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Abstract:
The two-dimensional XY model of continuous spins on a square lattice is studied by Monte Carlo simulations in the
nonextensive statistical approach of Tsallis, using the Metropolis algorithm with a transition probability of the nonextensive
approach. Energy per spin, magnetization per spin, heat capacity, magnetic susceptibility, Binder cumulant of the
magnetization and Binder cumulant of the energy are calculated in a temperature interval between 0.02 and 2 with a step of
0.02, for square lattice sizes considered between 122 and 482, with periodic boundary conditions, and for discrete values of
the Tsallis entropic index q used between 0.99 and 0.5. It has been found that the Kosterlitz-Thouless transition is well
observed and modified for q = 0.99 and 0.9 ; its critical temperature decreases when q decreases. A particular behavior of
the system evolution is observed for q = 0.8 and 0.7. The absence of phase transitions was confirmed for q ≤ 0.6.
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1. Introduction

The application of a specific statistical approach to a physi-
cal system essentially depends on the nature of the micro-
scopic interactions, the microscopic memory [1, 2]. For
short-range-interactions and for non-(multi)fractal bound-
ary conditions, the usual Boltzmann-Gibbs statistic is suf-
ficient. However, for systems with dominant long-range-
interactions, a more generalized statistical approach will be
needed [3]. Black holes and superstrings [4, 5], granular
matter [6], two-dimensional turbulence [7, 8], astrophysics
and the many-body-gravitational problem [9, 10] are some
examples of this type of systems. An important generaliza-
tion of the Boltzmann-Gibbs statistic was proposed in 1988
by Tsallis [11], called “nonextensive statistic”, it is based
on a new entropy formula with an index characterizing the
influence of long-range-interactions. In recent years, the
Tsallis statistic has been successfully applied in different
fields [12] such as biology [13, 14], chemistry [15] and
physics [16–19].
Monte Carlo simulations are recently performed to study

phase transitions in magnetic systems using the Tsallis sta-
tistical approach. In most of these studies, discrete spin
models are used such as the two-dimensional uniform Ising
model [16, 20, 21], the two-dimensional Potts model [22].
However, models of continuous spins possessing important
particular properties are not yet studied by this method.
The objective of this paper is to study a simple classical
model of continuous spins, which is the two-dimensional
XY model, and its phase transitions by Monte Carlo simula-
tion in the Tsallis statistical approach, using a simple gen-
eralization of the Metropolis algorithm. Thermodynamic
observables will be calculated and studied over a tempera-
ture interval for different values of an entropic index called
“Tsallis entropic index”, which depends on the difference
between Boltzmann-Gibbs and Tsallis statistics.

2. Two-dimensional XY model and
Kosterlitz-Thouless transition

The XY model describes a system of two-dimensional unit
spin vectors located at sites of a two-dimensional or three-
dimensional lattice, with nearest-neighbor interactions. The
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spin −→si (si,x = cosθi,si,y = sinθi) with |−→si | = 1 located in
site i can rotate in a plane at an angle θi ∈ [0,2π] with
respect to a specified direction [23,24]. The Hamiltonian of
this model is given by:

H =−J ∑
⟨i j⟩

cos(θi −θ j)+h∑
i

cosθi (1)

where J is the spin-spin coupling interaction and h is the
external field interaction. The notation ⟨i j⟩ means a sum-
mation over the nearest neighbor sites only. In this work
we take h = 0 to eliminate the source term breaking the
symmetry. In this case the energy is of O(2) symmetry, that
is to say a rotation of all the spins by the same angle, does
not change the energy of the system [23].
The two-dimensional XY model is widely used to study
the physical and critical behavior of a few two-dimensional
systems such as superfluid helium thin films [25], supercon-
ducting thin films [26], ferromagnetic layers [27], crystal
surfaces [28] and two-dimensional Coulomb gas [29]. Al-
though it can be rigorously proven that the order parameter
(the magnetization) of the XY model is zero at any finite
temperature in two dimensions, and that the susceptibility
is finite at high temperature but diverges at a critical tem-
perature, there is good evidence that the Two-dimensional
XY model undergoes a very specific transition of infinite or-
der, known as the “Kosterlitz-Thouless transition” [30, 31].
Experimentally, thin films of liquid helium and supercon-
ducting materials seem to show this transition. Numerous
numerical studies have been carried out to confirm the pre-
dictions of this transition and to estimate its critical tem-
perature. Most of them are Monte Carlo studies. Some
authors have studied the existence of the classical first-order
and second-order phase transitions for the two-dimensional
XY model in special cases [32, 33]. Kosterlitz and Thou-
less [30, 31] showed that there is another set of excitations
that takes the system from its ordered phase at low temper-
ature, well described by the spin wave approximation, to
a disordered state at high temperature with exponentially
decreasing correlations. These new excitations are identi-
fied as topological defects in the form of “vortices” created
by the spins. The defects are observed as low-temperature
bonded vortex-antivortex pairs. By increasing the tempera-
ture, the vortex-antivortex pair detaches at the critical point
of the Kosterlitz-Thouless transition. However, no specific
thermal anomaly is observed at this point. The energy of
an isolated vortex is much higher than that of a pair of
closely related vortices. Thus, it takes much less energy for
a pair of tightly bound vortices to exist than to unbind to
form two isolated vortices. Accordingly, at sufficiently low
temperatures where there is not enough thermal energy to
unbind the vortex pairs, there exists a state which consists
of an equilibrium density of bound vortex pairs. At higher
temperatures, the thermal energy becomes more prominent
and able to untie the vortex pair. The critical temperature
in the Kosterlitz-Thouless transition at which the vortices
begin to untie is estimated to be TKT ≃ 0.8929J/kB, where
J is the spin-spin coupling constant and kB is the Boltzmann
constant.
The absence of long-range order, the presence of topolog-
ical defects called “vortices”, and the Kosterlitz-Thouless

transition are some of the important properties of the two-
dimensional XY model for which it is markedly different
from other two-dimensional classical systems.

3. Tsallis statistical approach
In order to include long-range-interactions in the statistical
description of complex systems, a generalization of the
usual Boltzmann-Gibbs statistics was proposed by Tsallis in
1988 [11], which is based on the following entropy formula:

Sq = kB
1−∑

Ω
i=1 pq

i
q−1

(2)

where kB is the Bolzmann constant, Ω is the number of
possible microstates of the system, q is a real parameter
characterizes the degree of the deformation of the statistics
or of the nonextensivity, called “Tsallis entropic index” and
pi(0 < pi < 1) is the probability that the system is in mi-
crostate i such that pi < pq

i for q > 1 and pi > pq
i for q < 1.

When q = 1 the usual Boltzmann–Gibbs statistic will be
found. For this reason we have chosen discrete values of
q ≤ 1 in this paper. Note that in Monte Carlo simulations
we cannot take continuous values of q.
The most important property of the Tsallis entropy is its
nonextensive nature. Indeed, for a system consisting of two
subsystems A1 and A2, then the Tsallis entropy of the global
system is:

Sq(A1 +A2) = Sq(A1)+Sq(A2)+
1−q

kB
Sq(A1)Sq(A2) (3)

For q = 1 the entropy Sq therefore becomes extensive.
In nonextensive statistics, the q-mean value of a thermody-
namic observable X is given by:

⟨X⟩q = ∑
i

piXi (4)

where pi are the escort probabilities defined by:

pi =
pq

i

∑i pq
i

(5)

the q-average value of the generalized internal energy Uq is
defined as:

Uq = ⟨H⟩q = ∑
i

piEi (6)

where H is the Hamiltonian of the system and Ei is the
energy of possible state i.
The canonical distribution adapted to Monte Carlo simula-
tions [22] is given by:

pi =
1
Zq

[1− (1−q)β ′Ei]
1

1−q (7)

with

β
′ =

β

∑i pq
i +(1−q)βUq

(8)

β =
1

kBT
(9)

Zq =
Ω

∑
i=1

[1− (1−q)β ′Ei]
1

1−q (10)
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Figure 1. Curves of variation of: (a) energy per spin, (b) magnetization per spin, (c) heat capacity, (d) magnetic susceptibility;
as a function of temperature, in the case of the XY model on a square lattice of size L2 = 482, for different values of the
Tsallis entropic index q. BG means the Boltzmann-Gibbs statistic.

where β ′ is the Lagrange multiplier associated with the
energy constraint, kB is the Boltzmann constant, T is the
thermostat temperature and Zq is the generalized canonical
partition function.
The choice of temperature in the Tsallis statistic poses a
problem during the simulation. In this work, we have chosen
1/β ′ as the temperature scale, as they did the authors of
references [16, 22].

4. Metropolis algorithm in the Tsallis
statistical approach

The implementation of the XY model using the simple
Metropolis [34] Monte Carlo algorithm in the non-extensive
statistics approach is done by the following steps:

1) Choose a random initial configuration of the studied
spin lattice.

2) Randomly change the orientation of each spin in the
lattice.

3) Calculate the difference ∆E in energy due to the
change in spin orientation using the Hamiltonian of
the XY model.

• If ∆E ≤ 0 keep the new spin orientation.

• If ∆E > 0 generate a random number r ∈ [0,1],
and calculate the probability p of transition in the
nonextensive statistic:

p =

[
1− (1−q)β ′E j

1− (1−q)β ′Ei

]1−q

(11)

If r ≤ p keep the new spin orientation.

4) Repeat Neq times the steps 2 and 3 until thermal equi-
librium is reached. Neq is the number of Monte Carlo
steps needed to reach thermal equilibrium.

5) Calculate the statistical q-mean on the possible config-
urations of the thermodynamic quantities X and on a
number of Monte Carlo steps N −Neq with N > Neq,
i.e.:

⟨⟨X⟩q⟩MC =
1

(N −Neq)

N

∑
i=Neq

⟨X⟩q,i (12)

where ⟨· · · ⟩q means the statistical q-mean over the possible
configurations and ⟨· · · ⟩MC means the mean over a number
N −Neq of Monte Carlo steps. In this generalized Metropo-
lis algorithm, the transition probability of the Boltzmann-
Gibbs statistic has been replaced by that of the Tsallis statis-
tic as the case of the references [16, 22].
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Figure 2. Curves of variation of: (a) energy per spin, (b) magnetization per spin, (c) heat capacity, (d) magnetic susceptibility;
as a function of temperature, in the case of the XY model on a square lattice at different sizes L2, for the value of the Tsallis
entropic index q = 0.8.

5. Simulation results

Monte Carlo simulations using the Metropolis algorithm
[34] in the Tsallis statistical approach are performed on a
square lattice of N = L2 spins, which is described by the
two-dimensional XY model. Periodic boundary conditions
have been applied to edge spins. The quantities calculated
are:
the energy per spin:

e(L,T,q) = ⟨⟨ 1
N

N

∑
l=1

(
−J ∑

⟨i j⟩
cos(θi,l −θ j,l)

)
⟩q⟩MC (13)

the magnetization per spin:

m(L,T,q) = ⟨⟨ 1
N

√√√√( N

∑
i=1

cosθi

)2

+

(
N

∑
i=1

sinθi

)2

⟩q⟩MC

(14)
the magnetic susceptibility:

χ(L,T,q) =
1

kBT

(
⟨⟨m2⟩q⟩MC −⟨⟨m⟩2

q⟩MC
)

(15)

the heat capacity:

CV (L,T,q) =
1

kBT 2

(
⟨⟨e2⟩q⟩MC −⟨⟨e⟩2

q⟩MC
)

(16)

the Binder cumulant of the magnetization:

Um(L,T,q) = 1−
⟨⟨m4⟩q⟩MC

3⟨⟨m2⟩2
q⟩MC

(17)

and the Binder cumulant of the energy:

Ue(L,T,q) = 1−
⟨⟨e4⟩q⟩MC

3⟨⟨e2⟩2
q⟩MC

(18)

To simplify, we have taken the coupling constants J = 1 and
the Boltzmann constant kB = 1, in this case the tempera-
ture and the calculated quantities are given in reduced units.
Square lattice sizes are chosen between 122 and 482. A tem-
perature interval is chosen between 0.02 and 2 with a step
of 0.02. A total number of Monte Carlo steps N = 6 ·104

is used, of which Neq = 104 is associated to reach thermal
equilibrium. The calculations are made in the case of the
extensive Boltzmann-Gibbs statistic and in the case of the
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Figure 3. Curves of variation of the Binder cumulant of the magnetization as a function of temperature in the case of the
XY model for: (a) L2 = 482 with different values of q and the case of the Boltzmann–Gibbs statistic (BG) , (b) q = 0.9
with different values of L.

nonextensive Tsallis statistic for values of the Tsallis en-
tropic index q between 0.99 and 0.5.
Figure 1 shows the curves of variation of ; energy per spin

e, magnetization per spin m, heat capacity CV and magnetic
susceptibility χ as a function of temperature, for a square
lattice size L2 = 482 with different values of the entropic
index q and for the case of the Boltzmann–Gibbs statistic.
It can be seen that the Kosterlitz-Thouless transition is well
observed for q = 0.99 and 0.9. Specific behaviors are ob-
served for q = 0.8 and 0.7; the curves of m (resp. the curves
of e) have a maximum (resp. a minimum) then an inflection,
this is valid whatever the size of the lattice square as shown
in figure 2. The magnetization and the energy per spin
strongly depend on q at low temperatures, i.e. in the first
phase of transition. Indeed, when q decreases m decreases
and e increases. The heat capacity curves have a maximum
which moves to the left when q decreases, the maximum
disappears for q < 0.8. The same remark was observed
for the susceptibility curves, except that the maximums
only disappear for q < 0.5. However, for q = 0.8 there are
two maxima, this is remarkable whatever the lattice size as

Figure 4. Linear fitting of the critical temperature TC as a
function of the inverse of the lattice size 1/L2 for q = 0.9.

shown in figure 2. Moreover, when the size of the system
increases the peaks of the maximums become sharper. We
also notice that the critical temperature corresponds to the
maximum of the heat capacity decreases when q increases.
For q ≤ 6 the system have no phase transition. For q = 0.99
the results obtained are very close to those obtained in the
case of the extensive Boltzmann-Gibbs statistics.
To estimate the critical temperature of the studied transition

at the thermodynamic limit (L → ∞), we plotted the Binder
cumulant of the magnetization as a function of temperature
for L2 = 482, for different values of q and for the case of
the Boltzmann–Gibbs statistic on one side (see figure 3 (a)),
and for q = 0.9 with different values of L on the other side
(see figure 3 (b)). From figure 3 (a) it was again found that
the critical temperature TC strongly depends on q, and for
q = 0.7 and 0.8 a specific behavior is observed. The point
of intersection of the curves of figure 3 (b) corresponds
to TC at the thermodynamic limit for q = 0.9. Estimated
values of TC by this method for different values of q are
given in Table 1. It has been found that TC decreases as q
decreases at the thermodynamic limit. Note that to obtain a
value of TC close to that of the Kosterlitz-Thouless transition
TKT ≃ 0.8929J/kB by performing simulations in the case

Table 1. Values of the critical temperature TC, at the
thermodynamic limit, estimated in the case of the
Boltzmann-Gibbs statistic (BG) and in the case of the
Tsallis statistic with different values of the entropic index q
using: (a) the Binder cumulant of the magnetization
method, (b) the linear fitting method.

TC

(a) (b)

BG 0.96 1.04
q = 0.99 0.96 1.04
q = 0.9 0.74 0.87
q = 0.8 0.54 0.64
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Figure 5. Curves of variation of the Binder cumulant of energy as a function of temperature in the case of the XY model
for: (a) L2 = 482 with different values of q and the case of the Boltzmann–Gibbs statistic (BG), (b) q = 0.9 with different
values of L.

of the Boltzmann-Gibbs statistics, it is necessary to choose
large values of L, this requires a machine powerful.
Another method is often used to estimate TC at the ther-
modynamic limit, which consists of the linear fitting of
the curves of TC according to (1/L2); the ordinate at the
origin of the line obtained by linear fitting is the critical
temperature at the thermodynamic limit. Figure 4 shows an
example for q = 0.9 using the values of TC corresponding
to the maximum of the heat capacity curves. The results
obtained by this method are also given in Table 1.
In order to compare the Kosterlitz-Thouless transition with
classical transitions, we plotted the Binder cumulant of
the energy Ue as a function of the temperature; for L2 =
482 with different values of q and the case of the Boltz-
mann–Gibbs statistic on one side (see figure 5 (a)), and for
q = 0.9 with different values of L on another side (see figure
5 (b)). It has been found that for the Kosterlitz-Thouless
transition there is no minimum on the Binder cumulant of
energy curves unlike the case of classical transitions. More-
over, the appearance of this transition on the curves of Ue
strongly depends on L and q.

6. Conclusions

A study by Monte Carlo simulations is carried out in the
nonextensive statistical approach of Tsallis, applied to
the XY model on a square lattice of continuous spins,
with nearest neighbor interactions and periodic boundary
conditions. It is based on a simple generalization of the
Metropolis algorithm by replacing the transition probability
of the extensive Boltzmann-Gibbs statistic by that of the
nonextensive Tsallis statistic. The average values of energy
per spin, magnetization per spin, heat capacity, magnetic
susceptibility, Binder cumulant of magnetization and
Binder cumulant of energy are calculated in an interval of
temperature 0.02 ≤ T ≤ 2 with a step of 0.02. Square lattice
sizes are chosen between 122 and 482 with discrete values
of the Tsallis entropy index q between 0.99 and 0.5 are used.
The results obtained in the nonextensive statistical approach
when q → 1 tend towards those obtained in the extensive

statistical approach. The Kosterlitz-Thoules transition
characterizing the two-dimensional XY model has been
well observed and modified for q = 0.99 and 0.9. Its critical
temperature TC estimated in the thermodynamic limit is
proportional to q. A particular behavior of evolution of the
system was observed for q = 0.8 and 0.7. For q ≤ 6 there is
no observed transition. The Binder cumulant of energy does
not have a minimum in the case of the Kosterlitz-Thoules
transition. When applying the two-dimensional XY model,
consideration must be given to long-range-interactions.

Acknowledgements:
The authors would like to thank the Laboratory of Physico-
Chemistry of Materials and Environment (LPCME),
at Ziane Achour University, Djelfa, Algeria, and the
Algerian General Directorate of Scientific Research and
Technological Development (DGRSDT) for their academic
and scientific support.

Conflict of interest statement:
The authors declare that they have no conflict of interest.

References

[1] A. R. Lima, J. S. S. Martins, and T. J. P. Penna. “Monte
Carlo simulation of magnetic systems in the Tsallis
statistics”. Phys. A Stat. Mech. its Appl., 268:553,
1999.

[2] L. C. Sampaio, M. P. de Albuquerque, and F. S.
de Menezes. “Nonextensivity and Tsallis statistics
in magnetic systems”. Phys. Rev. B - Condens. Matter
Mater. Phys., 55:5611, 1997.

[3] C. Tsallis. “Nonextensive statistics: Theoretical, ex-
perimental and computational evidences and connec-
tions”. Brazilian J. Phys., 29:1, 1999.

[4] D. Pavon. “Thermodynamics of superstrings”. Gen.
Relativ. Gravit., 19:375, 1987.

2251-7227[https://dx.doi.org/10.57647/J.JTAP.2023.1703.30]

https://dx.doi.org/10.57647/J.JTAP.2023.1703.30


Benbouzid et. al JTAP17(2023) -172330 7/7

[5] P. T. Landsberg. “Is equilibrium always an entropy
maximum?”. J. Stat. Phys., 35:159, 1984.

[6] P. T. Metzger. “Granular contact force density of states
and entropy in a modified Edwards ensemble”. Phys.
Rev. E, 70:51303, 2004.

[7] R. H. Kraichnan and D. Montgomery. “Two-
dimensional turbulence”. Reports Prog. Phys., 43:547,
1980.

[8] B. M. Boghosian. “Thermodynamic description of the
relaxation of two-dimensional turbulence using Tsallis
statistics”. Phys. Rev. E, 53:4754, 1996.

[9] J. Binny and S. Tremaine. “Galactic Dynamics.”.
Princeton Univ. Press, Princeton (BT), , 1987.

[10] W. C. Saslaw. “Gravitational physics of stellar and
galactic systems”. Cambridge University Press, ,
1987.

[11] C. Tsallis. “Possible generalization of Boltzmann-
Gibbs statistics”. J. Stat. Phys., 52:479, 1988.

[12] G. P. Pavlos, L. P. Karakatsanis, M. N. Xenakis, E. G.
Pavlos, A. C. Iliopoulos, and D. V. Sarafopoulos. “Uni-
versality of non-extensive Tsallis statistics and time
series analysis: Theory and applications”. Phys. A
Stat. Mech. its Appl., 395:58, 2014.

[13] R. C. Bernardi, M. C. R. Melo, and K. Schulten. “En-
hanced sampling techniques in molecular dynamics
simulations of biological systems”. Biochim. Biophys.
Acta - Gen. Subj., 1850:872, 2015.

[14] B. J. Berne and J. E. Straub. “Novel methods of sam-
pling phase space in the simulation of biological sys-
tems”. Curr. Opin. Struct. Biol., 7:181, 1997.

[15] J. Cleymans and M. W. Paradza. “Tsallis Statistics in
High Energy Physics: Chemical and Thermal Freeze-
Outs”. Phys., 2:654, 2020.

[16] N. Crokidakis, D. O. Soares-Pinto, M. S. Reis, A. M.
Souza, R. S. Sarthour, and I. S. Oliveira. “Finite-size
analysis of a two-dimensional Ising model within a
nonextensive approach”. Phys. Rev. E - Stat. Nonlinear,
Soft Matter Phys., 80:4, 2009.

[17] M. Shao, L. Yi, Z. Tang, H. Chen, C. Li, and Z. Xu.
“Examination of the species and beam energy depen-
dence of particle spectra using tsallis statistics”. J.
Phys. G Nucl. Part. Phys., 37, 2010.

[18] L. Andricioaei and J. E. Straub. “On Monte Carlo
and molecular dynamics methods inspired by Tsallis
statistics: Methodology, optimization, and application
to atomic clusters”. J. Chem. Phys., 107:9117, 1997.

[19] J. I. Kapusta. “Perspective on Tsallis statistics for
nuclear and particle physics”. Int. J. Mod. Phys. E,
30:2130006, 2021.

[20] R. Salazar and R. Toral. “Monte Carlo method for
the numerical simulation of Tsallis statistics”. Phys. A
Stat. Mech. its Appl., 283:59, 2000.

[21] V. N. Borodikhin. “Dynamic critical behavior of the
two-dimensional Ising model with nonextensive statis-
tics”. Phys. Rev. E, 102, 2020.

[22] A. Boer. “Monte Carlo simulation of the two-
dimensional Potts model using nonextensive statis-
tics”. Phys. A Stat. Mech. its Appl., 390:4203, 2011.

[23] J. F. McCarthy. “Numerical simulation of the XY-
model on a two-dimensional random lattice”. Nucl.
Phys. B, 275:421, 1986.

[24] S. Ota, S. B. Ota, and M. Fahnle. “Microcanonical
Monte Carlo simulations for the two-dimensional XY
model”. J. Phys. Condens. Matter, 4:5411, 1992.

[25] S. T. Bramwell, M. F. Faulkner, P. C. W. Holdsworth,
and A. Taroni. “Phase order in superfluid helium
films”. EPL (Europhysics Lett.), 112:56003, 2015.

[26] Y. Saito, T. Nojima, and Y. Iwasa. “Highly crystalline
2D superconductors”. Nat. Rev. Mater., 2:1, 2016.

[27] A. Bedoya-Pinto et al. “Intrinsic 2D-XY ferromag-
netism in a van der Waals monolayer”. Science (80-.
)., 374:616, 2021.

[28] R. F. Willis. “Itinerant magnetism in ultrathin metallic
films”. Prog. Surf. Sci., 54:277, 1997.

[29] A. Vallat and H. Beck. “Coulomb-gas representation
of the two-dimensional XY model on a torus”. Phys.
Rev. B, 50:4015, 1994.

[30] J. M. kosterlitz and D. J. Thouless. “Ordering, metasta-
bility and phase transitions in two-dimensional sys-
tems”. J. Phys. C Solid State Phys., 6:1181, 1973.

[31] J. M. Kosterlitz. “The critical properties of the two-
dimensional xy model”. J. Phys. C Solid State Phys.,
7:1046, 1974.

[32] S. Ota and S. B. Ota. “Microcanonical Monte Carlo
study of first-order transition in a 2D classical XY-
model”. Int. J. Mod. Phys. B, 21:3591, 2007.

[33] S. Lee and K.-C. Lee. “Phase transitions in the fully
frustrated XY model studied with use of the micro-
canonical Monte Carlo technique”. Phys. Rev. B,
49:15184, 1994.

[34] N. Metropolis and S. Ulam. “The monte carlo
method”. J. Am. Stat. Assoc., 44:335, 1949.

2251-7227[https://dx.doi.org/10.57647/J.JTAP.2023.1703.30]

https://dx.doi.org/10.57647/J.JTAP.2023.1703.30

	Introduction
	Two-dimensional XY model and Kosterlitz-Thouless transition
	Tsallis statistical approach
	Metropolis algorithm in the Tsallis statistical approach
	Simulation results
	Conclusions

