

**Research and Full Length Article:** 

## **Evaluation of Meteorological Factors in Estimating Forage Production in Steppe and Semi-steppe Rangelands of Iran**

Zahra Mansouri <sup>A</sup>, Hossein Arzani<sup>B</sup>\*, Alireza Moghadamnia<sup>C</sup>, Javad Motamedi<sup>D</sup>, Shahram Khalighi Sigarodi<sup>E</sup> <sup>A</sup> PhD student, Faculty of Natural Resources, University of Tehran, Tehran, Iran

<sup>B</sup> Full Prof., Faculty of Natural Resources, University of Tehran, \*(Corresponding Author), Email: harzani@ut.ac.ir

<sup>C</sup> Associate Prof., Faculty of Natural Resources, University of Tehran, Tehran, Iran

<sup>D</sup> Associate Prof., Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural

Research Education and Extension Organization (AREEO), Tehran. Iran

<sup>E</sup> Associate Prof., Faculty of Natural Resources, University of Tehran, Tehran, Iran

Received on: 14/07/2020 Accepted on: 12/05/2021

DOI: 10.30495/RS.2022.681732

DOR: 20.1001.1.20089996.2021.12.1.5.0

Abstract. Rangeland production is especially important in meeting food requirement of rangeland societies. Sometimes, historical data are required for long-term grazing capacity estimation. Regression equations that are reasonably reliable for predicting forage production from precipitation characteristics have been developed for rangeland yield estimation. In this research, the relationship between forage production and meteorological factors was evaluated with six-year data for Pashaylogh and Incheboron rangelands (2003 to 2007 and 2017- Golestan province, Iran) and eleven-year data for Nemati rangeland (1998 to 2007 and 2017- Markazi province, Iran). For sampling, four parallel transects with a length of 300 m and at a distance of 100 m from each other were established in the steppe area (Nemati) and six 200-m transects were created in the semi-steppe area (Pashaylogh and Incheboron) and they were located parallel and at a distance of 100 m from each other. Due to the need for uniformity in the data of the rangelands of different provinces and their comparison, plot size of  $1 \times 2$  m was selected in steppe site, and  $1 \times 1$  m for semi-steppe sites. Data analysis was done through regression models. The results showed that forage production was related to temperature and precipitation rather than other meteorological factors (temperature, precipitation, sunlight hours, relative humidity, evapotranspiration and average wind speed). The best equation that can predict the relationship between meteorological data and forage production was August precipitation and temperature  $(R^2=0.88)$  in Pashaylogh, the precipitation of June  $(R^2=0.88)$  in Incheboron rangelands. There was a relationship between forage production ( $R^2=0.79$ ) with precipitation and temperature in July and in Nemati rangeland. The forage production index was determined based on effective meteorological factors and The Standardized Precipitation-Evapotranspiration (SPEI) drought index. According to meteorological data, a coefficient could be obtained to estimate long-term rangeland production and prevent from forage loss.

Key words: Regression equation, Steppe and semi-steppe rangelands, Rangeland capacity, Meteorological data

### Introduction

One of basic the requirements for determining the long-term grazing capacity of rangelands is to know the long-term production of rangelands. For this purpose, it is necessary to monitor and measure forage production during a reasonable statistical period in terms of recurrence of weather events. That is the period in which normal droughts and wet climatic years occurred in the region. The duration of this period is usually recommended to be 10 years for the country's climatic conditions, and it is assumed that during this 10-year period, normal drought and wet years occur in terms of rainfall; otherwise, a longer period can be considered (Ghorbani et al., 2017; Kheradmand., 2017). Gathering such data is usually time consuming and costly. Therefore, it is necessary to estimate the amount of annual rangeland production indirectly and using climate information, and based on the results, long-term rangeland production can be predicted. Studies also show that the value of meteorological determinants. and information are not the same in terms of modeling and forecasting the amount of rangeland production. Different results have been reported depending on the type of weather data as well as the type of vegetation and even the timing of vegetation sampling. What is certain in all studies is that the amount of rangeland forage production can be predicted and modeled based on weather information (Omidvar et al., 2020).

In the other way, recent reports project climate change will affect all rangeland ecosystems, but the greatest impacts will likely occur in semiarid and arid areas (Polley *et al.*, 2013; IPCC, 2014; Havstad *et al.*, 2016; USGCRP, 2018). Rangelands account for roughly 70% of the world's land area and 16% of global food production (Holechek, 2013). Rangeland livestock production is especially important in meeting food needs of pastoral societies across Africa, central Asia, and many parts of South America (Holechek, 2013; Holechek *et al.*, 2017; WRI, 2018).

The relationship between climatic factors spatially rainfall and forage production had been studied by researchers. Regression equations that are reasonably reliable for predicting forage production from precipitation characteristics and climatic factors have developed for some rangeland communities including perennial grass (Kbumalo and Holechek, 2005). Yang et al. (2008) determined the relationship between precipitation and global grass production. There are some published data that examined the relationship between climate factors and production (Hurtado-Uria et al., 2014; bayat et al., 2016; Ehsani et al., 2007; Akbarzadeh et al., 2007; Pfeiffer et al., 2019; Hui et al., 2018; Sawalhah et al., 2019; Yalcin, 2018; Omidvar et al., 2020).

On loamy blue grama rangeland in central New Mexico, Pieper et al. (1971) found that total herbage production was significantly correlated ( $R^2 = 0.71$ ) with a annual growing season (Junetotal September) precipitation. On the Santa Rita Range in south central Arizona, Cable and Martin (1975)found that August precipitation was most highly correlated with annual perennial grass production ( $R^2$ = 0.63). Akbarzadeh et al. (2007) emphasized the effective role of the growing season rainfall in grass forage production in the same area of Polur grassland, Iran.

Ehsani *et al.* (2007) investigated the effect of climate factors on forage production over an eight- year period in Akhtarabad Rangelands located in Saveh region of Iran. Their result showed that the growing season rainfall plus the previous growing year rainfall was the most effective factor in forage production. Their results also showed that the estimation of forage

production in *Bromus tomentellus* and *Agropyron trichophorum* community based on the proposed equations had no significant correlation for the long-term period.

Wight *et al.* (1984) developed a rangeland production model (ERHYM) for estimation of biomass production in relation to climatic parameters and soil water to plant growth. They used information of soil moisture at the beginning of the growing season, daily precipitation statistics, average air temperature and light as a production index. This model was used by other researchers (Kizito *et al.*, 2007; Krauss *et al.*, 2007; Chavula and Gommes, 2006; Ehsani *et al.*, (2007).

Holechek *et al.* (2004) also stated that observing the entry of an appropriate

### Materials and Methods Study Areas

Studied rangelands are located in Golestan province (Pashaylogh and Incheboron) and Markazi (Nemati) of Iran. These rangelands were selected from "Rangeland Assessment number of livestock into the rangeland is the most important part of successful rangeland management. Therefore, if the criteria for measuring grazing capacity are problematic and some cases are ignored, the grazing capacity is not calculated correctly and the livestock feeding programs in the rangeland do not have the desired performance and the livestock balance in the rangeland will not be established.

In this regard, this study aimed to investigate the relationship between meteorological factors and rangeland production to develop a predictive model for calculating long-term gazing capacity of period that we had data in each rangeland and suggest its application in the same areas.

of the different climatic zone project in Research Institute of Forests and Rangelands of Iran" which has been done by (Arzani, 2009). The characteristics of studied rangelands shown in Tables 1, 2 and 3 include precipitation, soil characteristics and vegetation condition in three rangelands.

**Table 1.** Physical characteristics of the study sites (Arzani, 2009)

| Sits characteristics          |                    | Rangeland Name               |                         |  |  |
|-------------------------------|--------------------|------------------------------|-------------------------|--|--|
|                               | Nemati             | Pashaylogh                   | Incheboron              |  |  |
| Dominant vagatation type      | Artemisia sieberi- | Salsola arbusculiformis—     | Halocnomum strobilacoum |  |  |
| Dominant vegetation type      | Salsola laricina   | Artemisia sieberi            | Halochemum strobilaceum |  |  |
| Dominant slope %              | 20%                | 20%                          | 1 to 2%                 |  |  |
| Dominant aspect               | Southeast          | East and West- West and East | North                   |  |  |
| Average altitude              | 1325 m             | 150-430 m                    | 10 m                    |  |  |
| Soil type                     | Fan-shaped debris  | Hills                        | Alluvial                |  |  |
| Soil texture                  | Sandy clay loam    | Silt loam                    | silt loam               |  |  |
| Long term, annual rainfall    | 200 mm             | 360 mm                       | 300 mm                  |  |  |
| Long term, annual temperature | 18.2°C             | 17.7∘C                       | 17.8°C                  |  |  |
| Climate class                 | Dry cold desert    | Semi-dry to dry              | Semi-desert             |  |  |

| Rangeland  | Years | Crown     | Litter | Stones and  | Bare soil | Total min=3, | Rangeland | Rangeland |
|------------|-------|-----------|--------|-------------|-----------|--------------|-----------|-----------|
| Name       |       | Cover (%) | (%)    | Pebbles (%) | (%)       | max=50       | Condition | Trend     |
| Nemati     | 1998  | 21.3      | 4.5    | 54.2        | 17.6      | 30.5         | Medium    | -         |
|            | 1999  | 22.4      | 4.2    | 52.1        | 21.2      | 29.6         | Weak      | Stable    |
|            | 2000  | 22.8      | 2.0    | 54.3        | 20.9      | 23           | Weak      | Stable    |
|            | 2001  | 26.1      | 4.1    | 65.9        | 3.8       | 25.5         | Weak      | Stable    |
|            | 2002  | 23.8      | 3.5    | 51.4        | 21.4      | 31.4         | Medium    | Positive  |
|            | 2003  | 23.7      | 4.7    | 52.0        | 17.9      | 28.1         | Weak      | Positive  |
|            | 2004  | 25.2      | 4.7    | 52.1        | 17.9      | 26.6         | Weak      | Positive  |
|            | 2005  | 25.4      | 3.4    | 51.3        | 21.4      | 23.2         | Weak      | Positive  |
|            | 2006  | 24.8      | 5.3    | 51.9        | 17.9      | 19           | Very Weak | Positive  |
|            | 2007  | 24.3      | 4.2    | 52.1        | 19.4      | 24.5         | Weak      | Positive  |
|            | 2017  | 23.0      | 4.3    | 52          | 17.2      | 31.5         | Medium    | Positive  |
|            |       |           |        |             |           |              |           |           |
| Pashaylogh | 2003  | 41.2      | 6.2    | 27.3        | 22.7      | 21.3         | Weak      | -         |
|            | 2004  | 30.7      | 5.8    | 39.7        | 21.6      | 6.2          | Weak      | Stable    |
|            | 2005  | 37.1      | 6.2    | 27.2        | 27.8      | 25.0         | Weak      | Stable    |
|            | 2006  | 24.0      | 6.4    | 35.6        | 32.0      | 23.5         | Weak      | Stable    |
|            | 2007  | 19.5      | 3.5    | 39.6        | 36.9      | 22.2         | Weak      | Stable    |
|            | 2017  | 23.2      | 3.5    | 35          | 30        | 25.3         | Weak      | Negative  |
|            |       |           |        |             |           |              |           |           |
| Incheboron | 2003  | 61.2      | 2.8    | 0.0         | 35.1      | 32.2         | Medium    | -         |
|            | 2004  | 46.2      | 13     | 0.0         | 42.4      | 21.0         | Weak      | Negative  |
|            | 2005  | 28.8      | 4.1    | 0.0         | 66.8      | 24.8         | Weak      | Stable    |
|            | 2006  | 27.3      | 3.4    | 0.0         | 69.6      | 26.5         | Weak      | Stable    |
|            | 2007  | 32.6      | 4.4    | 0.0         | 62.0      | 23.3         | Weak      | Stable    |
|            | 2017  | 47.6      | 4.3    | 0.0         | 35.0      | 25.6         | Weak      | Stable    |

Table 2. Information on soil surface cover and condition and trend of the studied rangelands (Arzani, 2009)

Table 3. Monthly and total annual precipitation in the different years in the studied rangelands

| Rangeland  | Voor | Ion  | Fab  | Mor   | Apr  | Mov  | Iun  | Tul  | A 11 G | San  | Oct  | Nov   | Dec   | Annual<br>Precipitation |
|------------|------|------|------|-------|------|------|------|------|--------|------|------|-------|-------|-------------------------|
| Name       | Teal | Jall | гео  | wiai  | Арі  | wiay | Juli | Jui  | Aug    | Sep  | 001  | NOV   | Dec   | (mm)                    |
| Pashaylogh | 2003 | 15.2 | 58.3 | 80.7  | 81.3 | 34.2 | 30.4 | 1.6  | 0.8    | 0.7  | 16.7 | 57.0  | 37.3  | 414.4                   |
|            | 2004 | 29.9 | 12.0 | 63.5  | 92.5 | 18.9 | 6.6  | 53.1 | 1.0    | 56.0 | 30.7 | 74.3  | 34.7  | 473.0                   |
|            | 2005 | 76.7 | 57.6 | 50.0  | 13.5 | 36.1 | 19.0 | 39.0 | 23.0   | 0.1  | 30.2 | 45.0  | 29.1  | 419.5                   |
|            | 2006 | 28.8 | 23.9 | 43.9  | 34.3 | 24.2 | 3.5  | 0.2  | 0.0    | 14.2 | 40.7 | 51.3  | 41.0  | 306.0                   |
|            | 2007 | 8.5  | 26.8 | 123.6 | 43.9 | 16.8 | 79.5 | 2.4  | 0.8    | 43.2 | 1.6  | 35.2  | 46.8  | 429.2                   |
|            | 2017 | 31.1 | 45.3 | 30.3  | 39.5 | 0.0  | 0.0  | 5.3  | 2.0    | 5.6  | 16.6 | 7.4   | 25.5  | 208.7                   |
|            |      |      |      |       |      |      |      |      |        |      |      |       |       |                         |
| Incheboron | 2003 | 12.0 | 62.7 | 112.2 | 57.0 | 51.3 | 54.2 | 6.1  | 33.4   | 5.0  | 47.1 | 133.5 | 56.8  | 631.4                   |
|            | 2004 | 51.2 | 10.7 | 79.0  | 78.3 | 30.7 | 28.3 | 63.7 | 1.6    | 28.7 | 41.5 | 106.0 | 74.6  | 594.3                   |
|            | 2005 | 99.6 | 49.2 | 81.4  | 35.2 | 63.5 | 18.9 | 0.1  | 14.5   | 36.7 | 20.2 | 121.1 | 139.0 | 679.5                   |
|            | 2006 | 61.8 | 16.5 | 41.9  | 37.8 | 29.6 | 9.7  | 3.7  | 0.0    | 10.9 | 39.0 | 110.4 | 56.8  | 418.2                   |
|            | 2007 | 25.5 | 42.4 | 99.6  | 26.0 | 30.6 | 19.0 | 2.7  | 20.1   | 29.3 | 0.1  | 51.0  | 37.1  | 383.5                   |
|            | 2017 | 49.3 | 27.7 | 33.13 | 53.4 | 5.2  | 0.3  | 8.0  | 0      | 72.3 | 46.2 | 68.2  | 21.0  | 384.9                   |
|            |      |      |      |       |      |      |      |      |        |      |      |       |       |                         |
| Nemati     | 1998 | 45.8 | 18.9 | 50.9  | 33.9 | 14.6 | 0.2  | 0.9  | 2.2    | 0.2  | 12.1 | 1.2   | 13.4  | 194                     |
|            | 1999 | 52.6 | 20.6 | 25.4  | 3.5  | 2.6  | 0.0  | 7.6  | 0.0    | 0.0  | 13.4 | 45.6  | 16.8  | 188                     |
|            | 2000 | 33.1 | 20.0 | 5.4   | 6.6  | 1.0  | 0.0  | 0.0  | 0.0    | 2.0  | 24.4 | 32.4  | 114.3 | 239                     |
|            | 2001 | 27.1 | 16.0 | 20.5  | 0.0  | 24.1 | 4.1  | 1.0  | 0.9    | 2.1  | 1.1  | 12.6  | 63.3  | 173                     |
|            | 2002 | 34.7 | 2.6  | 5.6   | 41.8 | 5.7  | 0.0  | 0.0  | 0.0    | 0.0  | 0.5  | 18.1  | 31.3  | 140                     |
|            | 2003 | 29.9 | 32.4 | 46.41 | 59.8 | 9.3  | 0.0  | 0.0  | 0.0    | 0.0  | 1.6  | 16.6  | 54.8  | 251                     |
|            | 2004 | 88.4 | 4.2  | 14.1  | 31.5 | 37.3 | 0.0  | 7.0  | 0.0    | 0.0  | 2.0  | 44.7  | 32.4  | 262                     |
|            | 2005 | 53.2 | 27.7 | 52.2  | 19.5 | 6.8  | 0.0  | 0.0  | 0.1    | 0.0  | 0.9  | 42.6  | 10    | 213                     |
|            | 2006 | 59.1 | 28.1 | 18.6  | 28.2 | 6.7  | 0.0  | 0.0  | 0.0    | 0.0  | 19.5 | 15.4  | 35.9  | 212                     |
|            | 2007 | 12.5 | 27.2 | 47.0  | 54.0 | 17.2 | 1.0  | 12.0 | 0.0    | 0.0  | 0.5  | 15.1  | 33.0  | 219                     |
|            | 2017 | 7.5  | 10.2 | 19.0  | 18.0 | 22.7 | 30.0 | 35.2 | 33.0   | 27.3 | 19.7 | 10.9  | 8.6   | 242                     |

### **Research Methodology**

Weather data were collected from the Maraveh Tappeh (for Pashaylogh rangeland), Gorgan (Incheboron rangeland) and Saveh (for Nemati rangeland) synoptic stations..

The main species in studied rangelands has been shown in Table 4. In order to sample, four parallel transects with a length of 300 m and at a distance of 100 m from each other were established in the steppe area (Nemati) and six 200-m transects were created in the semi-steppe area (Pashaylogh and Incheboron) which are located parallel and at a distance of 100 m from each other. Due to the need for uniformity in the data of the rangelands of different provinces and their comparison, plot size in steppe site was  $1\times 2$  m and in semi-steppe sites, it was  $1\times 1$ m due to life form and vegetation distribution.

Plotting in each transect was done in such a way that while the distances of the plots were the same, the principle of randomness was also observed, and therefore, the starting point of the transects was not the same. The number of plots dropped in each transect was 15, which were placed at a distance of about 28 m from each other. Therefore, the total number of plots dropped on each site was 60.

Vegetation cover was estimated in studied years, 15 plots were clipped, airdried and weighed. Forage production was determined based on regression equation between weighted samples and vegetation cover (Arzani and Abedi, 2013). Climatic factors studied in this study include precipitation (monthly, annual, total precipitation from July to September, previous July to September, growing season (March to June), previous March to June, January or June, previous January to June and May to September) (Table 5).

The long-term measured forage production was considered as the dependent variable and the mentioned meteorological parameters were considered as the independent parameters.

Data analysis was done in SPSS software through linear regression and Stepwise model. The suitable models were obtained to predict forage production in studied rangelands.

To test the obtained equations, due to the fact that the test data should not be shared with the model training data, the data of one transect were not used in model training but they were used to test the accuracy of the equations (Kbumalo and Holechek, 2005).

Finally, according to the results of analysis and long-term production data, a coefficient was proposed. The coefficient can be applied to adjust the one-year production measurement in a way that rangeland managers do not face to loss or shortage of forage. We recommend the coefficient be used for a period of ten years to be sure that variation occurred in this period.

| Name and palatability class          |                                                                                    |                                                                                                                                                                                                                                                                                                          |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ι                                    | II                                                                                 | III                                                                                                                                                                                                                                                                                                      |  |  |  |
| Annual forbs<br>Astragalus podolobus | Annual grasses<br>Artemisia sieberi<br>Cynodon dactylon<br>Salsola arbusculiformis | Salsola tomentosa                                                                                                                                                                                                                                                                                        |  |  |  |
| Annual forbs                         | Halocnemum strobilaceum                                                            | Aeluropus lagopoides                                                                                                                                                                                                                                                                                     |  |  |  |
|                                      | Salsola laricina<br>Artemisia sieberi                                              | Stipa barbata<br>Annual grasses                                                                                                                                                                                                                                                                          |  |  |  |
| -                                    | I<br>Annual forbs<br>Astragalus podolobus<br>Annual forbs                          | Name and palatability class         I       II         Annual forbs       Annual grasses         Astragalus podolobus       Artemisia sieberi         Cynodon dactylon       Salsola arbusculiformis         Annual forbs       Halocnemum strobilaceum         Salsola laricina       Artemisia sieberi |  |  |  |

**Table 4.** Vegetation species in Pashaylogh, Incheboron and Nemati rangelands

Noaea mucronata

| Sites      | Year | Annual<br>Precipitation | July–Sept    | Previous<br>Jul–Sept | Growing<br>Season<br>(Mar-June) | Previous<br>Season<br>(Mar–Jun) | Jan-June       | Previous<br>Jan-June | May-Sept      |
|------------|------|-------------------------|--------------|----------------------|---------------------------------|---------------------------------|----------------|----------------------|---------------|
| Pashaylogh | 2003 | 414.3                   | 3.1          | 57.9                 | 226.7                           | 129                             | 300.2          | 212.1                | 67.8          |
|            | 2004 | 473.0                   | 110.0        | 3.1                  | 181.4                           | 226.7                           | 223.3          | 300.2                | 135.5         |
|            | 2005 | 419.4                   | 62.1         | 110.0                | 118.6                           | 181.4                           | 252.9          | 223.3                | 117.3         |
|            | 2006 | 306.0                   | 14.4         | 62.1                 | 105.9                           | 118.6                           | 158.5          | 252.9                | 42.1          |
|            | 2007 | 429.2                   | 46.4         | 14.4                 | 263.8                           | 105.9                           | 299.1          | 158.5                | 142.7         |
|            | 2017 | 208.7                   | 12.9         | 34.5                 | 69.8                            | 162.9                           | 146.2          | 252.9                | 12.9          |
| T          | 2002 | (21.4                   | 115          | 57 A                 | 274 6                           | 240.0                           | 240.2          | 222.0                | 140.0         |
| Incheboron | 2005 | 031.4<br>504.2          | 44.3         | 37.4<br>44.5         | 274.0                           | 240.0                           | 349.3          | 322.9                | 149.9         |
|            | 2004 | 594.Z                   | 94<br>51.2   | 44.5                 | 210.2                           | 274.0                           | 2/8.1          | 349.3                | 155.0         |
|            | 2005 | 079.4                   | 31.2<br>14.6 | 95.9                 | 198.9                           | 210.2                           | 547.7<br>107.2 | 2/8.1                | 133.0         |
|            | 2000 | 410.2                   | 14.0<br>52.1 | 31.2<br>14.6         | 116.9                           | 198.9                           | 242.1          | 547.7<br>107.2       | 35.9<br>101.7 |
|            | 2007 | 384.0                   | 32.1<br>80.3 | 08.0                 | 02.1                            | 220.6                           | 243.1<br>160.1 | 375.5                | 85.8          |
|            | 2017 | 304.9                   | 80.5         | 90.9                 | 92.1                            | 220.0                           | 109.1          | 575.5                | 05.0          |
| Nemati     | 1998 | 194.3                   | 3.3          | 1.0                  | 99.6                            | 60.3                            | 164.3          | 64.4                 | 18.1          |
|            | 1999 | 188.0                   | 7.6          | 3.3                  | 31.5                            | 99.6                            | 104.6          | 164.3                | 10.2          |
|            | 2000 | 239.2                   | 2.0          | 7.6                  | 13.0                            | 31.5                            | 66.1           | 104.6                | 3.0           |
|            | 2001 | 172.8                   | 4.0          | 2.0                  | 48.7                            | 13                              | 91.8           | 66.1                 | 32.2          |
|            | 2002 | 140.3                   | 0.0          | 4.0                  | 53.1                            | 48.7                            | 90.4           | 91.8                 | 5.7           |
|            | 2003 | 250.8                   | 0.0          | 0.0                  | 115.5                           | 53.1                            | 177.8          | 90.4                 | 9.3           |
|            | 2004 | 261.6                   | 7.0          | 0.0                  | 82.9                            | 115.5                           | 175.5          | 177.8                | 44.3          |
|            | 2005 | 213.0                   | 0.1          | 7.0                  | 78.5                            | 82.9                            | 159.4          | 175.5                | 6.9           |
|            | 2006 | 211.5                   | 0.0          | 0.1                  | 53.5                            | 78.5                            | 140.7          | 159.4                | 6.7           |
|            | 2007 | 219.5                   | 12.0         | 0.0                  | 119.2                           | 53.5                            | 158.9          | 140.7                | 30.2          |
|            | 2017 | 167.7                   | 12.3         | 0.0                  | 97.0                            | 44.7                            | 151.2          | 75.4                 | 33.5          |

Table5. Combined precipitation (mm) in three studied rangeland

### Results

The average of forage production in Pashaylogh, Incheboron (6 years) was 479 and 310 kg/ha respectively, and it was 214 kg/ha in Nemati rangelands (average of 11 years).

The results of simple and multiple linear regressions are shown in Table 6 and the results of the stepwise regression are shown in Table 7.

It is noticeable that there were no forage production data collected between 2007 and 2017 in the studied rangelands. Therefore, meteorological data have been omitted for years without forage production data. All models were tested for all rangelands, but the non-significance equations were not given in Tables 6 and 7.

The average wind speed in July  $(R^2=0.88)$  in Incheboron rangeland had been one of the factors affecting production. The amount of wind speed had been effective on

production in fall ( $R^2=0.88$ ), November ( $R^2=0.91$ ) and September ( $R^2=0.70$ ) in Pashaylogh rangeland.

The total annual sunlight hours  $(R^2=0.75)$  and total winter sunlight hours  $(R^2=0.85)$  were inversely related to the amount of production in incheboron rangeland, the total number of sunlight hours in August  $(R^2=0.74)$  was inversely related to the forage production in Pashaylogh rangeland.

The minimum temperature in Mav  $(R^2=0.79)$  and the maximum temperature in spring ( $R^2=0.78$ ) and June ( $R^2=0.70$ ) were inversely related to production in Incheboron rangeland in shrub vegetation community. The increase in the maximum temperature in September ( $R^2=0.77$ ) has also led to a decrease in production in Pashaylogh rangeland. Growing season precipitation had a correlation ( $R^2=0.78$ ) with plant production while June

precipitation showed ( $R^2=0.88$ ) and multiple linear regression June precipitation and growing season precipitation ( $R^2=0.88$ ) in Incheboron rangeland have an effective and positive relationship with forage production (Table 6).

Multiple linear regression of August temperature and precipitation ( $R^2$ =0.87) had also a significant correlation with forage production. The temperature and precipitation in July had a significant relationship with forage production in Nemati rangeland ( $R^2$ =0.63).The relative humidity had a significant relationship with the amount of production in Pashaylogh rangeland in September ( $R^2$ =0.67) and August ( $R^2=0.81$ ). Moreover, the stepwise regression analysis was used to find the most important variables affecting forage production (Table 6).

The appropriate model for production forecast (stepwise multiple regression) in each of the three studied rangelands is given in Table 7. Accordingly, the August precipitation ( $R^2$ =0.98) was the most effective parameter in Pashaylogh rangeland. The June precipitation was a key factor in Incheboron rangeland ( $R^2$ =0.88). The temperature and precipitation in July had been evaluated as the most important factors in Nemati rangelands ( $R^2$ =0.79) (Table 7).

**Table 6.** The regression equations with acceptable response in studied rangelands (simple linear and multiple simple linear regressions)

| Rangeland   | Meteorological Factor                  | Regression Equations            | $\mathbb{R}^2$ | Sig. |
|-------------|----------------------------------------|---------------------------------|----------------|------|
| Incheboron  | July average wind speed (m/s)          | Y = -138.3 X + 706.8            | 0.80           | 0.01 |
|             | Yearly total hours of sunlight (Hour)  | Y = -037 X + 1146.3             | 0.75           | 0.02 |
|             | Winter total hours of sunlight (Hour)  | Y = -1.2 X + 839.9              | 0.85           | 0.00 |
|             | May Minimum temperature (° C)          | Y = -18.2 X + 486.9             | 0.79           | 0.01 |
|             | Spring, Maximum temperature (° C)      | Y = -70.1 X + 3006.2            | 0.78           | 0.02 |
|             | June Maximum temperature (° C)         | Y = -32.4 X + 1515.3            | 0.70           | 0.03 |
|             | Total evapotranspiration (Fall)        | Y = 5.23 X - 560.08             | 0.82           | 0.01 |
|             | June precipitation (mm)                | Y= 3.8 X + 226.9                | 0.88           | 0.00 |
|             | Growth season precipitation            | Y = 1.007 + 129.4               | 0.78           | 0.01 |
|             | X1 =June precipitation                 | Y = 4.2 X1 - 0.11 X2 + 238.8    | 0.88           | 0.04 |
|             | X2 =Growth season precipitation        |                                 | 0.00           | 0.0. |
| Dacharilach | Fall every $\alpha$ wind speed $(m/c)$ | $V = \frac{97.2 V}{1012.8}$     | 0.00           | 0.00 |
| Pasnaylogn  | Nevember everage wind speed (m/s)      | I = -67.5  A + 1012.6           | 0.88           | 0.00 |
|             | November average wind speed (m/s)      | -141.7 X + 821.2                | 0.91           | 0.00 |
|             | September average wind speed (m/s)     | -141.2  X + 954.1               | 0.70           | 0.03 |
|             | August total hours of sunshine (Hour)  | Y = -5.6 X + 2400.5             | 0.74           | 0.02 |
|             | September relative humidity (%)        | Y = 15.9 X - 290.7              | 0.67           | 0.04 |
|             | August relative humidity (%)           | Y = 17.2 X - 272.6              | 0.81           | 0.01 |
|             | Sept Maximum temperature (°C)          | Y = -54.2 X + 2604.1            | 0.77           | 0.02 |
|             | X1 = August precipitation,             | Y = 1.95 X1 - 67.07 X2 + 2444.2 | 0.87           | 0.04 |
|             | X2 = August temperature                | 1 = 1.95 At 07.07 A2 (2+14.2    | 0.07           | 0.04 |
|             | X1 = August precipitation,             | Y = 4.6X1 - 18.3X2 + 3638.3     | 0.98           | 0.00 |
|             | X2 = Spring relative humidity          |                                 |                |      |
|             | August temperature (° C)               | Y = -77.03X + 2746.4            | 0.85           | 0.00 |
|             |                                        |                                 |                |      |
| Nemati      | X1 = July precipitation,               | Y = 9.2X1 + 12.95X2 - 245.07    | 0.63           | 0.01 |
|             | X2 = July temperature                  |                                 |                |      |

| using stepwise regression |                                                     |                                 |                |      |  |  |  |  |
|---------------------------|-----------------------------------------------------|---------------------------------|----------------|------|--|--|--|--|
| Rangelands                | Parameters                                          | Predictive equations            | $\mathbb{R}^2$ | Sig. |  |  |  |  |
| Incheboron                | X= June precipitation                               | Y = 3.82 X + 226.95             | 0.98           | 0.00 |  |  |  |  |
| Pashaylogh                | X1= August precipitation<br>X2 = August temperature | Y = 1.95 X1 - 67.07 X2 + 2444.2 | 0.88           | 0.00 |  |  |  |  |
| Nemati                    | X1 = July temperature<br>X1 = July precipitation    | Y = 12.96 X1 + 9.17 X2 - 245.07 | 0.79           | 0.00 |  |  |  |  |

**Table 7.** Regression models to forecasting forage production in Pashaylogh, Incheboron and Nemati rangelands using stepwise regression

# Appropriate coefficient for calculating long-term production

According to the regression analysis between production and meteorological factors, the precipitation and temperature were the most effective factors in forage production.

The SPEI drought index was applied to determine drought. SPEI takes into account the temperature and precipitation in determining the coefficient of drought. In the selected years, there were normal drought and wet years in the regions (Table 8).

Expected productions in the years were arranged in descending order to find base year for calculating long-term production. The base year production selection must be suitable for 70% of studied years. According to the production of the base year in each rangeland, a coefficient was selected by measuring the production of one year as a good average, it is possible to use the obtained coefficient to consider the production that does not harm the rangeland in drought years and does not lead to the accumulation of forage in wet years. This coefficients were 0.65, 0.65 and 0.50 for Incheboron Pashaylogh, and Nemati rangelands, respectively.

| Site       | Year | Precipitation (mm) | Production (kg/ha) | SPEI index   |
|------------|------|--------------------|--------------------|--------------|
| Pashaylogh | 2017 | 390                | 208                | Mild Drought |
|            | 2007 | 392                | 429                | Normal       |
|            | 2006 | 393                | 306                | Normal       |
|            | 2004 | 506                | 437                | Normal       |
|            | 2003 | 556                | 414                | Mild Wet     |
|            | 2005 | 640                | 419                | Mild Wet     |
| Incheboron | 2017 | 384                | 240                | Normal       |
|            | 2007 | 383                | 247                | Mild Drought |
|            | 2006 | 418                | 275                | Normal       |
|            | 2005 | 679                | 311                | Mild Wet     |
|            | 2004 | 594                | 347                | Normal       |
|            | 2003 | 631                | 440                | Normal       |
| Nemati     | 1998 | 194                | 144                | Normal       |
|            | 2002 | 140                | 150                | Normal       |
|            | 2000 | 239                | 170                | Mild Drought |
|            | 1999 | 188                | 180                | Normal       |
|            | 2005 | 213                | 191                | Normal       |
|            | 2003 | 250                | 201                | Normal       |
|            | 2004 | 261                | 221                | Mild Wet     |
|            | 2001 | 172                | 229                | Normal       |
|            | 2006 | 211                | 234                | Normal       |
|            | 2017 | 167                | 310                | Normal       |
|            | 2007 | 219                | 330                | Normal       |

Table 8. Information needed to coefficient calculation rangelands (Arzani, 2009) and present study data collection

### Discussion

The relationship between the studied parameters was investigated using simple and multiple linear regression, and the following results were obtained:

In this research, the equation of wind speed was significant, it has an inverse relationship with the forage production. In general, increasing the average wind speed reduces the available water of the plant and has a significant inverse effect on forage production. Aauenroth (1992) and Gomara *et al.* (2020) have stated that the wind speed coupled with the temperature will lead to a decrease in humidity by increasing evapotranspiration.

In Incheboron rangeland, the total annual sunlight hours and total winter sunlight hours were inversely related to the amount of production. In Pashaylogh rangeland, the total number of sunlight hours in August was inversely related to the forage production. The research of Gomaro *et al.* (2020) confirms our results. The cause of this relationship back to an increase in evapotranspiration with increase in sunlight hours.

The minimum and maximum temperature was inversely related to production in Incheboron and Pashaylogh rangelands. The minimum and maximum temperatures have prevented the plant from fully benefiting from seasonal rains due to its effect on unsuitable plant growth conditions (Andales *et al.*, 2006). In this regard, Smart (2005) stated that cold temperatures, especially those below 0°C rupture plant cell walls and damage meristem tissue in plants.

Unlike maximum and minimum temperatures, mean temperatures have a positive effect on forage production. In conclusion, when the temperature is favorable, extended root system can

efficiently absorb more moisture from each event of rainfalls (Fakhar Izadi et al., 2019). Growing season precipitation in Incheboron, August Precipitation (end of the growing season) in Pashaylogh and July precipitation growing season) (within in Nemati rangelands had an effective and positive relationship with forage production. However, the rainfall of the growing season is more effective for the growth of herbaceous plants (Akbarzadeh et al., 2007; Kbumalo & Holecheck, 2005, Ehsani et al., 2007).

According to the equation, the amount of precipitation has a positive relationship and the amount of temperature has a negative relationship with forage production, Smart (2005) also found that spring precipitation had a significant effect on forage production.

The temperature and precipitation in July had a significant relationship with forage production in Nemati rangeland ( $R^2=0.63$ ) dominated by shrub species. Kruse *et al.* (2007) also found a significant relationship between July temperature and precipitation with forage production.

Relative humidity factor also showed a significant relationship with the amount of production in Pashaylogh rangeland so that the increase in relative humidity in August and September has been effective in increasing in forage production (Omidvar *et al.*, 2020; Gomaro *et al.*, 2020).

The results obtained from the stepwise regression show that the best equation that can predict the relationship between meteorological data and forage production was August precipitation and temperature ( $R^2$ =0.88) at Pashaylogh with domination of shrub species (*Salsola arbusculiformis* and *Artemisia sieberi*) and precipitation of June ( $R^2$ =0.88) with dominance of *Halocnemum* 

strobilaceum (shrub species). There was a relationship between forage production  $(R^2=0.79)$ precipitation with and temperature in July and in Nemati rangeland with dominated species of Artemisia sieberi and Salsola laricina. As the results showed, it is possible to use meteorological data for prediction of rangeland forage production. So, it is good to use this fact to help government agency to measure one year production and to lood what has been happened in 10 years past of his measurement in meteorological data to adjust current year measurement to a year condition suitable for grazing capacity calculation because this research investigated to find a regression coefficient that can be used to adjust the production measured with one-year data to at least for a period of 10 years past. In this regard, meteorological data (temperature, precipitation. sunlight hours, relative humidity, evapotranspiration as well as average wind speed) and SPEI drought index (determination of normal, drought and wet years) had been used to determine the coefficient.

Others also attempt to provide models for estimating the biomass production of herbaceous plants from climatic data. Wisiol (1984) states that the amount of forage production due to excess rainfall can be predicted according to regression analysis in the presence of long-term production statistics and climate.

Arzani and King (1994) examined the longterm rangeland capacity for a region in Western Australia. He estimates forage production of 23 years by meteorological data. The results of his study showed that long-term rangeland production could be estimated using the performance obtained from field measurements and using historical climate data. Cable and Martin (1975) also found that August precipitation was most highly correlated with annual, perennial production ( $R^2 = 0.63$ ) in the perennial grass community.

Generally, the coefficients obtained in this research help managers to predict historical forage production to calculate long-term grazing capacity for sustainable grazing management. In this regard, it is necessary to evaluate this work in other regions and develop a model for prediction and estimation of forage production suitable for long term grazing capacity estimation.

### Acknowledgment

The authors gratefully acknowledge the financial support for this work that was provided by University of Tehran Science & Technology Park, Tehran, Iran.

#### References

- Aauenroth, W.K., and Sala, O. E., 1992. Long-term forage production of North American shortgrass steppe. Ecological Applications, 2(4): 379-403.
- Akbarzadeh, M., Moghadam, M.R. Jalili, A. Jafari M. and Arzani, H., 2007. Effect of precipitation on cover and production of rangeland plants in Polur. Journal of Natural Resources of Iran. 60(1): 307-322. (In Persian)
- Andales, A.A., Derner, J.D., Ahuja, L.R., & Hart, R.H., 2006. Strategic and Tactical Prediction of Forage Production in Northern Mixed-Grass Prairie. Rangeland ecology and management, 59(6):125-135.
- Arzani, H., and Abedi, M., 2013. Rangeland Assessment Survey and Monitoring. University of Tehran Press. 305p. (In Persian)
- Arzani, H., and King, G.W., 1994. A double sampling method for estimating forage from cover measurement, 8<sup>th</sup> biennial rangeland conference. Australia Rangeland Society, 4(2): 201-202.
- Arzani, H., 2009. Rangeland Assessment in Different climate areas –Iran. Research Institute of forests and Rangelands of Iran, 200 p.(In Persian)
- Bayat, M., Arzani, H., Jalili A. and Nateghi S. 2016. The Effects of Climatic Parameters on Vegetation Cover and Forage Production of Four Grass Species in Semi-steppe Rangelands in Mazandaran Province, Iran. Journal of Rangeland Science, 6(4): 368-376.
- Cabel, D. R., and Martin, S. C., 1975. Vegetation responses to grazing, rainfall, site condition and mesquite control on semi-desert range. US Department of Agriculture Forest Service Research Paper RM-KG.
- Chavula, A., and Gommes, R., 2006. Development of a weather yield index (WYX) for maize crop insurance in Malawi. Food and Agriculture Organization of the United Nations, Rome
- Ehsani, A., Arzani, H., Farahpour, M., Ahmadi, H., Jafari, M., Jalili, A., Mirdavoudi, H. R., Abasi, H. R., and Azimi. M.S., 2007. The effect of climatic conditions on range forage yield in steppe rangelands, Akhtarabad of Saveh. Journal of Range and Desert Research. 14(2): 249-260. (In Persian)
- Fakhar Izadi, N., Naseri, K., and Mesdaghi, M., 2019. Investigation of Relationship between Precipitation and Temperature with Range Production of Grasslands in North and Northeast of Iran. Journal of Rangeland Science, 9(3): 277-285.
- Ghorbani, A., Pournemati, A., and Panahandeh, M., 2017. Estimating and mapping Sabalan rangelands aboveground phytomass using Landsat

8 images. Iranian journal of range and desert research. 24(1): 30-45. (In Persian)

- Gomara, I., Bellocchi, G., Martin, R., Rodriguez-Fonseca, B., and Ruiz-Ramos, M., 2020. Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central. Agricultural and Forest Meteorology, 280(15): 107768.
- Havstad, K.M., Brown, J.R., Estell, R., Elias, E., Rango, A., and Steele. C., 2016. Vulnerabilities of southwestern US rangeland-based animal agriculture to climate change. Climatic Change, 120: 1-16.
- Holechek, J.L., Pieper, R.D., and Herbel, C.H. 2004. Range management, principles and practices. 5<sup>th</sup> edition. Pearson Education, 607p.
- Holechek, J.L., 2013. Global trends in population, energy use and climate: implications for policy development, rangeland management and rangeland users. The Rangeland Journal 35: 117-129.
- Holechek, J.L., Cibils, A.F., Bengali, K., and Kinyamario J.L., 2017. Human population growth, African pastoralism, and rangelands. Rangeland Ecology and Management 70: 273-280.
- Hui, D., Yu, C-L., Deng, Q., Dzantor, EK., Zhou, S., and Dennis, S., 2018. Effects of precipitation changes on switch grass photosynthesis, growth, and biomass: A mesocosm experiment. Journal of social science, 13(2): 12-17.
- Hurtado-Uria, C., Hennessy, D., Shalloo, L., O'Connor D., and Delaby, L., 2014. Relationships between meteorological data and grass growth over time in the south of Ireland, Irish Geography, 4(6): 200-215.
- IPCC (International Panel on Climate Change), 2014. Climate Change 2014: synthesis report. Fifth Assessment. International Panel on Climate Change, Geneva, Switzerland, 151 p.
- Kbumalo, G., and Holecheck, j., 2005. Relationships Between Chihuahuan Desert Perennial Grass Production and Precipitation. Rangeland Ecology Management, 58: 239-246.
- Kheradmand, G. 2017. Climate Variability Impacts on Land Use and Livelihoods in Drylands. Journal of Rangeland Science, 7(4): 32-48.
- Kizito, E.B., Stljung, A.C., Egwang, R.W., Gullberg, T., Fregene, U., and Westerbergh, M., 2007. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (*Manihot esculenta* Crantz) roots. Hereditas, 144: 129-136.
- Krauss, KW., Keeland, BD., Allen, JA., Ewel, KC., and Johnson, DJ., 2007. Effects of season, rainfall, and hydrogeomorphic setting on

mangrove tree growth in Micronesia. Biotropica 39: 161–170.

- Kruse, R. E., Tess, M. W., and Heitschmidt, R. K., 2007. Livestock Management during Drought in the Northern Great Plains. I. A Practical Predictor of Annual Forage Production. Publications from USDA-ARS /UNL Faculty. 857.
- Omidvar., E, Arzani. H., Mohtashamnia, S., Jafary M., and Javadi, S.A., 2020. Investigation of Climatic Parameters Affecting Annual Forage Production in BidAlam Rangeland, Abadeh, Fars Province, Iran. Journal of Rangeland Science, 10(3): 282-290.
- Pfeiffera, M., Langana, L., Linstädter, A., Martens, C., Gaillarda, C., Ruppert, J.C., Higgins, S.I., Mudongo E.I. and Scheitera S., 2019. Grazing and aridity reduce perennial grass abundance in semi-arid rangelands–Insights from at rait-based dynamic vegetation model. Ecological Modelling, 395: 11-22.
- Pieper, R. D., Montoya, J. R., and Groce, V. L., 1971. Site characteristics on pinyon juniper and blue grama ranges in south-central New Mexico. New Mexico Agricultural Experimental Station Bulletin 573: 20-35.
- Polley, H.W., Briske, D.D., Morgan, J.A., Wolter, K., Bailey D.W., and Brown J.R., 2013. Climate change and North American rangelands: trends, projections, and implications. Rangeland Ecology and Management 66, 493-511.
- Sawalhah, M.N., Holechek J.L., and Cibils. A.F., 2019. Rangeland Livestock Production in Relation to Climate and Vegetation Trend New

Mexico, Rangeland Ecology & Management, 32(12): 320-332.

- Smart, A. J., 2005. Forecasting Forage Production. Range Beef Cow Symposium. 39. Blackwell Publishing.
- USGCRP (United State Global Change Research Program), 2018. Fourth National Climate Assessment. Volume 2. Washington, DC, USA: US Global Change Research Program, 1656 p.
- Wight, J.R., Clayton, H. and Whitmer, D, 1984. Using weather records with a forage production model to forecast range forage production, Journal of Range Management, 37: 12-24.
- Wisiol, K., 1984. Estimating grazing land yield from commonly available data. Journal of Range Management, 37 (5): 471-475.
- WRI (World Resources Institute), 2018. World Resource Report: creating a sustainable food future: a menu to feed nearly 10 billion people by 2050. Washington, DC. World Resources Institute, USA, 96 p.
- Yalcin, E., 2018. The relationships among aboveground biomass, primary productivity, precipitation and temperature grazed and ungrazed temperature grasslands from northern turkey. Black Sea Journal of Engineering and Science, 1(3): 107-113.
- Yang, Y., Fang, J., Ma, W., and Wang, W., 2008. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical research letters, 35(L23710): 32-45.

## ارزیابی عوامل اقلیمی در تخمین تولید علوفه در مراتع استپی و نیمهاستپی

زهرا منصوری<sup>الف</sup> حسین ارزانی<sup>پ\*</sup>، علیرضا مقدم نیا<sup>چ</sup>، جواد معتمدی<sup>د</sup>، شهرام خلیقی سیگارودی<sup>°</sup> <sup>الد</sup> دانشجوی دکتری دانشکده منابع طبیعی دانشگاه تهران <sup>~</sup> استاد دانشکده منابع طبیعی دانشگاه تهران، \*(نگارنده مسئول)، پست الکترونیک: harzani@ut.ac.ir <sup>3</sup> دانشیار دانشکده منابع طبیعی دانشگاه تهران <sup>د</sup> دانشیار دانشکده منابع طبیعی دانشگاه تهران \* دانشیار دانشکده منابع طبیعی دانشگاه تهران

**چکیده.** در اندازه گیری تولید گیاهی روشهای متعارف مخرب و وقت گیر هستند. در مواردی استفاده از داده-های طولانیمدت برای پیشبینی میزان تولید گیاهی مورد نیاز هستند. استفاده از معادلات رگرسیونی بر اساس خصوصیات بارندگی برای پیشبینی تولید گیاهی مراتع توسعه پیدا کرده است. در این تحقیق رابطه بین تولید علوفه و مشخصات هواشناسی در سه مرتع پاشایلق و اینچهبرون با ۶ سال داده تولید اندازه گیری شده (۱۳۸۲ تا ۱۳۸۶ و ۱۳۹۶ در استان گلستان) و مرتع نعمتی با ۱۱ سال داده (۱۳۷۷ تا ۱۳۸۶ و ۱۳۹۶ در استان مرکزی)، بررسی شده است. برای نمونهبرداری، در منطقه استیی (نعمتی) چهار ترانسکت موازی به طول ۳۰۰ متر و به فواصل ۱۰۰ متر از یکدیگر و در منطقه نیمهاستیی (یاشایلق و اینچه برون) ۶ ترانسکت ۲۰۰ متری که به طور موازی و به فاصله ۱۰۰ متر از یکدیگر ایجاد شدند. به دلیل لزوم یکنواختی در دادههای مراتع استانهای مختلف و مقایسه آنها باهم اندازه یلات در سایتهای استیی یکسان و با ابعاد ۱×۲ متر و در سایتهای نیمهاستیی ۱×۱ متر انتخاب شدند. بررسی همبستگی بین دادههای اقلیمی و تولید مرتع از طریق معادلات رگرسیون انجام شد. نتایج نشان داد که از بین عوامل هواشناسی مورد استفاده در تحقیق (بارندگی، دما، ساعات آفتابی، رطوبت نسبی، سرعت باد و تبخیر و تعرق)، بارندگی و دما در پیشبینی تولید تأثیر معنی داری داشتند. بهترین معادلات پیشبینی کننده تولید علوفه دما و بارندگی مرداد (۸۸۸ =R<sup>2</sup>) در پاشایلق، بارندگی ماه خرداد (۸۸۸ =R<sup>2</sup>) در اینچهبرون و دما و بارندگی تیر (R<sup>2</sup>= ۰/۷۹) در مرتع نعمتی بودند. ضریب تولید علوفه بر اساس دادههای هواشناسی و شاخص خشکسالی بارندگی و تبخیر و تعرق استانداردشده (SPEI) محاسبه شد. با استفاده از دادههای هواشناسی، می توان به ضریب مطمئنی برای بر آورد تولید بلندمدت مرتع در جهت جلوگیری از اتلاف و كمبود علوفه دست يافت.

**کلمات کلیدی**: معادلات رگرسیونی، مراتع استپی و نیمهاستپی، ظرفیت چرا، دادههای هواشناسی