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Abstract:
A simple method, to rationalize anisotropic X-ray line widths of deformed FCC metallic samples is presented. The method
is based on normalized Diffraction Elastic Constant ratio (DECR) within the framework of Stokes Wilson approximation
and Gaussian microstrain distribution. The observed dispersion in classical Williamson-Hall plot was significantly reduced
if DECR based correction was applied to the integral breadths. Classical grain interaction models such as the Reuss
and Reuss-Voigt average (Neerfeld-Hill) models were used to calculate the elastic constants of deformed polycrystals
of Aluminium and Copper. It is observed that if non-uniform microstrains are present in the sample (mostly in the case
of dislocated crystals) then the Reuss model is more appropriate than the Reuss-Voigt average model and is observed in
the case of filed or ball-milled samples of Cu and Al. The non-linearity in the anisotropy corrected Williamson-Hall is
indicative of line widening caused by the dislocation.
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1. Introduction

The experimental X- ray diffraction line profile is the result
of the convolution of several components such as instrumen-
tal line profile due to the finite slit systems, X-ray emission
profile etc. and the different sample-related microstructural
contributions, such as small coherently diffracting crystal-
lites or domains, lattice microstrains, planar or line defects,
compositional inhomogeneity to name a few [1].
Different methods are used to determine such microstruc-
tural parameters. The separation of crystallite size and
microstrain broadening are based on the classical method
of Warren-Averbach [2, 3] based on rigorous Fourier trans-
form of the X-ray line profiles, or on the methods of simple
integral breadth methods such as Williamson-Hall [4] or
Halder-Wagner [5] method. All the methods have their ad-
vantages and disadvantages. The methods based on integral
breadths though approximate are used extensively for rapid
analysis of XRD profiles in the field of materials science
and metallurgy.
In general, it is observed experimentally that neither the

Fourier coefficients for different values of Fourier lengths/
coherence length (L) nor the widths of the diffraction lines
(viz. FWHM, integral breadth etc.), are monotonic increas-
ing functions of the diffraction vector d∗ (= 1/d, where d
is the distance between the respective planes of a partic-
ular reflection hkl) [6, 7]. The phenomenon aptly known
as anisotropic peak broadening may be due to anisotropic
crystallite shape, planar faults or anisotropic micro-strain
broadening due to grain to grain variation of lattice parame-
ter and/or dislocations-like defects present in the material.
In the case of the anisotropic crystallite size broadening the
broadening depends locally on the diffraction vector but
not globally on the latter. On the other hand anisotropic
microstrain broadening depends globally on the diffraction
vector. This communication is limited to the study of the
anisotropic microstrain broadening.
In deformed materials both elastic and plastic strain may
be present. It is possible to analyze both the elastic and the
plastic components of the lattice strain that occurs during
the deformation [8–16]. Diffraction from crystalline materi-
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als is sensitive to the elastic deformation field, whether long
range (pseudo-macro) or local (inhomogeneous) and gives
visible effects of shift and broadening of the peak profile.
As early as 1944 Stokes and Wilson [8] observed that the
anisotropy of the breadths of X-ray diffraction lines gen-
erated by aggregates of distorted crystals or cold-worked
metals, has a direct connection with anisotropic elastic con-
stants. In the presence of simultaneous broadening due to
small crystallite size and lattice distortion, common meth-
ods for separating size and strain effects (viz. Williamson-
Hall (WH) method/Warren-Averbach (WA) method) show
large deviations due to strain anisotropy and all diffraction
peaks cannot be used simultaneously to extract meaningful
and unambiguous information. In the absence of higher
orders of a specific hkl plane approximate values of domain
size and microstrain are calculated from a single diffraction
peak. On the other hand the anisotropic X-ray diffraction
line broadening often leads to difficulties when whole pat-
tern fitting methods (viz. Rietveld method) are applied to
the diffraction pattern of materials with even simplest cu-
bic symmetry. Stephens [17] proposed a method to correct
for this anisotropy based on lattice metric parameter and
their distribution within a sample. The method was called
phenomenological because it provided reasonable fits of
the diffraction data, although it could not predict the true
value of microstrain. Popa [18] proposed a similar variant of
Stephen’s model. Both the methods are widely used in Ri-
etveld refinement or Whole Pattern fitting algorithm [19,20].
However, the methods are generally used to improve profile
modeling and thus obtain reliable estimates of structural
parameters.
Apart from the phenomenological approach described
earlier Ungar and Borbely [7] proposed the modified
Williamson-Hall and modified Warren-Averbach method to
correct the observed line broadening anisotropy of dislo-
cated crystals. The method is based on a dislocation model
(more specifically the Restrictedly Random Dislocation dis-
tribution model [21] and assumes that the mean-square lat-
tice microstrain (⟨ε2⟩) averaged over all the slip systems is a
function of the dislocation density (ρ) and ‘contrast’ (Chkl)
factor which describes the visibility of dislocations in a
diffraction experiment). The rigorous assumptions involved
i.e. texture free sample, equally activated slip systems limit
the practical applications of the modified WH and WA meth-
ods. Ungar and coworkers subsequently developed a whole
pattern fitting algorithm (MWP/CMWP) [22, 23] based on
the same theoretical formulation.
The use of hkl specific Diffraction Elastic Constant (DEC)
or more specifically Young’s modulus (Ehkl) to rational-
ize the anisotropic strain observed in WH plots dates back
to about 1944 [8, 24, 25]. But those approaches were not
widely used. Recently there has been a renewed interest
in analyzing diffraction line broadening due to both elastic
and plastic deformation using DEC [16, 26–28]. Wong and
Dawson [27] applied the ratio of E111 and E100 to model the
anisotropic elastic-plastic transition of face centered cubic
(FCC) poly-crystals under uni-axial tensile loading. Zhao
and Zhang adopted a similar approach [26] for deformed
nano–Ni samples. Takaki et al. [28] and Jiang et al. [16],

however, used a different normalization constant.
It has recently been shown that [29, 30] elastic loading
of bulk materials can also lead to peak broadening due
to anisotropic stress distribution in diffracting crystallites.
Elastic grain interaction models such as Voigt, [31] Reuss,
[32] Neerfeld-Hill, [33, 34] Eselby-Kroner [35, 36] etc. are
frequently used for the calculation of stress in deformed bulk
materials. The elastic strain calculated from the diffraction
peak positions and local stress is related by the X-ray elastic
constants XEC (S1 and S2) [37]. Voigt and Reuss mod-
els represent the classical extremes of the elastic constants.
Experimentally observed elastic constants are generally in-
termediate to them. The observed line broadening due to
elastic loading is dependent on the grain-interaction model
chosen.
In view of the above, in this communication, both DEC

ratio and XEC ratio have been used according to the quasi
elasto-plastic method suggested by Jiang et al. [16] to ra-
tionalize the broadening anisotropy observed in the linear
version of the Williamson-Hall plot of plastically deformed
materials. However, the method devised in this work is
based on the assumption of the Stokes-Wilson approxima-
tion with an isotropic microstress distribution and a Gaus-
sian microstrain distribution. The method has been shown
to be applicable to plastically deformed materials of the
FCC type. The effect of the grain interaction model, i.e.
the Reuss and Reuss-Voigt (Neerfeld-Hill) average on the
broadening of the diffraction line is also evaluated to de-
termine the effective interaction of the grains. The method
is applied to two model systems of deformed Copper and
Aluminium. The systems thus chosen show different Zener
anisotropic parameter A (defined as = 2 (s11-s12)/s44, where
si j are single crystal elastic constants).
The method is relatively simple and can easily quantify the
strain anisotropy in plastically deformed materials based on
an elasto-plastic model. This approach can effectively over-
come the complexities and assumptions associated with the
dislocation model based mWH/mWAmethod [7, 21] which
is only applicable to dislocation induced line broadening.

2. Theoretical background

2.1 Conventional Williamson–Hall (cW-H) equation
(Isotropic size-strain broadening independent of
crystallographic direction)

The broadening of the XRD line profile due to small
isotropic crystallites or lattice microstrain is mathemati-
cally expressed by either the Scherrer equation or Wilson
formula respectively [1, 4, 38]. If both the sources of broad-
ening is present in the sample, simplifying assumptions are
often required to separate their effect. When both size and
strain broadened profiles are assumed to be Cauchy a linear
additive version is proposed whereas for a Gaussian approx-
imation a quadratic additive version is proposed [1, 4] as
described below.

β
∗ = α +2εd∗ (1)

β
∗2 = α

2 +(2εd∗)2 (2)

Here β ∗ = (βtotal cosθ)/λ , and d∗ = 2sinθ/λ and α is
related to the volume weighted crystallite size D. A conven-
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Figure 1. Normalised XRD pattern showing (111) and (200)
peak for (a) cold-worked Cu and (b) cold-rolled and
ball-milled Al samples.

tional W-H plot according to the above equations 1 or 2 for
several diffraction orders gives the value of microstrain ε

from the slope and crystallite size D from the intercept.

2.2 Anisotropic microstrain broadening
The above equations predict that the x-ray line broadening is
a monotonic function of d∗. Stokes and Wilson [8] identified
two specific cases for the observed anisotropy in the x-ray
diffraction pattern. In the first case it was considered that the
material is broken down into small crystallites with different
mean lattice parameters in the crystallites and in the second
case distortions are assumed to be present in the crystallites.
In the first case either uniform expansion or contraction is
present, whereas, in the second case non-uniform expansion
and contraction is allowed. The apparent strain ε can either

Figure 2. Variation of Lattice parameter (ahkl) as a function
of cosθ cotθ for (a) deformed and annealed Cu-specimen
and (b) cold-rolled and ball-milled Al-specimen.

be defined as the maximum strain εmax or rms strain εrms.
Stokes and Wilson [8] further showed that if the apparent
strain ε is distributed according to a Gaussian function, then
for a spherically symmetric stress distribution the root mean
squared strain (ε2

rms) is related to mean stresses and elastic
constants of the material and is given by the following
equation.

⟨εrms⟩2 = A+BΓ (3)

Here the constants A and B depend on the elastic con-
stants and mean square stresses and Γ = (h2k2 + k2l2 +
l2h2)/(h2+k2+ l2)2 is defined as the orientation parameter
for cubic crystals. Thus the microstrain determined from
XRD analysis using the equations 1 and/or 2 is dependent
on the crystallographic direction and the elastic constants
of the deformed material.
If on the other hand, it is assumed that all values of apparent
strain between 0 and a maximum value εmax is equally likely,
then Stokes and Wilson reached the following conclusion
regarding the variation of εmax (equation 19 of Stokes and
Wilson [8]) with the orientation parameter Γ.

εmax = A+BΓ (4)
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Figure 3. Conventional W-H plot of (a) cold worked Cu (b)
deformed Al samples. Effect of stacking fault has been
corrected using equation 21.

They suggested that both the equations 3 and 4 are equally
likely in describing the anisotropic line broadening in X-ray
diffraction pattern.
Substituting equation 3 and 4 into equation 1 the following
expressions are derived.

β
∗ = α +2(A+BΓ)

1
2 d∗ (5)

and
β
∗ = α +2(A+BΓ)d∗ (6)

Either of the above two equations can be used as a general-
ized Williamson-Hall plot if the constants A and B are either
known or assumed according to a grain- interaction model.
It has been argued [8,17] that equation 5 is more applicable.
The usable forms of the above equations are discussed in
the following sections.
The equations 5 and 6 indicate that scaling of anisotropic
X-ray line broadening is possible by using elastic constants.
Ungar and Borbely [7] earlier focused on the method by in-
troducing the contrast factor Chkl as a function of the Miller
indices hkl only for the correction of anisotropy in WH
plot or Fourier coefficients prevalent in dislocated crystals.
They proposed that the mean square strain ⟨ε2

L,d∗⟩ can be

Figure 4. Relation between the orientation parameter Γ and
the reciprocal of hkl-dependent Young’s modulus Ehkl of
(a) and Cu (b) Al for R, V and R-V models.

decoupled in terms of the Fourier length L and diffraction
order according to the relation [39].

⟨ε2
L,d∗⟩= ⟨ε2

L⟩Chkl (7)

The diffraction order dependence is absorbed in the term
Chkl . It was further shown [40] that the contrast factor can
be expressed in the form

Chkl = Á+ B́Γ (8)

here Á and B́ depend on the elastic constant and the type of
dislocation present in the material.

2.3 Diffraction-specific elastic constants
Diffraction elastic constants are routinely used for the deter-
mination of stress in crystalline materials. There are several
grain-interaction models which provide an outline for the
calculation of stress and strain as a function of crystallo-
graphic orientation of a crystal in an elastically deformed
specimen. For such analysis knowledge of the diffraction-
specific Young’s modulus Ehkl and Poissons’ ratio νhkl or X-
ray elastic constants S1 and 1/2S2 are used [37,41,42]. The
two classical approaches of Voigt [31] and Reuss [32] grain-
interaction models are used for describing the isotropic
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Figure 5. Plot of Diffraction Elastic Constant ratio χ with
orientation factor Γ for (a) FCC Cu, where Ehkl was
normalized in (331) direction and (b) FCC Al, where Ehkl
was normalized in (220) direction.

elastic behaviour of grains within a polycrystal under elas-
tic loading. However, effective grain-interaction models,
such as the Neerfeld–Hill [33, 34] model, uses a linear com-
bination of the extreme Voigt and Reuss models, and thus
yield results which compares well with the experimental
observations.
In the Voigt model the strain tensor is same for all crys-
tallites implying that different crystallites have different
stress tensors. In cubic crystal systems, the reciprocal of
hkl-dependent Young’s modulus (1/Ehkl) of single crys-
tals or polycrystalline materials follows the standard for-
mula [37, 42].

1
EV

hkl
=

2S11(S11 +S12 +2S44)−2S12(2S12 +S44)

S44 +6(S11 −S12)
(9)

Similarly the X-ray elastic constants (XEC) are expressed
as

S1 =
2S0(s11 +2s12)+5s12s44

6s0 +5s44
,

1
2

S2 =
5(s11 − s12)

6s0 +5s44
(10)

with s0 = s11 − s12 − s44/2.
In the Reuss model on the other hand the stress distribution

Figure 6. Anisotropy corrected Williamson-Hall plot for
Copper sample (a) linear fit and (b) quadratic fit.

is isotropic and the strain tensor is different for different
crystallites leading to the following expressions for Ehkl , S1
and S2 [37, 42].

1
ER

hkl
= s11 − (2s11 −2s12 − s44)Γ (11)

Shkl
1 = s12 + s0Γ, and

1
2

Shkl
2 = s11 − s12 −3s0Γ (12)

The Voigt model (equal strain tensor) and the Reuss model
(equal stress tensor) thus yield the lower and upper limit
of elastic constants respectively. It was shown that (e.g.
Neerfeld, Hill, Welzel et al.) [33, 34, 37] that neither of
the models viz. Voigt or Reuss is compatible with the
behavior of the real polycrystals. It was suggested that the
effective diffraction elastic constants are arithmetic averages
of the values as obtained from Reuss and Voigt model and
is expressed as(

1
Ehkl

)e f f

=
1
2

(
1

ER
hkl

+
1

EV

)
(13)

2.4 The diffraction elastic constant ratio (DECR) χ

The equations 5 and 6 suggest that the X-ray line broadening
due to microstrain scales with the elastic constants. In
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Table 1. Single crystal elastic compliance data of
Aluminium and Copper [42]

Sample s11 ×1011 s12 ×1011 s44 ×1011 A
Pa−1 Pa−1 Pa−1

Al 1.57 -0.57 3.51 1.219
Cu 1.5 -0.63 1.33 3.203

general, it is accepted that lattice strain produces anisotropic
displacements of the atoms with respect to their reference
lattice positions and produces anisotropic X-ray diffraction
line broadening. The average strain level can be calculated
on the basis of mean field or uniform deformation model,
as generally accepted in crystal plasticity models. In the
present work it has been considered that plastic lattice strain
broadening results in accordance to hkl-independent stress
distribution function (σ ) or the uniform deformation model
in the light of Stokes–Wilson approximation.
Jiang et al. [16] introduced the hkl dependent diffraction
Young’s modulus ratio χ as

χ =
E0

Ehkl
(14)

where E0 is the elastic constant of a reference reflection
(Jiang et al. [16] assumed E0 = E331). It is possible to
decouple the diffraction order dependent component of the
lattice microstrain using equation 14. Using elasticity theory
the maximum value of microstrain can be expressed as

ε
max
hkl =

σ

Ehkl
=

σ

E0
× E0

Ehkl
= χε0 (15)

The value ε0 refers to the true or order-independent compo-
nent of the lattice microstrain and the order dependent part
is collected in the value of χ .
However, in the presence of a microstrain distribution in
the sample and if further the distribution function is exactly

Figure 7. Anisotropy corrected Williamson-Hall plot for Cu
sample using equation 17.

Gaussian in nature, then it is assumed that the equations 3
and 7 are identical and differ only with respect to the con-
stants. Assuming that this expression holds in general using
equation 3, 7, 14 and 15, equation 5 and 6 can be written as

β
∗ = α +2

√
χε

rms
0 d∗ (16)

or
β
∗ = α +2χε

max
0 d∗ (17)

Here εrms
0 (or εmax

0 ) is the lattice microstrain of the assumed
reference reflection (hkl) for both samples. Equations 16
and 17 can thus be termed as generalized Williamson-Hall
plot.

2.5 X-ray elastic constant ratio mhkl

The X-ray elastic constant Shkl is routinely used for the deter-
mination of stress in polycrystalline samples. In the present
communication it is proposed to use Shkl for improving the
linearity of WH plot and is shown that the X-ray elastic con-
stants can be used for meaningful determination of lattice
microstrain. X-ray elastic constant is defined by the relation
Shkl = νhkl/Ehkl , where νhkl is the Poission’s ratio. In the
present work, mhkl has been defined by normalizing the hkl-
dependent X-ray elastic constant with respect to a standard
S0. Reuss and Reuss-Voigt average models are used to cal-
culate the X-ray elastic constants. The anisotropic plastic
strain εPla

hkl is expressed as following,

ε
Pla
hkl =

σ

Ehkl
=

σ

E0
× E0

Ehkl
=

σ

E0
×

νhkl .E−1
hkl

νhkl .E−1
0

=

ε
Pla∗ × Shkl

S0
= ε

Pla∗ ×mhkl (18)

S0 is the XEC constant of a reference hkl reflection. Using
this formalism WH equation can be written as

β
∗ = α +2.εPla∗ .mhkl .d∗ (19)

3. Experimental procedure and method of
analysis

Commercial purity Al samples was cold-rolled to 80% thick-
ness reduction at room temperature corresponding to true
strain of 1.61 (e = ln(d0/d), where d0 and d denotes the ini-
tial and final thickness). The XRD pattern of cold-rolled Al
samples (CR-Al) was recorded in the TD-RD plane. Cold-
worked copper specimen was prepared by hand filing. The
filed powder was annealed at 500°C for 10 hours to remove
the effect of plastic deformation. Commercial purity Al
powder was ball-milled in a Fritsch Pulverisette planetary
mill (P5) operating at 300 rpm for 8 hrs. Zirconia milling
media (balls and vials) with ball to powder ratio of 1:10 was
employed for the purpose of milling.
The X-ray diffraction pattern of all samples as well as the
standard Si powder (for instrumental broadening correction)
were taken at room temperature in a X’Pert PRO diffrac-
tometer (PW 3040/60, PANalytical) using Ni-filtered Cu
Kα radiation. A fixed divergence slit of opening 10 and a
receiving slit of opening 0.1 mm were used for data collec-
tion. A step width of 0.020 and a counting time of 10 s per
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Table 2. Calculated values of diffraction specific elastic
constants. The values Ehkl and νhkl represents the hkl
specific values of Young’s modulus and Poisson’s ratio
respectively. The superscripts R and V correspond to Reuss
and Voigt elastic grain interaction models respectively.

Parameters(in Gpa) Copper Aluminium

ER
111 and ER

222 191.1 76.1

ER
200 and ER

400 66.7 63.7

ER
220 130.3 72.6

ER
311 96.2 69.0

EV 144.7 71.3

νR
111 and νR

222 0.27 0.34

νR
200 and νR

400 0.42 0.36

νR
220 0.34 0.34

νR
311 0.38 0.35

νV 0.32 0.35

step were used.
The X-ray diffraction line profiles for each specimen were
fitted using the software WinPLOTR [43] employing a
modified-Thomson-Cox Hastings (TCHZ) profile fitting
function [44]. Instrumental broadening correction was done
according the method suggested by deKeijser et al. [45].
The single crystal elastic constants for Copper and Alu-
minium are obtained from the literature [42] and the cor-
responding diffraction specific elastic constants has been
calculated and are collected in Tables 1 and 2.
By using the above values, the values of Shkl for R and R-V
model can be easily calculated.

4. Results and discussions

4.1 Lattice parameter and stacking fault analysis
Figure 1 shows a part of the diffraction pattern of copper
and aluminium samples. Effect of plastic deformation is
evident in Cu samples from the enhanced line broadening
in deformed Cu sample compared to the annealed sample
of Cu. In the case of the Al samples the broadening of the
ball milled samples is greater compared to the cold-rolled
samples indicating either enhanced crystallite size and/or
reduced lattice strain for the latter. It is further observed
that there is a small peak shift which may be due to change
in lattice parameter, presence of stacking faults and long
range residual stresses in the deformed material.
Figure 2 shows the variation of ahkl as a function of
cosθ cotθ for the Copper and Aluminium samples. It has
been shown that [46] the calculated values of lattice param-

Figure 8. Anisotropy corrected generalized
Williamson-Hall plot for (a) cold-rolled Aluminium
(CR-Al) and (b) ball-milled Aluminium (BM-Al) samples.

eter of annealed samples usually follows a smooth straight
line when plotted as a function of F(θ) = cosθ cotθ . This
feature is evident from Figure 1(a) for the annealed Cu
sample. The true lattice parameters obtained by the extrapo-
lation to cosθ cotθ are given in Table 3 for all the samples.
The values of lattice parameter of Cu and Al are consistent
with the literature values of aCu = 3.615 Å (PDF card no
89-2838) and aAl = 4.049 Å (PDF card no 85-1327). It
may be mentioned here that the slope of the plot of lattice
parameter for cold-rolled Al is different from the other sam-
ples. This is probably due to small specimen displacement
which occurred when the bulk CR-Al sample was placed
in the sample holder. The value of the lattice parameter of
the BM-Al sample is slightly higher than the true lattice
parameter of Al. This small change in the lattice parameter
in ball milled samples is common and is often attributed to
disorder in the grain boundary regions.

It is well known that the X-ray diffraction peaks of de-
formed FCC crystals are shifted from the peak positions of
the un-deformed crystals due to a composite effect of the
existence of stacking faults and long range residual stress
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Table 3. Lattice parameter and deformation stacking fault probability values of deformed samples.

Specimen Lattice parameter Stacking Fault Change in lattice Residual stress
a0 (nm) probability α(%) parameter ∆a/a0 σ (Mpa)

Cold-worked copper 0.3615 0.3 -0.0003 11
Annealed copper 0.3615 - - -

Cold-rolled Aluminium 0.4048 0.1 -0.0001 88
Ball milled Aluminium 0.4053 0.02 0.0004 -71

present in the material [2, 46]. In the present work it is
assumed that in addition to faulting, long range residual
strain ⟨εL⟩ and the fractional change of lattice parameter
∆a/a0 also shifts the position of diffraction profile. Assum-
ing that the residual strains are produced by residual stress
σ , the residual strain is expressed as ⟨ε⟩= (S1)hklσ , where
(S1)hkl [= (SV

1 + SR
1 )/2] is the arithmetic average of X-ray

elastic constant. The superscripts V and R correspond to
Voigt and Reuss grain interaction models respectively. Tak-
ing all these into consideration the peak shift can be written
in terms of 2θ as

(∆2θhkl) =−360
π

{∆a
a0

+(S1)hklσ +Ghklα} tanθ (20)

The values of ∆a/a0, σ and α can be obtained from the
above relation from the measured value of peak shifts
(∆2θhkl) for different hkl reflections of the deformed and
well annealed material. In order to avoid the error in mea-
suring precisely the peak position the difference in the sepa-
ration of peaks of indices hkl and h́ḱĺ are usually measured
for the deformed and annealed samples. The faulting coeffi-
cients Ghkl are calculated according to (Warren 1969) [2].
The result of peak shift analysis for the (111 - 200) and (222
- 400) profile pairs are collected in Table 3. It is observed
that cold-worked Cu specimen shows slightly higher stack-
ing fault probability compared to deformed Al specimen in
accordance to the fact that the stacking fault energy of Cu
is less than that of Al. Residual stresses are present in the
samples of cold-rolled Al and ball milled Al. Long range
residual stresses present in the cold-rolled Al samples can
explain the diffraction peak shifts observed in Fig 2.

4.2 Conventional williamson hall plot
Warren [2] has shown that when stacking and twin faults
are present in the material the apparent particle/crystallite
size is smaller than the ‘true’ particle size. If α and β are
the stacking and twin fault probabilities respectively, the
reciprocal of the crystallite size increases by an amount of
(1.5α+β )W (d∗)/a where W (d∗) is diffraction order specific
constant. Ungar, Revesz and Borbely [47] showed that
the effect of stacking and/or twin fault broadening in the
classical WH plot can be corrected according to the equation

βcorr = βtotal − (1.5α +β )W (d∗)/a (21)

Figure 3(a) shows a conventional linear version of WH-
plot for cold-worked Cu-sample after correction for peak
broadening due to stacking fault. Figure 3(b) shows the
corresponding c-WH plot for cold–rolled Al (CR-Al) and

ball-milled Al (BM-Al). The scatter of the points about
the average line indicates anisotropic line broadening. The
correlation coefficients R2 are included in the graphs. The
value of R2 is much lower for CW-Cu sample compared to
CR-Al or BM-Al samples indicating that elastic anisotropy
has a profound influence on the observed X-ray line broad-
ening. The average line fitted to the data gives a negative
value of the intercept for the CW-Cu sample, indicating
an unrealistic value of volume weighted crystallite size.
However, taking into account the pair of orders (111) -
(222) and (200) - (400) the values of lattice microstrain is
obtained to be ε<111> = 0.001 and ε<100> = 0.004. This
indicates that the microstrain is anisotropic in nature and is
maximum along [100] direction and minimum along [111]
direction. If one imagines that this anisotropy is due exclu-
sively to anisotropic elasticity, as suggested by Stokes and
Wilson 1944 [8], and the anisotropic microstresses (σhkl)
are preferentially directed along the diffraction vector then
according to linear elasticity, σhkl = Ehklεhkl . The ratio
of ε<100>/ε<111> is obtained to be 4 for CW-Cu sample.
Assuming that the microstresses are independent of diffrac-
tion order the corresponding ratio for E111/E100 is 2.9 for
a Reuss grain interaction model and 1.8 for a Reuss-Voigt
average (Neerfield-Hill) model. From the above result, it
appears that the Reuss model is more suitable to explain the
increasing anisotropy in cold-worked Cu samples.

Figure 9. Plot of XEC ratio mhkl with orientation factor Γ

for Reuss, Voigt and Reuss-Voigt grain interaction models
for FCC Cu.
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Figure 10. Anisotropy corrected generalized WH plot on the basis of XEC ratio mhkl for (a) CW-Cu (b) CR-AL and (c)
BM-Al samples.

However, the ratio of (ε<100>/ε<111>) for CR-Al and BM-
Al samples are 2 and 0.9 respectively and the corresponding
values of (E111/E200) are 1.2 and 1.1 for Reuss and Reuss-
Voigt models respectively. This suggests that either Reuss
or Reuss-Voigt average value may be sufficient for rational-
izing the observed broadening anisotropy in Al–samples.

4.3 Orientation-dependent elastic moduli
The discussion in the previous section shows that it is possi-
ble to rationalize the observed anisotropy in the broadening
of the XRD lines based on an elasto-plastic model as de-
scribed by Jiang et al. [16]. However, the observed micros-
train anisotropy is much higher than predicted by elastic
anisotropy alone in the case of deformed Cu sample and that
might be due to prominent dislocation induced microstrain
broadening and/or other sources of microstrain broadening.
Equation 11 clearly shows that there is a linear relation-
ship between the reciprocal of hkl-dependent (diffraction)
modulus of elasticity and the orientation parameter. This
theoretical dependence is explicitly shown in Figure 4 for
various grain interaction models. It can be seen from the
plot that the graphs intersect at a point which indicates that
for a certain value of Γ the value of elastic constant Ehk
is independent of the selected model. Jiang et al. [16] use
this value as a reference elastic constant E∗. The result
presented in this work shows that the points of intersection
are Γ = 0.276 for Cu and Γ = 0.215 for Al.
In practical diffraction experiment the reference Young’s

modulus (E∗) for Cu or Al-sample was chosen accordingly.
The value of the abscissa results in E∗ = E(331) for Cu (Fig-
ure 4(a)) and E∗ = E(220) for Al (see Figure 4(b)), which
corresponds to crystallographic directions (331) and (220).

4.4 Correction based on diffraction young’s modulus
ratio χhkl

The diffraction Young’s modulus ratio is obtained from
equation 14 using the elastic constants of (331) and (220)
as a reference and is shown in Figure 5 as a function of Γ

for FCC-Cu and Al for the Voigt, Reuss and Reuss-Voigt
(Neerfeld-Hill) average models. There is a good linear rela-
tionship between the two parameters for the three models.
These results show that the intersection points are Γ = 0.274
for Cu and Γ = 0.249 for Al. It is concluded that the inter-
section points are a stable region having same range, Γ =

0.215 to 0.276 as obtained previously.

4.5 Correction of the W-H plots based on χhkl (general-
ized WH plot)

The anisotropy observed in the WH plot for the cold-worked
Cu and Al samples (see Figure 3) is corrected with the
anisotropy correction factor χhkl . From equation 16 or 17
it is clear that the effective scale factor for anisotropy cor-
rection is either

√
χ or χ similar to that of

√
Chkl for the

modified WH plot [7]. Figure 6(a) shows the plot of β ∗

against
√

χd∗ for cold-worked Cu sample for the Reuss and
Reuss-Voigt average (Neerfeld-Hill) model. At this point
it should be mentioned here that the Voigt model cannot
be used to correct the observed anisotropy. Table 4 list the
value of crystallite size and microstrain. It is clear from the
plot that the anisotropy observed in the c-WH plot is sub-
stantially minimized. A better fit is observed for the Reuss
model compared to the Reuss-Voigt average model. How-
ever, a straight line fit leads to a negative intercept which
indicates an unrealistic value for the crystallite size. A better
fit of the data is obtained for a quadratic fit of the data (see
Figure 6(b)). Reliable values for size and strain can only be
obtained if the data are modeled according to Reuss model.
The Reuss-Voigt average model provides unrealistic values
for size and strain. At this point, it should be mentioned that
the modified WH plot for dislocation induced strain broad-
ening is generally non-linear in nature [7, 39, 40]. Similar
non-linear nature was observed here for the data of cold-
worked copper samples. This indicates that dislocations are
the main source of lattice microstrain. The rms strain (εrms)
is similar (∼ 0.2%) for both Reuss and Reuss-Voigt model.
However, the volume-weighted crystallite size varies with
the model chosen. From the diagrams above, it is clear that
the dispersion observed in the WH plot for cold-worked
materials can only be accounted for on the basis of elastic
constants and a reliable estimate of the rms value of lattice
microstrain can be obtained.
It is worth comparing the results obtained in this communi-

cation with the method proposed by Jiang et al. [16]. They
proposed a correction for broadening anisotropy based on
equation 17, where the scaling parameter is χ instead of√

χ . Figure 7 shows such a plot for cold-worked Cu and
the results are summarized in Table 4. It is observed that
the dispersion is minimized when the Reuss-Voigt model
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Table 4. Crystallite size and microstrain values obtained from anisotropy corrected WH plot for Reuss and Reuss-Voigt
model grain interaction models.
(All data using linear regression, ‘∗’ indicated quadratic fit, -ve crystallite size means above detection limit. R represents
Reuss model and RV represents Reuss-Voigt average model.)

is used compared to the Reuss model in contrast to the pre-
vious case. However, a generalized characteristic can be
observed that in both cases the plot is, according to other
studies, [7, 39, 40] of a non-linear nature. It has been ar-
gued that integral breadth (β ∗) for pure dislocation-induced
micro-deformation is a pure quadratic function of d∗. How-
ever, for a strictly Gaussian strain distribution leading to ran-
dom atomic displacementa linear β ∗−d∗ plot is obtained.
Furthermore, the non-linearity of the plot also depends on
the defect-correlation and is approximately linear if the de-
fect correlation is weak. In the present work it was observed
that the β ∗− d∗ does not show a purely quadratic depen-
dence. It is worth comparing the data presented in this paper
with the recent results on plastically deformed Cu. Most
of the recent results are based on the Ungar’s method of
modified-WH /modified WA and / or CMWP which are suf-
ficiently elaborate with a large number of fitting parameters.
Some of the results are collected in Table 5.

It is observed that the average dislocation density of Cu
deformed by various processes (viz. ball-milling, ECAP,
cold-rolling) varies markedly between (1 – 2)×1011 /cm2. It
is thus clear from the Table that although the crystallite size
values differ considerably the values of lattice microstrain
which varies as ρ1/2 is insensitive to the deformation history
of the material. In the present study the εrms value obtained
from the β ∗

S −√
χd∗ plot is used to calculate the disloca-

tion density of deformed Cu sample using the Williamson-
Smallman (WS) method and is on the order of 1× 1011 /cm2.
The result obtained here compares well with the literature
values as cited in Table 5. Therefore, it is obvious that the
present method to correct for anisotropy in the WH method
using elastic constants only provides a reliable value for mi-
crostrain and thus dislocation density values without the use
of more elaborate modified WA/ MWP/CMWP methods.
The anisotropy corrected WH plot for cold-rolled Al (CR-
AL) and ball-milled Al (BM-AL) are shown in Figure 8. It

Table 5. Comparison with other works [48–53].

Sample D (nm) ε (10−3) ρ (1015/m2) Method/Ref

ECAP Cu(1 pass) 110♯ - 0.91 CMWP/49
ECAP Cu 71♯ - 1.2 CMWP/50

CR-Cu (50%) 68♯ - 2.6 CMWP /51
Ball milled Cu (48 hr) 26♯ - 2.08 mWA/52
Ball milled Cu (48 hr) 20.9 0.15 1 WH/WS/52

CW-Cu 47 - 2.15 WA/53
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is observed that in both cases both the Reuss and Reuss-
Voigt average model provide identical values for crystallite
size and lattice microstrain. This can also be seen in the
values listed in Table 4. In the case of cold-rolled sam-
ples, the effect of crystallite size is negligible. The lattice
microstrain on the other hand is greater in the case of ball-
milled samples. However, it should be noted that the grain
interaction model has little influence on the size-strain val-
ues. Table 4 also list the maximum strain values obtained
from the plot of β ∗

S −χd∗ (according to equation 17) as re-
ported by Jiang et al. [16]. The results agree with the results
according to equation 16. The microstrain value for ball
milled Al in the present case is of the order of 0.1% which
is less than for ball-milled Al alloy (∼ 0.3%) [53]. Khan et
al. [54] observed a grain size of ∼ 48 nm and a microstrain
of ∼ 0.1% for Al milled for 10 hrs, which is very compa-
rable with the results obtained in this communication. It is
well established that dislocation cell structure develops in
cold-rolled Al when deformed at a true strain of 0.3% [55].
In the present case the true strain is approximately 1.6%,
suggesting that a finer dislocation cell structure may have
been achieved. The dislocation density was found to be
∼ 1011 /cm2 [55]. Satheesh Kumar and Raghu [56] ob-
tained a grain size of the order of 1000 nm for plastically
strained Al using TEM and WH analysis, which can be well
compared with the values observed here for cold-rolled Al
with identical true strain. Therefore, it is thus clear that
the application of diffraction elastic constant to rationalize
broadening anisotropy yields reliable results and is well
comparable with the results of other authors.

4.6 Correction of the W-H plots based on mhkl

This section discusses the application of x-ray elastic con-
stants (XEC) to explain the broadening anisotropy using the
method described earlier. The rationale behind the use of
XEC ratio (mhkl) to correct for broadening anisotropy arises
from the fact that mhkl bears a linear relationship with the
orientation factor Γ, similar to that shown Figure 5 ( Figure
5 and equation 12). Figure 9 shows the variation of m with
Γ for Cu. Similar results were obtained for Al. Figure 10
shows the plot of β −mhkld∗ for the various samples. It is
observed from Figure 10 that for the Reuss-Voigt model,
the dispersion in the WH data is minimized and results in a
better fit of the data compared to the Reuss model for cold-
worked Cu. However, for the ball-milled and cold-rolled Al
samples each of the models gives an identical result similar
to that observed above. The crystallite size and microstrain
values obtained from the linear fit of the data are shown in
Table 4 and can be well compared with the results obtained
from the β ∗vs

√
χd∗ plot.

Therefore, it is thus clear from the foregoing discussion that
it is possible to minimize the anisotropic data spread ob-
served in the Williamson-Hall plot by using the ratio of the
diffraction elastic constants Ehkl or Shkl . However, a possi-
ble uncertainty regarding the choice of the grain interaction
models cannot be ruled out. For example, in cold-worked
Cu sample the results of β ∗ versus

√
χd∗ agree with the

Reuss model, while the results of β ∗ versus
√

χd∗ are more
consistent with Reuss-Voigt average model. A possible

reason for this discrepancy is likely to be related to the
underlying assumptions in the two cases. In the first case,
non-uniform strains are allowed in the crystallites, while
in the second case the strain in the crystallites is assumed
to be constant. It seems that the first assumption is better
for deformed powder materials and β ∗ versus

√
χd∗ plot

is more appropriate. For the deformed Al samples, at least
in the present case, each of the methods provides a reliable
result.

5. Conclusion
A simple method is presented to correct for anisotropic
X-ray line broadening. The method is based on the
diffraction specific elastic constants viz, diffraction Young’s
modulus and X -ray elastic constant. It is observed that
within the Stokes-Wilson formalism the appropriately
normalized ratio of Diffraction elastic constant ratio (DER)
or XEC ratio is capable of rationalizing the observed
broadening anisotropy in the generalized Williamson-Hall
plot with a suitable scaling parameter, χ or

√
χ as the

case may be. For prominent dislocation- induced line
broadening or non-uniform microstrain (for deformed
Cu sample) a scaling parameter of

√
χ provides better

estimates of crystallite size and microstrain. This new
method is an improvement over the work of Jiang et al.
which is based on uniform microstrain, while in the present
work non-uniform microstrains, which are present in
dislocated crystals, can be adequately taken into account.
It is observed that elastic grain interaction models such
as Reuss, Reuss-Voigt average have a profound influence
on the line broadening anisotropy. The method was
successfully applied on two model systems Aluminum
and Copper (which differs considerably in their elastic
anisotropy) which were deformed in various modes, namely
cold-working (filing), cold-rolling and ball milling. The
present method provides values for crystallite size and
lattice microstrain that are well comparable with literature
values. In the case of deformed powder materials, the
Reuss-model offers a much better fit than the Reuss-Voigt
model. Both models provide identical results for Al
in bulk deformed material. The anisotropy corrected
Williamson-Hall plot is not linear for heavily deformed
materials, indicative of dislocation induced line broadening.
The method is simple and can be applied to FCC crystal sys-
tems. The method can overcome the assumptions involved
in modified-Williamson-Hall /modified Warren-Averbach
method or its variants to rationalize line broadening
anisotropy.
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