Fire intensity dNBR range
Unburned - 0.500 to + 0.99
Low intensity + 0.1 to + 0.27
Moderate intensity + 0.27 to + 0.66
High intensity > +0.66dNBR or NBR PrefireNBR PostfireNBR= −�
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Frequency Ratio Model
In this study, the frequency ratio method was used 
to evaluate the importance of each criterion and 
its associated classes. The frequency ratio is a sta-
tistical method based on observed relationships 
between the spatial distribution of the fire event 
and its causes. This model calculates the spatial 
relationship between the location of fire incidents 
and the factors in the study area (Pradhan et al. 
2007). In other words, it is the ratio of the burned 
area that occurred in a particular class to the ratio 
of the area of that class to the study area. If the 
value is greater than one, it means that the class 
has a higher correlation, and if this value is less 
than one, it means that there is a lower correla-
tion (Lee & Pradhan 2007). The frequency ratio 
of each criterion class was calculated using Equa-
tion (3). here, iF  is the burned area of a class for 
a factor; iF∑  shows the total burned area of all 
classes; iD  is the area of the class; iD∑  shows 
the total area of all classes. In other words, first, 
the percentage of occurrence of fires in the classes 
of each specific criterion is presented, and then the 
frequency of fires in each class is evaluated ac-
cording to the size of the class relative to the size 
of the entire area.

FR
i

i

i

i

F
F

D
D

∑
=

∑

                                                              
                                                                            (3)

The results of the frequency ratio of the classes 
of each criterion do not have a specific numeri-
cal range, and to calculate the importance of each 
criterion and compare them, all the results must 
be normalized in a specific range. Therefore, the 
frequency ratio of the classes of each criterion in 
a range of probability values [0, 1] was normal-
ized as relative frequency (RF) using Equation 
(4). Here, iFR  is the frequency ratio of each class 
of a criterion; iFR∑  is the sum of the frequency 
ratios of all classes of that criterion.

RF  i

i

FR
FR

=
∑

                                                                                (4)

After normalizing the frequency ratio of the crite-
rion classes, RF still has an error and considers all 
factors and criteria as equally weighted. To solve 
this problem and find the correlation between 
fire occurrence criteria, a prediction rate (PR) or 
weight was calculated to evaluate each fire occur-
rence criterion. The prediction rate (PR) was cal-
culated based on the difference between the max-
imum and minimum relative frequencies obtained 
from the classes of each specific criterion and the 
minimum value of the differences between all cri-
teria using Equation (5)

( )
PR max min

max min min

RF RF
RF RF

−
=

−
                                                                 (5)

After calculating FR, RF, and PR, to obtain the 
final fire hazard map, the criteria maps were re-
classified using Equation (6)  according to the rel-
evant relative frequency values and then weighted 
and combined with the corresponding prediction 
rate (PR). In the resulting raster map, pixels repre-
sent the sum of relative frequencies, and the value 
of pixels indicates the risk of fire occurrence in 
that area. In other words, pixels with higher values 
have a higher risk of fire occurrence.

n

i 1
WFRI i iPR RF

=
= ×∑                             (6)

Evaluation of Fire Hazard Map
The resulting hazard map was evaluated and vali-
dated using the area under the curve (AUC) meth-
od, useful in evaluating the predictive power of 
the model (Yilmaz 2009). To calculate the AUC, 
the values of the wildfire frequency ratio index of 
the frequency ratio models were reclassified and 
inverted into one hundred classes with a uniform 
interval of 1%. Second, the fire incident areas were 
extracted using the training and evaluation data. 
Third, for each index value, the fire area, cumu-
lative fire area, and fourth, AUC values were cal-
culated using the trapezoidal area formula. Fifth, 
the AUC values of each index were summed to 
obtain the total AUC. The quantitative AUC val-
ue qualitatively measures the predictive accuracy 
and performance of the models (Lee & Pradhan 
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2007). A higher AUC value indicates that the mod-
el is more sensitive and accurate in prediction. The 
AUC value in fire hazard studies can be classified 
and interpreted into quantitative-qualitative levels 
of prediction accuracy, which are sorted as follows: 
90–100%, excellent; 80–90%, very good; 70–80%, 
good; 60–70%, average; and 50–60%, poor. 

Results
NBR Index
The high spatial resolution maps of past fires are 
shown in Figure 5 as areas of moderate to severe 
fire. Errors were removed from the new results us-
ing field visits and satellite images. 

Statistical results of historical fires show that most 
fires occurred in summer and early autumn, which 
may be related to the drying of vegetation and 
the reduction of humidity in the region, as well 
as the increase of temperature in the region. After 
subtracting the errors due to cloud cover and wa-

ter-covered areas on the ground surface that was 
incorrectly indicated as burned areas, the results in 
Table 5 show that about 2.9% of the burned area 
occurred during the period from July to October 
2013. In addition, 1.3% of the area of fires in the 
period from June to September 2014, 1.9% of the 
area of fires in the period from July and August 
2015, 10.18% of fires in the period from April to 
October 2016, 12.16% of the area of fires in the 
period from May to October 2017, 1.52% of the 
area of fires in the period from June to October 
2018, 1.28% of the area of fires in the period from 
June to October 2019, and 41.82% of the area of 
fires occurred in the period from May to October 
2020. The annual results of the fires clearly show 
an increase in the area of fires, and the burned area 
of pastures and forests in the Andika region has 
increased from 483 hectares in 2013 to about 6800 
hectares in 2020. The map of past fires from 2013 
to 2020 derived from the results of the NBR index 
of fires is shown in Figure 6. 

Figure 5. Generate the fire map of 20. July 2019 using the NBR index: A) Landsat 8/OLI pre-wildfire image (RGB); B) Landsat 8/
OLI post-wildfire image (RGB); C) pre-fire NBR index; D) post-fire NBR index; E) dNBR result; F) fire map from dNBR classifica-
tion, where (α) represents burned areas and (β) represents faults that identify areas of clouds and waters as moderately burned areas.
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Frequency Ratio Model Fire Hazard Map
The results of the frequency ratio model and the 
spatial relationship between wildfires, factors, and 
their classes are shown in Table 5. The calculations 
showed that the land cover factor had the high-
est influence on fire hazard with a probability of 
2.98 and the slope factor had the lowest influence 
with a probability of one. The results of the slope 
classes show that the slope class above 50% has 
a higher frequency ratio (1.33). In the study area, 
it was observed that as the slope gradient increas-
es, the frequency ratio also increases. In terms of 
slope aspect, the results of the calculations from 
this study show that fires in the region occur fre-

quently on slopes facing east (1.35), northeast 
(1.34), and north (1.23). While the frequency of 
fires in the flat lands (0.32) is the lowest, and the 
following slopes to the south (0.672) and south-
west (0.677) also have the lowest frequency.

The relationship between fires and elevation data 
shows that elevations between 800 and 1500 m 
and also 1500 to 2200 m have a frequency ratio 
greater than 1, indicating a high probability of 
fires in these classes. Elevations above 2200 m 
in the Andika region are generally covered with 
snow throughout the year, which greatly reduces 
the risk of fire.

Figure 6. Map of historical fires resulting from the NBR index for the study area (2013-2020)
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The results of proximity to roads showed that the 
frequency ratio of fires increases with distance, and 
classes of 1000 m (0.206) and above 1000 m (0.309) 
of the study area roads have a higher frequency ratio 
in the occurrence of fires. The results of village prox-
imity also show that as the distance from villages in-
creases, the frequency of fires increases, and classes 
2500 m (2.56), 2000 m (1.76), and 1500 m (1.2) have 
the highest probability of fire occurrence with a fre-
quency ratio of more than one. 

The evaluation of the annual average temperature 
showed that temperatures between 19 and 25 degrees 
Celsius (1.69) are strongly correlated with the occur-
rence of fires, and temperatures higher or lower than 
this class have a lower correlation with the occurrence 
of fires. Regarding the average annual precipitation, 
the results show a high correlation between the pre-
cipitation class of 700 mm (1.81) and the occurrence 
of fires, and the precipitation class above 900 mm 
(0.043) also had the lowest frequency relationship of 
fires. A lower frequency of fires was observed in the 
precipitation classes below 700 mm and above 900 
mm. Finally, regarding the results on land use and land 
cover, it can be deduced that the highest frequency of 
fires is related to the grassland class (2.69), which is 
due to the risk of ignition and spread of fires in the dry 
season, followed by the forest class.

After performing calculations related to the fre-
quency ratio and normalizing them, as well as the 
probability of occurrence of each criterion, the 
map of each criterion was reclassified according 
to the relative frequency values concerning itself 
and weighted by the prediction rate of each crite-
rion (Fig. 7). The criterion layers were combined 
to create a fire danger map for the area. The fire 
danger map that resulted from combining the RF 
maps of the criteria were classified into four Sen-
sitivity categories: Low Risk, Medium Risk, High 
Risk, and very high-risk using the equal distance 
method (Fig. 7). The results show that 3.79% of 
the study area is located in a very high fire risk 
area, 34.69% in a high-risk area, 41.48% in a 
medium risk area, and finally, 20.01% of the area 

in a low-risk area. High and very high-risk areas 
are located in the central areas in a strip from the 
northwest to the southeast of the region. This area 
includes the protected areas of Shimbar and the 
Shalal and Kotok Mountains. In addition, 76.37% 
of the historical fires are in the high and very high-
risk areas of the resulting hazard map. In the other 
hazard classes, about 20% of the past fires are in 
the moderate risk zone and 3.4% are in the low-risk 
zone. The statistical results of past fires show that 
most fires occurred in the summer and early fall.

Evaluation of NBR and Frequency Ratio Fire 
Hazard Map
The resulting hazard map was evaluated and vali-
dated using the area under the curve method. The 
quantitative AUC value qualitatively measures the 
predictive accuracy and performance of the models 
(Lee & Pradhan 2007). Figure 8 shows the results 
of fire hazard map evaluation by the area under the 
curve method using training and evaluation data. In 
the present study, the AUC results for the created 
fire hazard map were 71.1% using evaluation data 
and 74.48% using training data, which is good and 
acceptable. Also, the small difference between the 
evaluation results of the map using the evaluation 
and training data indicates unbiased results. 

Discussion
In this study, a fire risk map was created using the 
NBR remote sensing technique and the frequency 
ratio model. To assess the risk and create a fire haz-
ard map for the area, eight criteria were considered, 
elevation, precipitation, temperature, slope, slope 
aspect, proximity to villages, proximity to roads, 
and land cover. The results of past fires and frequen-
cy model ratio model showed that in the study area, 
land cover, elevation, and annual precipitation have 
the greatest influence on fire occurrence. In other 
studies, different criteria were identified as most 
important, which may relate to different climatic 
and ecological conditions. For example, Pourtaghi 
et al. (2015) using a frequency ratio model showed 
that for the forests of Minoodasht, land cover, soil, 
and the annual temperature had the most important 
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Table 5. Spatial correlation between fire incident factors and past fires using frequency ratio model

C
riterion

classes
Fire 

area(he)
Fire (%)  Class area(he) Area (%) FR RF PR

Elevation

100-800 2170.38 14.382 79439.46 33.528 0.428 0.126

2.778
800-1500 9601.57 63.627 99482.59 41.988 1.515 0.445
1500-2200 3308.77 21.926 35726.85 15.079 1.454 0.427
2200-2900 3.86 0.026 15505.54 6.544 0.004 0.001
2900-3800 0 0 6778.91 2.861 0 0

Slop

0-10% 652.61 4.325 33057.9 13.952 0.31 0.09

1.864
10 _20% 1621.79 10.747 42007.12 17.729 0.606 0.177
20_50% 7230.15 47.912 96233.04 40.616 1.18 0.344
> 50% 5579.66 36.975 65618.31 27.695 1.335 0.389

Slop aspect

Flat 3.72 0.025 1806.39 0.762 0.032 0.004

1

North 1870.74 12.397 23749.56 10.024 1.237 0.15
North-east 2890.86 19.157 33725.61 14.234 1.346 0.163

East 2635 17.461 30496.95 12.872 1.357 0.164
South-east 1472.84 9.76 23944.77 10.106 0.966 0.117

South 1370.66 9.083 31990.41 13.502 0.673 0.081
South-west 1866.08 12.366 43235.37 18.248 0.678 0.082

West 1723.26 11.42 29279.43 12.358 0.924 0.112
North-west 1251.18 8.291 18705.87 7.895 1.05 0.127

precipitation

< 500 3013.99 19.973 59128.16 24.956 0.8 0.175

2.419
600 4931.72 32.681 92593.28 39.08 0.836 0.183
700 5593.83 37.069 48337.27 20.401 1.817 0.397
800 1503.3 9.962 21942.12 9.261 1.076 0.235

> 900 41.72 0.276 14935.21 6.304 0.044 0.01

Tem
pera-

ture

< 19 2978.07 19.735 67706.05 28.576 0.691 0.227
2.10519-25 8133.86 53.901 75409.43 31.827 1.694 0.555

> 25 3972.82 26.327 93818.15 39.597 0.665 0.218
Land cover

Forest 4399.99 29.157 46377.75 19.574 1.49 0.264

2.982
shrublands 3248.27 21.525 58458.37 24.673 0.872 0.155

Low-density pastures 4017.18 26.621 108717.9 45.885 0.58 0.103
grassland 3395.79 22.503 19788.64 8.352 2.694 0.478

Water bodies 0 0 3591.03 1.516 0 0

V
illage proxim

ity

500 m 1232.24 8.166 43116.11 18.198 0.449 0.059

1.74

1000 m 3010.77 19.952 69877.59 29.492 0.676 0.089
1500 m 3688.64 24.444 48147.56 20.321 1.203 0.159
2000 m 2907.48 19.267 25810.92 10.894 1.769 0.233
2500 m 2030.63 13.456 12423.2 5.243 2.566 0.338
3000m 2214.97 14.678 37558.27 15.852 0.926 0.122

R
oad proxim

ity

200 m 1248.68 8.275 42851.82 18.086 0.458 0.088

1.384

400 m 1208.16 8.006 35638 15.041 0.532 0.102
600 m 1283.63 8.506 29837.79 12.593 0.675 0.13
800 m 1351.02 8.953 24735.51 10.44 0.858 0.164
1000 m 1374.97 9.112 20043.55 8.46 1.077 0.207

> 1000 m 8618.28 57.111 83826.99 35.38 1.614 0.31
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Figure 7. Fire hazard map obtained by NBR index and frequency ratio model: A) Criteria layersreclassified by related RF val-
ues; B) fire hazard map produced by NBR index and frequency ratio model.
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Figure 7. continue.
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influence on the occurrence of fires.
In the AUC assessment of the fire hazard map, we 
found an accuracy of 71.1% when using evaluation 
data and 74% when using training data, which can 
be considered a desirable and acceptable predic-
tion because the small difference between the as-
sessment results of the evaluation and training data 
indicates an unbiased risk map. Also, the fact that 
most of the fires in the past are located in a high and 
very high-risk area (76.37%) indicates a very high 
correlation between the map produced by this mod-
el and the fires that occurred in the past. The evalu-
ation of the frequency ratio model in this study and 
the results of the studies of Pourtaghi et al. (2015; 
79.85%) and Arca et al. (2020; 76.42%) compared 
to the results of the hierarchical method in the study 
of Tshering et al. (2020; 63%) indicate the higher 
efficiency of the frequency ratio model.

Fire is a function of various physical, climatic, bi-
ological, economic, and social variations, and an 
accident at a particular location may not be direct-
ly related to other locations with the same intensi-
ty. The relative frequency values for each operat-
ing class in the frequency ratio model indicate the 

extent to which the factor and the operating group 
are related to fire occurrence. For example, in this 
study and in the results of Pourtaghi et al. (2015), 
the frequency of fires increases with increas-
ing distance from the roads, while in the results 
of Tshering et al. (2020) and Arka et al. (2020), 
the closer distances have higher fire probability. 
Also, Jaafari et al. (2019) found the class with 
the farthest distance has a greater weight. Here, 
and in the results of Pourtaghi et al. (2015), it was 
observed that as the slope gradient increases, the 
frequency of fires increases, while Pradhan et al. 
(2007) found that lower slope gradients have high-
er fire frequency and for slope gradients above 36 
degrees, the fire frequency decreases to zero. Or 
in the case of average annual precipitation, the 
results show a high correlation between precip-
itation class with 700 mm (1.81) and fires, and 
in the precipitation class above 900 mm (0.043), 
there was the lowest frequency of fires. In other 
words, lower frequency is observed in precipita-
tion less than 700 and more than 900 mm, while 
Jaafari et al. (2019) noted that more rainfall has 
more weight. Pourtaghi et al. (2015) found that 
as precipitation increases, the frequency of fires 

Figure 8. Fire hazard map evaluation using the AUC method.
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also increases. Increased precipitation due to the 
direct effect on vegetation density increases fires, 
but on the other hand, precipitation above 900 mm 
in the Andika region is located in the highlands of 
the region and is mostly in the form of snow, so 
the frequency ratio of past fires in these areas is 
lower. Such ambiguities can be easily identified 
and removed by calculating the frequency ratio. 
However, this is not possible in other hazard map-
ping models because other models, such as multi-
criteria decision-making with AHP, are not based 
on historical fire data, unlike the frequency ratio 
model. In such models, to model fire hazards, we 
need qualified multidisciplinary experts who have 
access to the relevant concepts. Therefore, when 
qualified experts are not available and historical 
fire data are not available, other models can be 
used as an alternative method. Where satellite data 
are available, remote sensing and NBR indexing 
techniques can be used to identify past fires with-
out the need for on-site presence and ground map-
ping, and to generate the fire hazard map using the 
frequency ratio model.

The NBR index is a very powerful tool for cre-
ating a fire hazard map by examining pre-and 
post-fire satellite imagery. However, one of the 
challenges of using this method is to be able to 
access pre-fire and post-fire images at short time 
intervals. On the other hand, the high sensitivity 
of the pixels of this method to areas with water 
and clouds may cause these areas to be classified 
as high fire intensity areas. To solve this prob-
lem, it is necessary to provide images with min-
imal cloud cover and correct possible errors in 
the results. However, the NBR index can be con-
sidered very effective as it can provide accurate 
information about past fires, especially in areas 
with a lack of data.

Geoconservation Implications
All landforms are archives of the life history of 
our planet. The simultaneous and sudden loss of 
large numbers of plants, animals, and other or-
ganisms will inevitably affect the way species 

interact with each other and the ability of ecosys-
tems to recover. Results of the fire hazard map 
showed that the areas with very high fire hazard 
are located from the northwest to the southeast 
of the region along the Zagros mountains. These 
areas mostly have steep slopes (>50%). Also, 
the results of NBR index for past fires showed 
that 36.97% of the area of past fires occurred in 
slopes between 20% to 50 % and 47.91% in ar-
eas with slopes greater than 50%. wildfire. De-
stroying the vegetation on steep slope lands not 
only causes extensive damage to the geoheritage, 
but also causes the escalation and occurrence of 
other hazards. With the destruction of the veg-
etation, the surface water system may become 
more destructive as the magnitude and frequency 
of storms and rainfall increase, leading to flood, 
greater erosion and increased sediment transport. 
Although erosion may reveal new exposures but 
may also destroy some features and change the 
landforms and increase landslide risk.

Conclusion
As seen in the results of this research, the degree 
of influence of different factors involved in caus-
ing fires in each region can be different. The com-
bination of remote sensing to investigate past haz-
ards and the relative frequency statistical method 
to prepare a fire hazard map can be considered an 
efficient and reliable method. Conducting such 
research plays an important role in assessing and 
evaluating the sensitivity of natural and forested 
areas and making proper management decisions 
for fire suppression, especially in areas with data 
deficiency and field strength. Therefore, the map 
obtained from this research helps in fire suppres-
sion in the study area, prevention of fires, and fi-
nally their rapid extinction. Based on this research 
and its results, appropriate firefighting equipment 
can be deployed in an area with high and very high 
fire risks before the fire season starts.
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