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Abstract:
The aim of the paper is to study the electron spin direction dependence on momentum due to the presence of Rashba
spin-orbit coupling in the pseudo-gap phase of Bi2212 bilayer. The non-trivial spin texture in k-space is found tuneable
by electric field. The dependence is reported earlier by a group of workers in a spin- and angle-resolved photoemission
spectroscopic measurement. The synthetic spin-orbit coupling, characterized by the broken time-reversal symmetry, is
expected to be useful for the manipulation of the spin orientation.

Keywords: Pseudo gap phase; Spin-orbit coupling; Spin texture; Spin-and angle resolved spectroscopic measurement;
Synthetic spin-orbit coupling

1. Introduction

A recent spin- and angle-resolved photoemission spec-
troscopy (SARPES) measurement for Bi2Sr2CaCu2O8+δ

had revealed [1] a non-trivial spin texture which corresponds
to a well-defined direction for each electron real spin de-
pending on its momentum. The SARPES is one of the most
powerful techniques that can directly measure the spin po-
larization (SP) of the wave functions of a crystal. It is the
key to comprehend the underlying physics of these crystal
systems. The authors also developed a model to show how
this complex pattern could emerge in real and momentum
spaces. The key feature of their finding [1] is that the layered
structure of Bi2212 allows for a spin-momentum locking
(SML) in one Cu-O layer of the unit cell that is matched
by the opposite spin texture in the other Cu-O layer of the
unit cell through the Γ point encirclement in the momentum
space representation. This type of spin-momentum order-
ing is hidden from other experimental techniques except
SARPES [1]. The spin-momentum ordering suggests the
presence of a strong Rashba spin-orbit coupling (RSOC) in
Bi2212 like a topological insulator. The origin of RSOC lies
in the fact that whereas one Cu-O layer has Ca ions above
and, Bi-O ions below, in the unit cell of the other layer this
situation is reversed. This leads to a nonzero electric field
within the unit cell. The field is related to RSOC intimately.
In this communication, we investigate spin-momentum lock-

ing (SML) and its tunability feature by using the band struc-
ture of Bi2Sr2CaCu2O8+δ (Bi2212) bilayer system. A time
reversal symmetry (TRS), and inversion symmetry (IS) bro-
ken Bloch Hamiltonian involving a term accounting for the
effect of coupling between different CuO2 planes yields the
band structure. The coupling possesses a very different form
in a single layer cuprate such as LSCO or NCCO than when
a CuO2 bilayer is present as in Bi2212. The band structure
analysis of this ambivalent system carried out in the paper,
corresponding to the bonding and the anti-bonding cases,
yields the following: The spin-momentum locking (SML)
is evident. While the nodal region of the momentum space
can give rise to a spin-down hole current, the anti-nodal
region can give rise to spin-up electron current. We find
that the common ground between two types of SMLs, cor-
responding to the bonding and the anti-bonding cases, is
that the states of opposite spin are to be found in different
parts of the Brillouin zone. Also, an outcome similar to
ref [1] is obtained by us in section 3 in the calculation of the
spin texture. The spikes in the texture are broadly confined
to the nodal region and there is also the encirclement of Γ

point. These spikes are upshot of the inversion symmetry
(IS) breaking and /or the time reversal symmetry (TRS)
breaking.
The conventional superconductors (SC) involve symmet-
ric s-wave spin-singlet pairing of electrons by phonon-
mediated attractive interaction, while the unconventional
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SCs require a long-range interaction [2] and have lower
symmetry Cooper pairs. The Chiral SCs [3] are interesting
instances of unconventional SCs where Cooper pairs with
finite angular momentum circulate around a unique chiral
axis. This leads to spontaneous breaking of time-reversal
symmetry (TRS). The widely known member of this class is
bulk Sr2RuO4, conjectured to be p-wave SC displaying spin-
triplet pairing; the chiral singlet SCs were believed to be
very few and far between. Perhaps, the strongly correlated
heavy fermion SC such as URu2Si2 [4] is a known example.
The general belief regarding the featuring of spin-triplet
p-wave pairing by the chiral SCs was actually based in the
absence of a drop in NMR Knight shift [5], the broken
TRS found in muon spin relaxation [6], and Kerr rotation
experiments [7]. The NMR experiments [8–10] performed
in the recent past, however, indicate utterly compelling ir-
reconcilability with a number of odd-parity (pseudo-) spin
triplet order parameters leading to the resurrection of the
spin-singlet pairing scenario [11]. It must be mentioned
that before these issues came to the fore, the nature of the
pseudo-gap (PG) phase of the cuprate high temperature su-
perconductors had already posed a number of unexplained
puzzles. Below a characteristic temperature T ∗ but higher
than the SC transition temperature Tc, the excitation spectra
showing a gap was first noticed by the relaxation rate of
nuclear magnetic resonance [12] and then by many other
transport and spectroscopic measurements [13]. But the
most direct observation of this gap structure was shown
by the ARPES [14]. The energy gap appears near the anti-
nodal region, of the two-dimensional Brillouin zone (BZ)
of the cuprate. The ARPES spectra at the anti-nodal region
does not have the usual particle-hole symmetry associated
with traditional superconductors. This asymmetric anti-
nodal gap onsets at T ∗ and it persists all the way to the
SC phase [15, 16]. There are four disconnected segments
of Fermi surface near the nodal region. These segments
called Fermi arcs, which are believed to be part of a small
pocket [17, 18], have been reported to have their length not
sensitive to temperature [19]. This presence of finite fraction
of Fermi surface is consistent with the Knight shift measure-
ment [20] showing a finite density of states (DOS) after the
superconductivity is suppressed. Below Tc the gap at anti-
node merges with the SC gap. With the aim to explain the
nature of PG, many reports have appearedin not so distant
past, where charge density waves (CDW) or spin density
waves (SDW) were related to SC and PG phases [21–28].
On another level, the pseudo-gap is a distinct phase akin to
an unconventional metal or, a symmetry preserved/broken
state [29-41]. The onset of the pseudo-gap is defined by the
opening of an anti-nodal gap and the reduction of the large
Fermi surface to Fermi arc (area in momentum space that
remains un-gapped) [17–19, 29–41] as in Wyle/Dirac semi-
metal. The exact nature of the pseudo-gap still remains an
open issue.
In the past, Nayak et al. [33–35] have put forward d den-
sity wave (DDW) order as the one for the pseudo gap (PG)
phase of the hole-doped cuprates. This order [33–35] corre-
sponds to spontaneous currents along the bonds of a square
lattice for the ordering wave vector Q = (±π,±π). The

DDW state preserves the combined effect of the micro-
scopic time reversal symmetry violation and the translation
by a lattice spacing. The net result is that the staggered
magnetic flux produced by these currents is zero on the
macroscopic scale. The formulation of Nayak et al. [33–35]
involved d-wave superconductivity (DSC). The reason for
the choice is that the d-wave superconducting symmetry
and strong Coulomb repulsion are compatible: For strong
on-site Coulomb repulsion the superconducting state needs
to avoid same-site pairing which corresponds to isotropic
k-space pairing. At the same time, the Coulomb repulsion
generally favours anti-ferromagnetic tendencies and thus a
spin-singlet superconducting state. The spin singlet state
with the lowest number of nodes but still avoiding same-
site pairing is exactly the d-wave state. The non-zero DSC
gap ∆

(sc)
k requires an appropriate attractive interaction. The

gap is, formally similar to the weak- coupling BCS gap
equation, given by ∆

(sc)
k = ∆0(T )(coskxa− coskya). The

Chiral DDW (CDDW) order, which is a complex variant
of the DDW order, was subsequently advocated for by S.
Das Sarma et al. [36-39] as the one suitable for the PG
phases ordering. The reason being it offers a theoretical
explanation [36–39] of the non-zero polar Kerr effect ob-
served in YBCO by Kapitulnik et al. [39]. A very perti-
nent theoretical reason for the identification of the PG state
with the CDDW state rather than with the DDW state is
that the imaginary part of the d + id-wave order parame-
ter Dk =−χk + i∆k breaks the parity and the time reversal
symmetry (TRS)of the normal state. The quantities (χk,∆k)
are given by [36–39] χk = (−χ0/2)sin(kxa)sin(kya), ∆k =
∆PG

0 (T )/2(coskxa− coskya), and k = (kx,ky). The normal
state dispersion is imperfectly nested here. The correspond-
ing evidence is that the onset of CDDW ordering leads to a
peak in the anomalous Nernst signal (ANS) [36, 37]. The
main contribution to this chirality induced ANS comes from
the points (±π(1−ϕ),±πϕ), (±πϕ,±π(1−ϕ)) with ϕ ∼
0.2258 located roughly on the boundary of the Fermi pock-
ets in the momentum space ( cf. ref. [36,37]). Thus, in order
to present a suitable description of cuprates in the frame-
work of CDDW ordering, we have to turn our attention
to this imperfectly nested dispersion. All energies are ex-
pressed in units of the first neighbour hopping. The second-
neighbour hopping in the dispersion, which is known to be
important for cuprates [33–44], frustrates the kinetic energy
of electrons.
The paper is organized as follows: In section 2 we derive

an expression for the single-particle excitation spectrum
in CDDW state. We show the spin-momentum locking
(SML) in section 3. We also investigate the spin texture
here. We discuss about Dzyaloshinskii–Moriya interaction
(DMI) which will be useful in a sequel to this work. The
paper ends with brief discussion (mainly on the possible
deployment of synthetic spin-orbit coupling for the manipu-
lation of the spin orientation) and conclusion in section 4.
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Figure 1. The two-band energy spectra of free electron dispersion and CDDW state (ε2,ε2,ε
U
k ±∆k) without and with the

interlayer tunneling at the nodal (akx ∼ π,aky ∼= π/2) and the anti-nodal (akx ∼ 0,aky = π) regions. The chemical
potential µ represented by solid, horizontal line µ ∼ 0 is located as shown. In figures (a) and (b), the free particle bands are
partially empty and hence conduction is possible. From figure (c), which correspond to CDDW state nodal point excitations
with or without tunneling, it may be seen that the some points in the momentum space are ungapped and therefore Fermi
arcs are possible. However, in (d) there is a wide gap at the anti-node. The holes are conductive for (c) and (d).The
parameter values are, µ = -0.035, Q1 = 0.7742.pi, Q2 = 0.2258.pi, t=1, t́ =-0.12, ´́t = 0.01, t0 = 0.005, and ∆PG

0 = 0.01.

2. Excitation spectrum with interlayer
tunnelling and Rashba coupling

Motivated by the findings of S. Das Sarma et al. [36–39],
we assume that the CDDW order represents the pseudo-gap
(PG) phase. We assume the momentum dependence of the
pairing interactions required for this kind of ordering is
given by the functions of the form

Ux2−y2(k, ḱ) =U1(coskxa− coskya)(cos ḱxa− cos ḱya)

Uxy(k, ḱ) =U2 sinkxasinkyasin ḱxasin ḱya,

where U1 and U2 (U1 > U2) are the coupling strengths,
and (kx,ky) belong to the first Brillouin zone (BZ). Further-
more, the cuprates (the special class of high-temperature su-
perconductors (HTSCs)) consist of superconducting CuO2
layers separated by spacer layers as in Bi2212. The sim-
plest vertical hop is straight up via tb. The bilayer split

bands in Bi2212 display considerable dispersion with k: It
corresponds to [−2tb(cx(a)− cy(a))2] where tb is an effec-
tive parameter for hopping within a single bilayer, i.e. it
controls the intracell bilayer splitting and c j(a)≡ cos(k ja)
[45]. The compound Bi2212, however, involves intercell
hopping (tz), too. The total dispersion can now be writ-
ten as ε(k,kz) = εk − µ + εkz(k), where k and kz respec-
tively denote the in-plane and out-of-plane components of
K = (k,kz). The dispersion εk has the usual form

εk =−2t(cx(a)+cy(a))+4t́cx(a)cy(a)−2´́t(cx(2a)+cy(2a))

−4´́́t(cx(a)cy(2a)+ cy(a)cx(2a)) (1)

including the first, the second and the third neighbour hops
due to the non-zero neighbour hopping and µ is the chem-
ical potential of the fermion number. For simplicity, we
have set the lattice constant equal to one. The term εk is the

2251-7227[https://dx.doi.org/10.57647/j.jtap.2023.1701.05]

https://dx.doi.org/10.57647/j.jtap.2023.1701.05


4/12 JTAP17(2023)-172305 Tyagi et. al

Figure 2. (a) A plot of quasi-particle excitation (QP) spectrum given by Eq. (7) in the bonding case as function of
dimensionless momentum kxa for kya = π/2 and kza = π . The horizontal line represents the Fermi energy. Since
spin-down valence and conduction bandsare partially empty, the spin-down QP conduction is possible.(b)A plot of QPsin
the bonding case, as a function of dimensionless momentum kxa for kya = π and kza = π . (c)A plot of quasi-particle
excitations in the anti-bonding case as function of kxa for kya = 0 and kza = 0. Since the spin-upconduction band is
partially empty, the spin-up electron conduction is possible.(d) Aplots of QPs in the anti-bonding case as function of
dimensionless momentum kxa for kya = π/2 and kza = 0. Since the spin-down valence band is partially empty, the
spin-down hole conduction is possible. The numerical values of the parameters to be used in the calculation are t = 1 , t́/t =

-0.28, ´́t/t = 0.1, ´́́t/t = 0.06, tb/t = 0.3, tz/t = 0.1, α0/t = 0.53, ∆PG
0 /t = 0.01, and a0 = 0.4.

model dispersion associated with a single CuO2 plane if the
effects of kz-dispersion are totally neglected. Early theories
only took t into account, but the consistent results of local-
density approximation, band-structure calculations [17–19]
and angle-resolved photoemission spectroscopy (for over-
doped, stripe-free materials) [17–19], have led to the usage
of including also t́, with t́/t = 0.1 for La2CuO4 and t́/t
= 0.3 for YBa2Cu3O7 and Bi2Sr2Ca Cu2O8, whereby the
constant-energy contours of the expression for εk become
rounded squares oriented in the [11]- and [10]-directions
respectively. For the hole-doped materials, t́ > 0 (for the
electron-doped materials t́ < 0), and, in all cases, t́ < t/2.
The εkz(k) term accounts for the effect of coupling between
different CuO2 planes, and possesses a very different form
in a single layer cuprate such as LSCO or NCCO than when
a CuO2 bilayer is present as in Bi2212. In the case of

Bi2212 [46],

εkz(k) =−Γz(k,cz(
c
2
))

[
(cx(a)− cy(a))2

4
+a0

]
(2)

where c denotes the lattice constant along the z-axis, and

Γz(k,cz
c
2
) =±(t2

b + Á2 +2tbÁcz(
c
2
)

1
2 ,

Á = 4tzcx(
a
2
)cy(

a
2
). (3)

The plus (minus) sign refers to the bonding (anti-bonding)
solution and the term tz corresponds to the intercell hopping.
The term cz arises because supposedly we have an infinite
number of stacked layers. The term Á = 4tzcx(a/2)cy(a/2)
is zero along the high symmetry line X(π,0)-M(π,π). This
leads to a lack of kz-dispersion along this high-symmetry
line. The additional hopping a0 allows for the presence of a
splitting at Γ(0,0). It is reported [47] that adequate control
of the interlayer spacing albeit the interlayer hopping in Bi-
based superconductors is possible through the intercalation
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Figure 3. The contour plots of the term
√

z0(k)/2 in the
bonding (a) and the anti-bonding (b) cases. The numerical
values of the parameters to be used in the calculation are t

= 1 , t́/t = -0.28, ´́t/t = 0.1, ´́́t/t = 0.06, tb/t = 0.3, tz/t = 0.1,
α0/t = 0.53, ∆PG

0 /t = 0.01, and a0 = 0.4.

of guest molecules between the layers. This could be a way
to tune the hopping parameter. The coupling tb within a
bilayer and the intercell coupling tz are both quite substantial
as are the in-plane hopping terms beyond the NN term. It
may be mentioned that Vishwanath et al. [1] had found that
a spin-momentum locking that allows states of opposite spin
to be localized in different parts of the unit cell. The spin-
momentum locking, to be obtained in this section, which
is similar to their observation in spirit save for the fact that
the Wigner-Seitz cell is replaced by the Brillouin zone (BZ).
We shall see that when the Rashba-coupling is introduced
together with the full form of the tunnelling matrix given by
Eq. (2) and (3), while the nodal region of the momentum
space will give rise to a spin-down hole current, the anti-
nodal region will give rise to spin-up electron current in the
bonding case. In the anti-bonding case, the result will be
similar.
Suppose now dk,σ (σ = ±1 for the real spin) corresponds
to the fermion annihilation operator for the single-particle
state (k,σ ) in a single layer of the system. Upon following

Das Sarma et al. [36–39], in the basis

(d†(1)
k,σ ,d†(1)

k,+Q,σ ,d
†(2)
k,−σ

,d†(2)
k,+Q,−σ

)†

where superscripts 1,2 refer to layers, we may write a mo-
mentum space bilayer Hamiltonian as

H(kx,ky,kz) =


εk D†

k τ́(k,kz) 0
Dk εk+Q 0 0

τ́(k,kz) 0 εk D†
k

0 0 Dk εk+Q

 (4)

where τ́(k,kz) = εkz(k). We assume the ordering wave
vector Q = (Q1,Q2). The RSOC term, to be introduced in
this Hamiltonian by hand (and denoted by αk), originates
from the generalized SOC Hamiltonian

Hz
so = α0(σσσ × f).ẑ = α0σσσ .(f× ẑ),

f = (sin(akx),sin(aky),sin(akz))

where σσσ and f , respectively, correspond to the Pauli ma-
trices and orbital with cubic symmetry. Obviously, αk is
the projection of the vector α0(σσσ × f) in the ẑ direction and
the quantity α0 is the coupling strength. Furthermore, as
Hz

so may be interpreted as Zeeman magnetic energy with
momentum-dependent magnetic field, the term α0 could
also be referred to as the spin-polarizing field. The justifica-
tion of the introduction of RSOC is given below. To incor-
porate RSOC in (4), in the basis alluded to above, one may
write αk = 1/2α0(−σy sin(kxa) + σx sin(kya))⊗ (τ0 + τz)
where the matrices τ j and σ j ( j = x,y,x) are Pauli matri-
ces for the orbital and the spin, respectively. Here, we
assume the ordering wave vector Q = (±π,±π). We shall
also consider the Q = (±Q1,±Q2) where (Q1 = 0.7742π ,
Q2 = 0.2258π). The occurrence of spin-flip is due to
Rashba coupling αk. Together with the lifting of the spin-
degeneracy, indication of spin-momentum locking in lim-
ited region of BZ is then expected. As regards the interac-
tions, UΣid

†
i↑di↑d†

i↓di↓ is the onsite repulsion of d electrons,
where the intra-layer d electrons are locally interacting via
a Hubbard-U repulsion. We have not considered this term
assuming the correlation effect are marginally relevant.
We find from above that H(kx,ky,kz) is inversion asym-
metric. The reason for the broken mirror reflection sym-
metry, apart from the presence of the Rashba coupling, is
Dk(kx → −kx,ky → ky) ̸= Dk(kx,ky) due to the presence
of chirality (d + id). For the non-chiral system (id), how-
ever, Dk(kx → −kx,ky → ky) = Dk(kx,ky), i.e. the inver-
sion symmetry is preserved. Note that the Hamiltonian
in (4) violates time reversal symmetry(TRS) also. Never-
the-less, as we see below, we get real eigenvalues in BZ.
Upon ignoring τ(k,kz) altogether, the energy eigenvalues
in the CDDW case are given by multiple roots. These are
E(α)(k) = εU

k +α∆k where α = ±1, εU
k = (εk + εk+Q)/2,

εL
k = (εk − εk+Q)/2, and ∆k = (εL2

k + |Dk|2)1/2. The plots
of free electron dispersion, and that corresponding to once
the CDDW order sets in are shown in Figure1. We find
that the valence and the conduction bands corresponding to
free electrons are partially full (see Figures 1(a) and 1(b)).
Therefore, the system conducts. Once the CDDW order
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sets in, the pseudo-gap phase displays a nodal-anti-nodal
dichotomous feature, i.e. excitations with infinite lifetimes
(say, in a Hartee-Fock treatment of the e-e repulsion), have
un-gapped nodal points and maximally gapped anti-nodal
points (see Figures 1(c) and (d)).The reason basically lies
in the particle-hole asymmetry of the excitation spectrum

ε1, ε2 = εU
k ±

√
εL2

k +D†
kDk, εU

k = 1/2(εk + εk+Q), and
εL

k = 1/2(εk − εk+Q). With Q1 = 0.7742π , Q2 = 0.2258π ,
εU

k ∼ 0 and εL
k is minimum (maximum) at the nodal antin-

odal point.
In the case of the perfectly nested dispersion (εk =−εk+Q),
it is easy to see that the eigenvalue equation which is a
quartic may be written as ε4 −2ε2b−4εc+d = 0 or,

ε
4 −2ε

2b+b2 = 4εc+b2 −d (5)

where b = 1/2(t2
k +2ε2

k + |Dk|2)), c = 1/2εkt2
k , and d = (ε2

k +
|Dk|2)2-t2

k ε2
k . For simplicity, we have replaced here τ́(k,kz)

by tk = 1/4tb(cx(a)− cy(a))2. We now add and subtract
an as yet unknown variable z within the squared term ε4 −
2ε2b+b2: (ε2−b+z−z)2 = 4εc+b2−d, or (ε2−b+z)2

= 2zε2 +4εc+(z2 −2bz+b2 −d). Upon ignoring the term
(4εc) we shall get a bi-quadratic with values of ε given
by ε2 ≈ b±

√
b2 −d. We shall see below that without the

term (4εc) a discussion of the spin-texture, etc., which is
one of our tasks here, does not seem to be possible. The
left-hand side of Eq. (5) is a perfect square in ε . Therefore,
we need to rewrite the right hand side in that form as well.
For this we require that the discriminant of the quadratic
in the variable ε to be zero. This yields 16c2 − 8z(z2 −
2bz+b2 −d) = 0 or, z3 −2bz2 +(b2 −d)z−2c2 = 0. The
corresponding depressed cubic equation s3+ ps+q = 0 has
the discriminant function D =−4p3 −27q2, where S = z−
2/3b, p = -(b2/3+d), and q = 2(b3/27−bd/3−c2). Since
we find D negative in the entire Brillouin zone, the equation
s3− ps+q= 0 has one real root and two complex conjugate
roots. Suppose we denote this root by s0(ak), then the
corresponding z will be denoted by z0(ak) = s0(ak)+2b/3.
After lengthy algebra we obtain a quadratic to write down
the solutions of Eq. (5), viz. ε2 ∓

√
2z0ε + (−b+ z0 ∓

c
√

2/z0) = 0. The four solutions are

ε =±
√

z0

2
±

√
b− z0

2
± c

√
2
z0

(6)

where

real(z0) =
2b
3

+(
−q
2

+0.5ψ
1
2 )

1
3 +(

−q
2

−0.5ψ
1
2 )

1
3 ,

ψ = q2 +4(
b3

9
+

d
3
)3

These solutions are expected to yield the band structure
without the Rashba coupling. We have not been able to
find a reasonably sized window in momentum space where
eigenvalues would show spin-polarization. This justifies
the inclusion of RSOC. The conclusion is that the mere
assumption of the nested dispersion and the replacement of

´τ(k,kz) by tk made above do not work. In what follows we,
therefore, proceed in a straightforward manner without any
assumption.

The eigenvalues of the matrix in (4) are, once again, given by
the quartic Aε4 +B(k)ε3 +C(k)ε2 +D(k)ε +E = 0, where

A = 1

B(k) =−4ε
U
k

C(k) = 4ε
U2

k +2γ
2
1 − γ

2
2 − γ

2
3

D(k) =−4ε
U
k γ

2
1 +2εk+Qγ

2
2 +2εkγ

2
3

E(k) = γ
4
1 − γ

2
2 ε

2
k+Q − γ

2
3 ε

2
k + γ

4
0

ε
U
k =

εk + εk+Q

2
, ε

L
k =

εk − εk+Q

2

γ
2
1 = εkεk+Q −|Dk|2

γ
2
2 = (εkz(k)−α0 sin(kya))2 +α

2
0 sin(kxa)

γ
2
3 = (εkz(k+Q)−α0 sin(kya+Q2))

2 +α
2
0 sin(kxa+Q1)

γ
4
0 =−2|Dk|2[εkz(k)−α0 sin(kya)]

[εkz(k+Q)−α0 sin(kya+Q2)]

−2|Dk|2α
2
0 sin(kxa+Q1)sin(kxa)+ γ

2
2 γ

2
3 . (7)

In view of the Ferrari’s solution of a quartic equation, we
find the roots as

ε j(s,σ ,k) = σ

√
z0(k)

2
+ ε

U
k

+ s

(
b0(k)−

z0(k)
2

+σc0(k)

√
2

z0(k)

) 1
2

(8)

where j= 1,2,3,4, σ = ±1 is the spin index and s = ±1 is
the band-index. The other functions appearing in (3) are
defined below:

z0(k) =
2b0(k)

3
+

(
1
2

∆
1
2 (k)−A0(k)

) 1
3
−

(
1
2

∆
1
2 (k)+A0(k)

) 1
3

(9)

A0(k) =
(

b3
0(k)
27 − b0(k)d0(k)

3 − c2
0(k)

)
,

b0(k) =
3B(k)−8c(k)

16 ,

c0(k) =
−B3(k)+4B(k)c(k)−8D(k)

32


(10)

d0(k)=
−3B4(k)+256E(k)−64B(k)D(k)+16B2(k)C(k)

256
,

(11)
∆(k) =

8
729

b6
0 +

16d2
0b2

0
27

+4c4
0 −

4d0b4
0

81
−

8c2
0b3

0
27

+
8c2

0b0d0

3
+

4
27

d3
0 (12)

One can gap out the helical edge states by introducing a Zee-
man term that explicitly breaks the protecting time-reversal
symmetry. As we have seen above in Eq. (7), we obtain a
term

√
z0(k)/2 which has different sign for opposite spins

and connection with momentum (see Figure-3). Usually,
the effects of an external magnetic field, B, perpendicular to
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the CuO2 plane may be captured by two additional terms in
the planar Hamiltonian. The first term describes the orbital
coupling to magnetic field through the minimal coupling
kx → kx +(e/c)Ax, where one may choose A = [By,0] is
the vector potential in the Landau gauge. The second term
describes the coupling of the spins to the magnetic field and
is given by the Zeeman contribution. Since, the spin index
σ occurs twice in Eq. (7) (where the index is highlighted by
red ink.), the term

√
z0(k)/2 in question does not act like

magnetic energy.

3. Spin-momentum locking and spin texture
The plots of bands in (7) in the bonding/ anti-bonding cases
belonging to the nodal and anti-nodal regions are shown in
Figures 2. The numerical values of the parameters used in
the plots in Figure 2 are t =1 , t́/t = -0.28 (hole-doping),
´́t/t = 0.1, ´́́t/t = 0.06, tb/t = 0.3, tz/t = 0.1, α0/t =0.53, and
a0 = 0.4. Throughout the whole paper, we choose t to be
the unit of energy. In Figure 2(a) we have a plot of quasi-
particle excitation (QP) spectrum given by Eq. (7) in the
bonding case as function of dimensionless momentum kxa
for kya = π/2 and kza = π . Since spin-down valence and
conduction bands are partially empty, the spin-down QP
conduction is possible. A plot of QPsin the bonding case,
as a function of dimensionless momentum kxa for kya = π

and kza = π is given in Figure (b). The plot displays band
crossing and huge spectral gap at the high symmetry point
R(π,π,π). A plot of quasi-particle excitation spectrum in
the anti-bonding case as function of kxa for kya = 0 and kza
= 0 is shown in Figure (c). Since the spin-up conduction
band is partially empty, the spin-up electron conduction
is possible. A band pair of opposite spins, where one of
the partners is a partially empty band and the other is full
band, is almost coinciding in energy with zero density of
states (DOS) at their meeting point in momentum space. In
Figure 2(d) we have a plot of QP excitation spectrum in the
anti-bonding case as function of dimensionless momentum
kxa for kya = π/2 and kza = 0. Once again, since the spin-
down valence band is partially empty, the spin-down hole
conduction is possible. Thus, the spin-momentum locking
(SML) is evident, While the nodal region of the momentum
space can give rise to a spin-down hole current, the anti-
nodal region can give rise to spin-up electron current. We
find that the common ground between two types of SMLs,
corresponding to the bonding and the anti-bonding cases,
is that the states of opposite spin are to be found in differ-
ent parts of the Brillouin zone. On the experimental front,
recently Vishwanath et al. [1] discovered that Bi2212, has
a nontrivial spin texture with the spin-momentum locking.
They used spin- and angle-resolved photoemission spec-
troscopic technique to unravel this fact. We shall discuss
briefly below this feature.
The spin texture of the surface states in topological insu-
lator (TI) forms due to SOC. For the Bi2212 system also
it is expected that Rashba SOC will induce this texture.
Therefore, we now focus on this aspect. The spin texture
s(n,k) is defined as the expectation value of a vector opera-
tor S j = I2 ×2⊗σσσ j where σσσ j are Pauli matrices on a two
dimensional k-grid and ⊗ stands for the tensor product. At

k for the state j (or jth band) it is defined as an expectation
value sz( j,k) = ⟨Sz⟩( j) = ⟨ j|sz| j⟩. Obviously enough, to cal-
culate this we need eigenvectors of the Hamiltonian matrix
(4) for eigenvalues ε j in Eq. (7). This complete set is given
by

|ψ j⟩= ζ
−1(k,kz)
j



1
Dk

ε j−εk+Q

τ∗(k,kz)(En−εk+Q)

[(ε j−εk+Q)(ε j−εk)−|Dk|2]

τ∗(k,kz)Dk
[(ε j−εk+Q)(ε j−εk)−|Dk|2]


, j = 1,2,3,4

(13)

ζ j(k,kz) =



1+ |Dk|2
(ε j−εk+Q)

2 +

(|τ(k,kz)|2)(ε j−εk+Q)
2

(ε j−ε1)2(ε j−ε2)2 +

(|τ(k,kz)|2)(|Dk|2)
(ε j−ε1)2(ε j−ε2)2



1
2

(14)


ε1, ε2 = εU

k ±
√

εL2
k +D†

kDk,

εU
k =

εk+εk+Q
2 , εL

k =
εk−εk+Q

2

τ(k,kz) = εkz(k)+α0(−sin(kya)+ isin(kxa)).


(15)

where the full expression for εkz(k) could be found in Eqs.
(2) and (3). It must be mentioned that there is no singularity
in eigenvectors, as we have introduced inter-layer hops and
the Rashba coupling as a result of which ε j are given by Eq.
(8) and not by ε1,ε2. Upon using (12)-(14), the spin tex-
tures are obtained in a straightforward manner. The contour
plots are shown in Figure 4 (a) - (d) for various values of
a0 and α0 with akz = π . The texture is found over a large
range of parameters in this material with Rashba SOC and
broken surface inversion starting with a critical value of
α0. We have found this critical value to be 0,35 for a0 =
0.40. For α0<0.35, the expectation value turns out to be
complex. Most importantly, as can be seen from Figure
4(a) - (d) that, the texture or the expectation value spreads
over the larger region of the Brillouin zone as α0 (and a0)
increases. An outcome similar to ref. [1] is reproduced
below in Figure 4(e). This is a caricature of the structural
unit of Bi2212 comprising of two structurally equivalent
CuO2 planes separated by calcium (Ca) layer. On the right
hand side, we have the momentum space spin pattern cor-
responding to two adjacent CuO2 layers within a unit cell
in ref. [1]. The Γ point is encircled by oppositely pointed
spins in the two representations. We have shown in Figure
4(f) the calculated spin texture ⟨n|Sz|n⟩. The spikes in the
texture are broadly confined to the nodal region and there is
also the encirclement of Γ point. These spikes are upshot
of the inversion symmetry (IS) breaking and /or the time
reversal symmetry (TRS) breaking. The texture is tunable
by electric field (and by intercalation [47]). Upon using
(12)-(14) we also obtain the values of (⟨n|Sx|n⟩ - ⟨n|Sy|n⟩)
spin texture in the bonding case in the akx −aky plane for
akz = π (see Figure 5) with the polarising field α0 in the z
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Figure 4. Contour plots of spin textures sz(n,k). (a) a0 = 0.40 and α0 = 0.35. (b) a0 = 0.40 and α0 = 0.35 with a different
choice of color and length of arrows. (c) a0 = 0.40 and α0 = 0.65. (d) a0 = 0.60 and α0 = 0.65. The numerical values of the

other parameters used in the calculation are t = 1 , t́/t = -0.28, ´́t/t = 0.1, ´́́t/t = 0.06, tb/t = 0.3, tz/t = 0.1, ∆PG
0 /t = 0.01,. µ

= 0.00, Q1 = 0.7742.pi, and Q2 = 0.2258.pi. The band index ‘n’ stands for the spin down bands in Eq.(7), viz.
ε(↓,σ =±1,k) intersecting with Fermi energy. (e) A caricature of the structural unit of Bi2212 comprising of two
structurally equivalent CuO2 planes separated by calcium (Ca) layer. On the right hand side, we have the momentum space
spin pattern corresponding to two adjacent CuO2 layers within a unit cell in ref. [1]. The Γ point is encircled by oppositely
pointed spins in the two representations. (f) The 3D plot of spin texture sz(n,k) with ordering wave vector Q = (±π,±π)
showing spikes in the nodal region. There is the encirclement of the Γ point too. The numerical values of the parameters

used are t = 1, t́/t = -0.28 (hole-doping), ´́t/t = 0.10, ´́́t/t = 0.06, tb/t = 0.30, tz/t = 0.10, α0/t = 0.01, α1/t = 0, χ0/t = 0.44,
∆PG

0 /t = 0.20, µ = -0.00. a0/t = 0.20, and α0/t = 0.80.
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Figure 5. Contour plots of the expectation value ⟨n|Sx|n⟩−⟨n|Sy|n⟩. (a) a0 = 0.40 and α0 = 0.50. (b) a0 = 0.40 and α0 =
0.70. (c) a0 = 0.70 and α0 = 0.50. The numerical values of the other parameters used in the calculation are t = 1, t́/t =

-0.28, ´́t/t = 0.1, ´́́t/t = 0.06, tb/t = 0.3, tz/t = 0.1, ∆PG
0 /t = 0.01,. µ = 0.00, Q1 = 0.7742.pi, and Q2 = 0.2258.pi. The bands

ε(↓,σ =±1,k) = −
√

z0(k)/2+ εU
k ± [b0(k)− (z0(k)/2)−c0(k)

√
2/z0(k)]1/2, intersecting with Fermi energy, are chosen

for the purpose of the plot.

direction. The plots are for different values of a0 and α0.
The Dzyaloshinskii–Moriya interaction (DMI) energy [48–
51] is considered as one of the most important energies for
specific chiral textures such as magnetic skyrmions. These
are particle-like solitonic, complicated spin textures of topo-
logical origin existing in the real space. The interaction was
introduced first by Stevens [49] where it was derived as a
consequence of the inclusion of spin-orbit coupling in the
Heisenberg model. In order to explain the weak ferromag-
netic (FM) moments in largely anti-FM α-Fe2O3 crystals,
the DMI was later introduced by Dzyaloshinskii [50]. The
inclusion of spin-orbit coupling in a consideration of the
super-exchange mechanism to provide the first microscopic
derivation was reported by Moriya [51] later. He introduced
a symmetric tensor of second order in the spin-orbit cou-
pling and the Moriya vector Di j which is proportional to the
first power of the spin-orbit coupling and an antisymmetric
vector. The DMI [48] is considered as one of the most im-
portant energies for specific chiral textures such as magnetic
skyrmions. The keys of generating DMI are the absence of
structural inversion symmetry and energy corresponding to
spin–orbit coupling. An investigation of the Moriya vec-
tor Di j in similar lines as that of Moriya [51] starting with
the Bloch Hamiltonian for Bi2212 bilayer system will be

carried out in a separate communication.

4. Discussion and conclusion

The Hamiltonian in ref. [36, 37] is inversion symmetry
protected (no Rashba spin-orbit coupling (RSOC)) as
long as the ordering wave vector Q = (±π,±π). The
authors in this reference have claimed the possibility of
quantum anomalous Hall (QAH) effect. The reason being
a system which is inversion symmetry protected but time
reversal symmetry (TRS) broken will have non-zero Berry
curvature (BC). This is very much required to obtain
anomalous Hall conductivity (σxy) and to show that σxy is
quantized in the case of an insulator. In this backdrop, an
important question then arises here : “what is the necessity
of breaking inversion symmetry (IS)”? The nontrivial spin
texture could also be explained without it [52]. In their
seminal work [52], Zhang et al. have demonstrated that
the lack of the local inversion symmetry at atomic sites
leads to hidden spin polarization completely determined
by the site-dependent orbital angular momentum even in
centrosymmetric crystals. This was an outcome of the
first-principles calculations by the authors. Usually, the
reason behind this is the orbital magnetization being more
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important than the spin magnetization, i.e. the spin–orbit
coupling (SOC) is weak, such as a transition metal
dichalcogenide MoS2. Additionally, Baidya et al. [53] had
also explored the important role of orbital polarization
in QAH phases. A comparison with DFT calculation led
these authors to the conclusion that effect of such terms
are smaller. For Bi2212 system, however, we find that
the spin texture demonstrates a momentum-selective spin
polarization in a significant portion of the Brillouin zone,
and the texture disappears when RSOC tends towards zero.
Therefore, for our system, to have access to nontrivial spin
texture broken inversion symmetry is needed.
Efforts have been made in the past for efficient spin
generation and /or detection by controlling the flow of
charge or spin currents [54, 55] in other systems where the
spin orientation is forced to align perpendicularly to the
electron momentum. Such generation and detection process
constitute important building blocks for future topological
electronics and spintronics. To this end, a full set of spin
controls based on SML spin manipulation is needed. Since
the spin orientation is regulated by the electron momentum
direction, the manipulation of the spin orientation, say,
under the drift and diffusion makes the task difficult. In fact,
this is a serious impediment to the potential scope of SML
to provide flexibility in the design of spintronic devices.
The synthetic spin-orbit coupling (s-SOC) [56–59] arising
due to Zeeman Hamiltonian involving the position-
dependent magnetic field (B0) may prove to be useful
for the spin manipulation. It must be noted that while
s-SOC breaks time reversal symmetry (TRS), the intrinsic
spin-orbit coupling (i-SOC) comprising of the Rashba and
Dresselhaus SOCs (where the former is due to structural
inversion asymmetry and the latter is due to bulk inversion
asymmetry) are time-reversal symmetric. As the first step
to show theoretically the possibility of the manipulation of
the spin orientation in Bi2212 bilayer system by s-SOC,
we need to obtain spin Hamiltonian, from the system
Hamiltonian, by performing an Schrieffer–Wolff (SW)
transformation. Next, we need to consider an oscillating
electric field E(t), applied, say, along the x-axis for the spin
resonance purpose. Driven by this electric field, the electron
spin experiences an effective oscillating magnetic field via
the s-SOC. The Hamiltonian of the system is then expected
to be comprising of transverse and longitudinal magnetic
field components. In contrast to the i-SOC-mediated spin
resonance [58], due to the broken TRS in the case of s-SOC,
the transverse effective field is expected not to depend on
the magnitude (B0) [57]. If this happens we have hit the
bull’s eye. The reason being a weak (B0) will be sufficient
in order to achieve the objective without sacrificing the
speed of the electric-dipole spin resonance (EDSR). The
charge-noise-induced spin dephasing mediated by s-SOC
could also be supressed by a suitable choice of the magnetic
field direction. The details will be presented in a sequel to
this work.
In conclusion, the presence of Rashba spin–orbit coupling
(possibly s-SOC as well) plays a key role on various aspects
of spin transport in various systems. It can be detected in a
material via magnetic field-induced quantum oscillations,

EDSR, and weak antilocalization. In the context of the
present problem, we have witnessed the role it has played.
To have access to nontrivial spin texture non-zero RSOC
(broken inversion symmetry) is needed. The potentially
important role of hidden orbital polarizations [52, 53] needs
to be investigated deeply. The complete investigation of
the role of s-SOC in the context of the spin orientation
manipulation is expected to unravel more of it. There
are other problems, such as the Zitterbewegung effect,
quantum anomalous and magnetoelectric effects, and
Floquet physics, which need our attention.
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