
1. Introduction
Nowadays, most megacities suffer from air pollution 

problems. Besides the effects on human health, some 
issues occur if the pollutions last for a long time (Marlier 
et al., 2016; Sekhavati et al., 2021; Khajeh Hoseini  et 
al., 2021; Hoseini et al., 2022 ). Handling such problems 
requires intelligent models to address the high-order 
uncertainty in the air pollution issue's characteristics. 
There are non-stationary time series features in air 
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The statistical attributes of the non-stationary problems such as air quality and other 
natural phenomena frequently changed. Type-2 fuzzy logic is a robust and capable 
model to cope with high-order uncertainties associated with non-stationary time-
dependent features. This research's main objective is to present a novel Fuzzy Deep 
LSTM (IT2FLSTM) model to predict air quality for Tehran and Beijing in a short and 
long time series scale. The proposed model has been evaluated on a real dataset that 
contains the one-decade information about outdoor pollutants from April 2011 to 
November 2020 in Tehran and Beijing. The IT2FLSTM model was evaluated using a 
ROC curve analysis and validated using 10-fold cross-validation. The results confirm 
the IT2FLSTM model's superiority with an average area under the ROC curve (AUC) 
of 97 % and a 95% confidence interval of [95-98] %. The proposed IT2FLSTM model 
promises to predict complex problems to make strategic prevention decisions to save 
more lives.

quality patterns whose statistical attributes such as 
means and variances change over time. 

This research aims at modeling uncertainty sources 
associated with non-stationary time series features in 
real-world applications such as air pollution (Sekhavati 
et al., 2022). Also, the main innovation of this study is 
to present an Interval Type-2 Fuzzy LSTM Algorithm 
for Modeling Environmental Time-Series Prediction for 
a real-world and global challenge such as air pollution 
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prediction. In this work, the proposed model aimed at 
overcoming the drawbacks of the existing methods and 
presenting a robust, reliable, and accurate model for 
prediction of AQI time-series data through type-2 fuzzy 
logic and deep learning models. On the other hand, 
precise and reliable prediction can help reasonable 
strategies and assist the specialists in planning the best 
policies to model an event in uncertain circumstances.

1.1. Related Works
During the recent decade, applications of type-2 fuzzy 

logic systems in problems with high-order uncertainty 
have been grown, especially for prediction problems 
with dynamic and non-stationary problems. Many types 
of research (Georgescu, 2019; Silva et al., 2020) have 
been reported for modeling uncertainty using fuzzy 
logic. Also, there have been several practical, real-
world applications for type-2 fuzzy systems, mostly 
modeling uncertainty, control, and predictions (Gaxiola 
et al., 2019; Almanza et al., 2020). However, fuzzy 
systems suffer from a lack of learning and adaption 
mechanisms for their membership function parameters 
and fuzzy rule. Various intelligent models such as 
neuro-fuzzy and recurrent neural networks (RNNs), 
have been applied to model and predict the time series 
data in uncertain environments (Safari et al., 2017; 
Ibarra-Berastegi et al., 2008; Chen et al., 2020; Zhou 
et al., 2020; Biancofiore et al., 2017; Anh at al., 2019). 

It has been proven that the RNNs, especially the 
LSTM networks, have an excellent capability for 
solving complex problems, where the model must learn 
the multi-layered inter-relationships between two-time 
series (Zhou et al., 2020; Lin et al., 2013).  An LSTM 
cell's benefit compared to a regular recurrent unit is 
its cell memory (Wang et al., 2019). The cell vector of 
an LSTM has the capability of the information earlier 
stored memory and the part of its new information 
(Liu et al., 2020). These capabilities can be used in the 
prediction of non-stationary problems (Smagulova et 
al., 2019). In addition to the general benefits of using 
RNNs for time series prediction, the LSTM network 
can also automatically learn the data's temporal 
dependencies (Guo et al., 2017).  On the other hand, 
the LSTM is a non-linear prediction method to learn 
the arbitrary complex mapping from inputs to outputs, 
the LSTM networks can model both short and long 
time-series predictions. However, LSTM model cannot 
handle the uncertainty associated with non-stationary 
features. This study takes advantage of type-2 fuzzy 
logic to develop a new architecture for handling 
uncertainty through a novel deep interval type-2 fuzzy 
LSTM (IT2FLSTM) model to obtain a reliable result in 
time-series prediction. This research aimed to propose 
an intelligent method to predict the Air Quality Index 
(AQI) in Tehran and Beijing to produce a reliable 
prediction for different pollutants described in Table-1 
in Environmental Protection Agency (EPA) format.

Table 1. AQI levels by EPA

Figure 1. An architecture of the LSTM cell (Liu et al., 2020)

2. Research Background
This section presents a brief overview of the LSTM 

network. It follows a review of interval type-2 fuzzy sets 
(IT2FS) concepts and their mathematic definitions.

2.1. A Review of LSTM network
The LSTMs have been developed to address classic 

RNNs' limitations by enhancing the network structure's 
gradient vanishing. The use of a cell state attains this
 c_(t ), which stores long-term information as follows (Liu 
et al., 2020): 
Input gate:

                                                                                        (1)

Output gate:

                                                                                                  (2)

Forget Gate:
                          
                                                                                        (3) 

Where zt-1 is the hidden state of the LSTM at time t-1 
and W is the weight matrices. As well as, t index is the 
time step, x is the input, and h is the output variables at 
time t, and σ is the sigmoid activation function. 

No AQI Range Level 
1 0-50 Healthy 
2 51-100 Moderate 
3 101-150 Unhealthy for sensitive groups 
4 151-200 Unhealthy 
5 201-300 Very Unhealthy 
6 301-500 Hazardous 

  

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖1𝑧𝑧𝑡𝑡−1 +𝑊𝑊𝑖𝑖2ℎ𝑡𝑡 +𝑊𝑊𝑖𝑖3𝑥𝑥𝑡𝑡 +𝑊𝑊𝑖𝑖4𝑠𝑠 + 𝑏𝑏𝑖𝑖) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜1𝑧𝑧𝑡𝑡−1 + 𝑊𝑊𝑜𝑜2ℎ𝑡𝑡 +𝑊𝑊𝑜𝑜3𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑜𝑜4𝑠𝑠 + 𝑏𝑏𝑜𝑜) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓1𝑧𝑧𝑡𝑡−1 + 𝑊𝑊𝑓𝑓2ℎ𝑡𝑡 +𝑊𝑊𝑓𝑓3𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑓𝑓4𝑠𝑠 + 𝑏𝑏𝑓𝑓) 
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Figure 2. An architecture of the LSTM cell (Liu et al., 2020)

The gates adjust the states and hidden cell of the LSTM 
using the following equations:
Hidden state:
  
                                                                                        (4) 

Cell state:
     
                                                                                                   (5) 

Where     is the element-wise product, and tanh is the 
activation function.

2.2. Interval Type-2 Fuzzy Sets
Type-2 fuzzy sets are known as fuzzy-fuzzy sets [43]. 

Membership function (MF) of a type-2 fuzzy set (T2FS) 
of a given element is itself a type- 1 fuzzy set (T1FS) (Wu, 
2012). A T2FS A ̃, is characterized through a type-2 MF                                                                                                                                               
             where             and                  [0,1] as follows: 

                                                                                         (6)

Where,                           , X is the domain of fuzzy set and 
Jx is the domain of the secondary MF at x. A ̃ is as:   
  
                                                                                         (7)

Where      represents union over all admissible x and u and,

                                                                                     (8)

where x is the primary variable, Jx, an interval in 

[0,1], is the primary MF of x, u is the secondary variable, 

and                is the secondary MF at x. Uncertainty 

about A ̃  is addressed by the union of all of the primary 

memberships, called the footprint of uncertainty (FOU) of 

A ̃ , i.e., [FOUA ̃], (Mendel et al, 2006) as:

                                                 
                                                                                     (9)

The FOU for a Gaussian primary MF with uncertain 
standard deviation is shown in Figure.3. The FOU 
is bounded by upper bound membership functions 
(UMF)            and lower bound membership function 
(LMF)                , which are type-1 fuzzy sets; consequently, 
the membership grade of each element of an IT2FS is 
identified by an interval of                      . In the IT2FLS, 
the UMF and LMF can better represent input variables' 
uncertainties than type-1 fuzzy sets. Similarly, the FOU 
in the IT2FLS provides more degrees of freedom when 
designing a fuzzy system (Mendel and John, 2006).

Figure 3. Gaussian primary MF (Mendel, 2020)

An interval type-2 fuzzy system (IT2FS) architecture 
contains four components; fuzzifier, fuzzy rule base, 
inference engine, type-reducer, and defuzzifier (Mendel, 
2017). In general, the type-reducer is required in the 
output processing block before the defuzzification in the 
IT2FLS (Sumati and Patvardhan, 2018). The fuzzifier 
can be categorized into two types, singleton and non-
singleton, according to the number of non-zero MF values 
and defines the membership grade of input. In this paper, 
the TSK fuzzy rule type is considered more precise than 
Mamdani rules. The product and minimum t-norms were 
used in inference methods (Chen and Zou, 2020). In this 
work, the singleton fuzzifier was implemented. The output 
processing, including the type-reducer and defuzzifier, 
generates the crisp output. For this step, the Karnik-Mendel 
(KM) algorithm (Mendel, 2013) was applied in this paper. 
The next section presents the IT2FLSTM model.

3. The Proposed IT2FLSTM Model
This section presents the details of the architecture 

IT2FLSTM. Then, in 3.2, the mathematical model of the 
IT2FLSTM is presented. Finally, the cell structure of the 
proposed IT2FLSTM has been discussed in 3.3

3.1 The Architecture of the IT2FLSTM
As shown in this architecture, the IT2FLSTM is 

fuzzified by the IT2F sets. The framework of the proposed 
IT2FLSTM includes five layers, i.e., the input layer, encoder 
layer, hidden layers, the decoder layer, and the output layer. 
The details of each layer are illustrated in Figure. 4.

 

 

𝑧𝑧𝑡𝑡 = 𝑜𝑜𝑡𝑡⨀Tanh(𝑐𝑐𝑡𝑡) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀tanh(𝑊𝑊𝑐𝑐1𝑧𝑧𝑡𝑡−1 + ⋯+𝑊𝑊𝑐𝑐4𝑠𝑠 + 𝑏𝑏𝑐𝑐) 

⊙ 

𝜇𝜇�̃�𝐴(𝑥𝑥,𝑢𝑢) 𝑥𝑥 ∈ 𝑋𝑋 𝑢𝑢 ∈ 𝐽𝐽𝑥𝑥 ⊆ 

�̃�𝐴 = {((𝑥𝑥, 𝑢𝑢), 𝜇𝜇�̃�𝐴(𝑥𝑥,𝑢𝑢)) |∀𝑥𝑥 ∈ 𝑋𝑋, ∀∈ 𝐽𝐽𝑥𝑥 ⊆ [0,1]} 

0 ≤ 𝜇𝜇�̃�𝐴(𝑥𝑥,𝑢𝑢) ≤ 1 

�̃�𝐴 =
∫  𝑥𝑥∈𝑋𝑋 ∫  𝑢𝑢∈𝐽𝐽𝑥𝑥 𝜇𝜇�̃�𝐴(𝑥𝑥, 𝑢𝑢)

𝑥𝑥, 𝑢𝑢𝐽𝐽𝑥𝑥
⊆ [0,1] 

∬   

𝐹𝐹𝐹𝐹𝐹𝐹(�̃�𝐴) =⋃𝐽𝐽𝑥𝑥
𝑥𝑥∈𝑋𝑋

 

∫  
𝑢𝑢∈𝐽𝐽𝑥𝑥

 

𝐹𝐹𝐹𝐹𝐹𝐹(�̃�𝐴) =⋃𝐽𝐽𝑥𝑥
𝑥𝑥∈𝑋𝑋

 

�̅�𝜇�̃�𝐴(𝑥𝑥) 

[�̅�𝜇�̃�𝐴(𝑥𝑥), 𝜇𝜇�̃�𝐴(𝑥𝑥)] 

𝜇𝜇�̃�𝐴(𝑥𝑥) 
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Input Layer: The first layer is called the input layer, which 
directly handles the original data. The output of this layer 
feeds the inputs of the deep layers. 
Encoder, Hidden, and Decoder layers: The main idea is 
to map the entire input sequence to a vector and then use 
an encoder to generate the output sequence. In this layer, 
the encoder represents the whole input sequence in the 
hidden layer activities. The proposed structure can reform 
according to the dimension of the training time- series 
data set.
Output Layer: The final layer is considered as the 
prediction layer to make the decision and perform the 
prediction based on the input features received from the 
previously hidden layers. 

3.2.1. Mathematical Model of the Proposed IT2FLSTM 
Time series prediction models specify future values of 

a target yit for a given entity i at time t. The next step-ahead 
prediction is as follows:

                                                                                  (10)

Where ŷi,t+1 is the next step predicted value, t is the time 
step at T, yi,t-e:t and xi,t-e:t are observations of the target and 
observed inputs, respectively, over a look-back window e, 
and Pf  is the prediction function.

And the final prediction is produced by Zt: 

                                                                                       (11)

 
                                                                                      (12)

Where genc and gdec denote the encoder and decoder 
functions, respectively. The mathematical model of 
different parts of the LSTM network in the proposed 
IT2FLSTM architecture are given as follows:
Definition 1: Let N be the number of memory units of the 
model. In time-step t, i.e., the current time, the network 
keeps in memory a set of vectors by the following 
equations:

Where σ is the sigmoid function, W is the weight 
matrices, Wix is a matrix of fuzzy weights from the input 
cell to the output gate. b is the bias vector, and i,f,o, and 
c are the input gates, the hidden (forget) gate, the output 
gate, and cell activation function, respectively. The cell 
output is represented by mt, and       is the element-wise 
product in equation (15). fφ is the activation function 
of the network. The hidden unit in this architecture is 
represented in memory blocks. Each block contains one 
or a large number of memory cells. This procedure is a 
way for these cells to preserve information for a specific 
time in an uncertain time-series and decide which piece of 
information should be stored and when to use it.

3.2. The Mathematical Model of the IT2FLSTM
The input variables of the IT2FLSTM model can 

be defined as p where p is the inputs of the proposed 
IT2FLSTM model as follows:

                                                                                          (19)

where            and           are the interval type-2 fuzzy 
sets of the inputs xp and xp+1 in IT2FLSTM, respectively, 
M is the number of applied fuzzy rules,               and              
are the consequents of a fuzzy rule      . The product 
t-norm operator in equation (20) is applied to compute the 

 

 
Figure 4. The architecture of the proposed model

�̂�𝑦𝑖𝑖,𝑡𝑡+1 = 𝑃𝑃𝑓𝑓(𝑦𝑦𝑖𝑖,𝑡𝑡−𝑒𝑒:𝑡𝑡, 𝑥𝑥𝑖𝑖,𝑡𝑡−𝑒𝑒:𝑡𝑡, 𝑡𝑡) 

𝑃𝑃𝑓𝑓(𝑦𝑦𝑖𝑖,𝑡𝑡−𝑒𝑒:𝑡𝑡, 𝑥𝑥𝑖𝑖,𝑒𝑒−𝑘𝑘:𝑡𝑡, 𝑡𝑡, ) = 𝑔𝑔𝑑𝑑𝑒𝑒𝑑𝑑(𝑧𝑧𝑡𝑡) 

𝑍𝑍𝑡𝑡 = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒(𝑦𝑦𝑖𝑖,𝑡𝑡−𝑘𝑘:𝑒𝑒, 𝑥𝑥𝑖𝑖,𝑡𝑡−𝑒𝑒:𝑡𝑡, 𝑡𝑡) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑚𝑚𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (13) 

𝑓𝑓𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑓𝑓𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑓𝑓𝑖𝑖𝑚𝑚𝑡𝑡−1 + 𝑊𝑊𝑓𝑓𝑖𝑖𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (14) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀𝑔𝑔(𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑚𝑚𝑡𝑡−1) (15) 

𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑜𝑜𝑖𝑖𝑚𝑚𝑡𝑡−1 + 𝑊𝑊𝑜𝑜𝑖𝑖𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑜𝑜) (16) 

𝑚𝑚𝑡𝑡 = 𝑜𝑜𝑡𝑡⨀ℎ(𝑐𝑐𝑡𝑡) (17) 

𝑓𝑓𝜑𝜑 = (𝑊𝑊ℎ𝑖𝑖𝑚𝑚𝑡𝑡 + 𝑏𝑏𝑦𝑦) (18) 

 

⊙ 

𝑃𝑃 {
𝑅𝑅𝑝𝑝

𝑗𝑗1𝑗𝑗2: if 𝑝𝑝𝑡𝑡 = �̃�𝐹𝑝𝑝
𝑗𝑗1 and 𝑝𝑝𝑡𝑡+1 = �̃�𝐹𝑝𝑝

𝑗𝑗2

 then 𝑦𝑦𝑝𝑝 = [𝑐𝑐𝑝𝑝
𝑗𝑗1,𝑗𝑗2, 𝑐𝑐�̅�𝑝

𝑗𝑗1,𝑗𝑗2]
}

 

𝑀𝑀

 

�̃�𝐹𝑝𝑝𝑗𝑗1  �̃�𝐹𝑝𝑝𝑗𝑗2  

𝑐𝑐𝑖𝑖
𝑗𝑗1,𝑗𝑗2  𝑐𝑐�̅�𝑖

𝑗𝑗1,𝑗𝑗2  
𝑅𝑅𝑝𝑝𝑗𝑗1𝑗𝑗2  
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membership interval as follows:

                                                                                         (20)

The inference part of the IT2FLSTM model can be 
entirely characterized by M fuzzy rules employed in the 
inference process as:

                                                                                            (21)

Where (l=1,…,M) 
The relation for each fuzzy rule is as:

                                                                                             (22)

The membership function of the rule is as,

                                                                                                      (23)

Where ∩ signifies the product t-norm operation [43].
The output of each inference procedure is,                          with 
membership functions of μB l̃ (y)  as:

                                                                                           (24)

Where    defines the composition operation and       
represents the maximum t-conorm operation [43], and       
is the membership interval for the fuzzy rule, where x=x́ 
and Fl is as

                                                                                            (25)

The firing output set B ̃^l is produced through a 
fuzzy rule and the aggregation of the consequent of the 
IT2FLSTM model as:

                                                                                           (26)

 

Where * represents the product t-norm operation.
The final output B l̃ is considered as the integration of all 
rule firing sets B l̃ on the output:

                                                                                           (27)

Where V is the max operation. 
Then the type reduced set YC (x ́)  is computed using the 
centroid CB óf B ̃:

                                                                                            (28)

Where the two points lb(x ̃) and rb(x ̃) are computed 
through the KM algorithm (Mendel, 2013).

3.3 Measuring Uncertainty in Time-Series
Uncertainty in a model affects the confidence of a 

prediction model and its accuracy. This paper presents a 
model to manage the uncertainty associated with time-
series prediction considering a distribution over the 
IT2FLSTM predicted sample data points. In this model,  
ω is the weights of data-points from a short-term to a long-
term time-series. This distribution depends on the data 
points as D={X,Y}, where D is the distribution of time 
steps and X,Y are the samples on 2-D measurements in 
whole distribution D, where 

X={x1,x2,…,xn }  and,

Y={y1,y2,…,yn}, respectively. Therefore, the weight 
distribution after predicting the time-series can be written 
as p(ω|X,Y). To approximate this distribution, a Monte-
Carlo based approach collects weights by using the 
Bernoulli rat as computed follows:

                                                                                            (29)

Where α is the Bernoulli rate on the weights. Hence, 
the model uncertainty is the variance of T Monte-Carlo 
samples (Data points) as follows (Loquercio, 2020):

                                                                                       (30)

Where             is a set of Tsampled outputs of the 
IT2FLSTM model for weights instances given by:

                                                                                              (31)

4. Performance Evaluation and Experimental Results
In this section, the evaluations of the proposed model 

have been presented. Firstly, the datasets and metrics for 
performance measurements used in this study have been 
explained. Then the statistical results, comparative study 
and experimental results have been discussed. 

4.1 Applied Data Set on IT2FLSTM model
This study applied well-known existing time-series 

datasets, including the latest public outdoor pollutant 
data, including NO2, SO3, PM10, PM2.5, and CO2. This 
dataset contains the one-decade information about outdoor 
pollutants from April 2011 to November 2020. The dataset 
is available on the following link:

https://data.world/datasets/air-pollution.

4.2 An ROC Curve Analysis
An ROC curve analysis is conducted to have a reliable 

estimate of the IT2FLSTM performance. The results were 
statistically verified. The following equations were used 
for assessing the performance through an ROC curve 
analysis of the proposed model. Also, the standard metrics, 
such as precision, recall, and the F-measure, were applied 
to evaluate the proposed model as follows: 

{
𝑓𝑓𝑙𝑙(p′) = 𝜇𝜇𝑝𝑝11(𝑝𝑝1

′ ) × ⋯× 𝜇𝜇𝑝𝑝𝑥𝑥′ (𝑝𝑝𝑥𝑥′ )
𝑓𝑓̅𝑙𝑙(p′) = �̅�𝜇𝑝𝑝1𝑙𝑙 (𝑝𝑝1

′ ) × ⋯× �̅�𝜇𝑝𝑝𝑥𝑥′ (𝑝𝑝𝑥𝑥′ )
 

�̃�𝑅𝑙𝑙: 𝑖𝑖𝑖𝑖 𝑥𝑥1 𝑖𝑖𝑖𝑖 �̃�𝐹𝑙𝑙 … 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑝𝑝 𝑖𝑖𝑖𝑖 𝐹𝐹𝑝𝑝
𝑙𝑙 Then 𝑦𝑦 𝑖𝑖𝑖𝑖 �̃�𝐺𝑙𝑙 

�̃�𝑅𝑙𝑙: �̃�𝐹𝑙𝑙 × …× 𝐹𝐹𝑝𝑝𝑙𝑙 → �̃�𝐺𝑙𝑙 = �̃�𝐴𝑙𝑙 → �̃�𝐺𝑙𝑙 

𝜇𝜇�̃�𝑅𝑙𝑙(𝑥𝑥, 𝑦𝑦) = 𝜇𝜇�̃�𝐹1𝑙𝑙(𝑥𝑥1
′) ∩ ⋯∩ 𝜇𝜇�̃�𝐹𝑝𝑝𝑙𝑙 (𝑥𝑥𝑝𝑝

′ ) ∩ 𝜇𝜇�̃�𝐺𝑙𝑙(𝑦𝑦) 

𝜇𝜇�̃�𝐵𝑙𝑙(𝑦𝑦) = ⋃  
𝑥𝑥∈𝑋𝑋

[𝜇𝜇𝐴𝐴𝑥𝑥(𝑥𝑥) ∩ 𝜇𝜇�̃�𝐴→�̅�𝐺(𝑥𝑥, 𝑦𝑦)] 

𝐹𝐹𝑙𝑙(𝑥𝑥′) ≡ [𝑓𝑓𝑙𝑙(𝑥𝑥′), 𝑓𝑓̅𝑙𝑙(𝑥𝑥′)] 

�̃�𝐵𝑙𝑙:
{
 

 𝐹𝐹𝐹𝐹𝐹𝐹(�̃�𝐵𝑙𝑙) = [𝜇𝜇�̃�𝐵′(𝑦𝑦 ∣ 𝑥𝑥′), �̅�𝜇�̃�𝐵′(𝑦𝑦 ∣ 𝑥𝑥′)]
𝜇𝜇�̃�𝐵′(𝑦𝑦 ∣ 𝑥𝑥′) = 𝑓𝑓𝑙𝑙(𝑥𝑥′) ∗ 𝜇𝜇�̃�𝐺′(𝑦𝑦)
�̅�𝜇�̃�𝐵′(𝑦𝑦 ∣ 𝑥𝑥′) = 𝑓𝑓̅𝑙𝑙(𝑥𝑥′) ∗ �̅�𝜇�̂�𝐺(𝑦𝑦)

     

�̃�𝐵𝑙𝑙: {
𝐹𝐹𝐹𝐹𝐹𝐹(�̃�𝐵) = [𝜇𝜇�̃�𝐵(𝑦𝑦 ∣ 𝑥𝑥′), �̅�𝜇�̃�𝐵(𝑦𝑦 ∣ 𝑥𝑥′)]
𝜇𝜇�̃�𝐵(𝑦𝑦 ∣ 𝑥𝑥′) = 𝜇𝜇�̃�𝐵1(𝑦𝑦 ∣ 𝑥𝑥′) ∨ ⋯∨ 𝜇𝜇�̃�𝐵𝑀𝑀(𝑦𝑦 ∣ 𝑥𝑥′)
�̅�𝜇�̃�𝐵(𝑦𝑦 ∣ 𝑥𝑥′) = �̅�𝜇�̃�𝐵1(𝑦𝑦 ∣ 𝑥𝑥′) ∨ ⋯∨ �̅�𝜇�̃�𝐵𝑀𝑀(𝑦𝑦 ∣ 𝑥𝑥′)

 

𝑌𝑌𝐶𝐶(𝑥𝑥′) = 𝐶𝐶�̃�𝐵(𝑥𝑥′) = 1
[𝑙𝑙�̃�𝐵(𝑥𝑥′), 𝑟𝑟�̃�𝐵(𝑥𝑥′)] 

�̃�𝐹𝑙𝑙(�́�𝑥) 

�̃�𝐵𝑙𝑙 = �̃�𝐴𝑥𝑥°�̃�𝑅𝑙𝑙 

∘ ∪ 

{y𝑡𝑡}𝑡𝑡=1𝑇𝑇  

𝑝𝑝(𝜔𝜔|𝑋𝑋, 𝑌𝑌) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔; 𝛼𝛼) 

Var𝑝𝑝(𝒀𝒀∣∣𝐗𝐗 )
model (𝐲𝐲) = 1

𝑇𝑇∑  
𝑇𝑇

𝑡𝑡=1
(y𝑡𝑡 − 𝑦𝑦)2 

𝑦𝑦 = 1
𝑇𝑇∑  𝑡𝑡 y𝑡𝑡
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Where μ (i) is the means of the ROC curve's accuracy 
for the 10-fold cross-validation. The cross-validation 
technique was applied to the Tehran and Beijing AQI 
dataset to validate the results. The results have been 
reported in Table 2.

Table 2. 10-fold cross-validation results

Table 3 presents the proposed model's accuracy based on 
different datasets with different cells and depths of layers 
to compare the proposed IT2FLSTM model's training 
process. Table 3 summarizes the information by selecting 
and reporting the main features, including the number of 
cells, depth, and accuracy during the training process. It 
shows different layers and cells configuration. The results 
reveal that the IT2FLSTM with 20 Layers and 3000 cells 
is the most robust configuration, which reported the best 
performance during the prediction process as depicted in 
Figure 5.

Table 3. Training accuracy of the IT2FLSTM model applied to 
AQI features

4.3. Statistical Evaluation
To represent the proficiency of the IT2FLSTM method 

and its robustness, a two-sample t-test (left tailed) was 

applied. The null hypothesis is defined as H0= μi > μj  and 
H1: μi< μj, where μi and μj are the means of the area under 
the ROC curve (AUC) of IT2FLSTM and IT2FLS for ten 
different runs of the cross-validation technique (Equation 
39), respectively. The t-test results in Table 4 reveals the 
superiority of the proposed IT2FLSTM model for Air 
quality time-series prediction, compared to IT2FLS. The 
t-test (according to the defined hypothesis testing) failed 
to reject the defined null hypothesis.

Figure 5. ROC curve analysis of the IT2FLSTM model

Table 4. T-test analysis of the DIT2FLSM and IT2FLS

5. Discussion
Experimental results reveal that the proposed 

IT2FLSTM model has reported reliable results based on 
the real Air quality datasets obtained from the official 
Harvard Dataset. Moreover, the ROC curve analysis 
shows the results obtained by the proposed model with 
different configurations, including different numbers of 
layers and cells, indicates the performance of 97% (AUC) 
for the IT2FLSTM model for Air quality prediction. The 
proposed IT2FLSTM model has reported the highest 
performance than the standard LSTM, IT1FLS, IT2FLS, 
T1FLSTM, and IT2ANFIS for AQI time-series prediction. 
The proposed IT2FLSTM model can be applied to the 
uncertain and chaotic time-series in short and long-series. 

Precision = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) × 100% (32) 

Recall = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇) × 100% (33) 

𝐹𝐹 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
= 2 Precision ∗ Recall 

 Precision +  Recall  
(34) 

Accuracy =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇) (35) 

𝜇𝜇𝑖𝑖 =  1
10 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

10

𝑘𝑘=1
 (36) 

 

Fold # Tehran Beijing 
1 90.89 92.09 
2 91.25 91.85 
3 93.07 93.07 
4 94.00 94.01 
5 91.98 91.98 
6 93.81 93.81 
7 91.09 92.09 
8 90.45 92.45 
9 91.24 91.24 

10 93.21 93.21 
Mean 92.09 92.58 
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The obtained results with the time-series in Air quality 
have been reported in Table 5. The proposed IT2FLSTM 
model is proficient in coping with the uncertainty to model 
phenomena with long-term dependencies and high-order 
uncertainties such as AQI prediction.

Figure 6 represents the IT2FLSTM's one day in ahead 
prediction results on the AQI testing samples for Tehran in 
(a) and Beijing in (b). The prediction results also show the 
robustness of the proposed IT2FLSTM model in the short-
time series from 2 to 20 Nov 2020. Figure.7 illustrates the 
seasonal comparison of the original observations with the 
IT2FLSTM model predictions for Tehran and Beijing from 
Spring 2019 to Winter 2019. The bar chart of the actual 
observations in Figure 8 shows the prediction values of the 
IT2FLSTM model. The results confirm that the proposed 
model outputs are close to real indexes for Tehran and 
Beijing AQI prediction in short and long time-series.

The Monte-Carlo uncertainty measurement with multi-
step sampling has been applied to the AQI prediction 
for Beijing and Tehran's time-series. The Monte-Carlo 
measurement technique requires multiple forward 
passes of each time-series data to estimate the associate 
uncertainty of the IT2FLSTM model. A Monte-Carlo 

method was applied to provide a quantitative analysis 
of the associated uncertainty of the proposed model. To 
show the proposed model's proficiency for time-series 
prediction, uncertainty measure, in Equations (29 to 31), 
was applied to AQI prediction. The results have been 
presented in Table 5.

5.1 Comparison Analysis
The proposed IT2FLSTM model has more design degrees 

of freedom than a type-1 fuzzy, RNN and LSTM methods 
or other related models because of the FOU parameters in 
type-2 fuzzy sets and its potential to model inequality of 
time intervals. In this work, the problem of distortion in 
the long time series can be addressed by LSTM algorithm 
alongside a Type-2 fuzzy logic approach for modeling high-
order uncertainties in time-series prediction using footprint 
of uncertainty and unequal length of the time intervals. 
According to obtained results in ROC curve analysis, the 
proposed IT2FLSTM model is 8% better than the RNN 
Machine learning method (Liu et al., 2019), 4 % better than 
the earlier work of authors: T2Fuzzy-ANN (Safari et al., 
2017) and 6% better than Fuzzy Time Series model in (Lima 
et al., 2020) in average both scenarios and terms of the AUC.

Table 5. Quantitative comparisons of IT2FLSTM uncertainty measure

Range Sample Points  (T) 
Tehran Beijing 

RMSE STD Mean RMSE STD Mean 
Short 100 0.0890 0.0398 0.053 0.0822 0.0364 0.073 
Long 1000 0.0701 0.0360 0.069 0.0779 0.0391 0.063 
Long 5000 0.0430 0.0270 0.039 0.0390 0.0248 0.047 
Long 10000 0.0206 0.0124 0.024 0.0123 0.0239 0.029 

 

 

Figure 6. Daily AQI prediction for Tehran (a) and (b) Beijing (from 2 to 20 Nov 2020)
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Similarly, the experiment results confirmed that the 
proposed IT2FLSTM model has lower error rates than 
current and counterpart methods including T1FLS, IT2FLS 
and the LSTM models. Also, the experimental results 

confirmed the superiority of the proposed IT2FLSTM 
model in terms of the RMSE, MAE, and MPE, according 
to the Table 5 and the obtained results. The further are 
reported in Tables 6 and 7.

 

 
Figure 7. The IT2FLSTM in seasonal time-series prediction of Air quality pollutants for (a) Tehran and (b) Beijing

Figure 8. The IT2FLSTM applied to Hourly AQI prediction for Tehran (a) and Beijing (b) (20 Nov 2020)

Table 6. Performance comparison for IT2FLSTM model applied to Tehran AQI time-series

Method TEHRAN 
AUC% 95% CI Recall Precision F-Measure 

T1FLS 76 [73-78] 87% 89% 87% 
IT2FLS 79 [74-80] 89% 90% 89% 
LSTM 86 [84-87] 91% 92% 90% 

RNN [19] 88 [84-89] 88% 87% 89% 
Fuzzy Time-Series [22] 91 [99-91] 90% 91% 90% 

T2-ANFIS [26] 93 [90-93] 92% 92% 91% 
IT2FLSTM (this work) 97 [95-98] 95% 98% 96% 
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Table 7. Performance comparison for IT2FLSTM model applied to Beijing AQI time-series

Method 
BEIJING 

AUC% 95% CI Recall Precision F-Measure 
T1FLS 75 [74-78] 85% 88% 87% 
IT2FLS 79 [77-81] 87% 89% 88% 
LSTM 85 [83-86] 90% 91% 90% 

RNN [19] 89 [84-90] 89% 88% 89% 
Fuzzy Time-Series [22] 90 [88-93] 91% 90% 90% 

T2-ANFIS [26] 93 [89-93] 93% 92% 91% 
IT2FLSTM (this work) 97 [94-98] 96% 98% 96% 

 

6. Conclusion
In this study, a deep interval type-2 fuzzy learning 

(IT2FLSTM) model was proposed to predict the air 
pollutant indexes in Tehran and Beijing. The experimental 
results reveal that the performance of the proposed 
IT2FLSTM model is better than its counterparts. The 
results show that the proposed IT2FLSTM model 21% 
greater than T1FLS, 18% greater than IT2FLS, 11% greater 
than LSTM, in terms of AUC. The proposed IT2FLSTM 
model has an average AUC of 97% with a 95% confidence 
interval [95-98] %. Additionally, the model can easily get 
updated because of its deep architecture when new cases 
are reported. 

6.1. Future Research
Computational intelligence methods, such as fuzzy 

logic and deep neural networks such as RNN and 
LSTM, are robust models to solve real-world problems. 
Nevertheless, the deep learning methods are incapable 
of modelling long-term dependencies in temporal data, 
and its learning using gradient descent is a complex 
and difficult task in order to obtain a reliable prediction 
in uncertain time series circumstances for a long-term 
dependencies’ scenarios. For the future works and 
extension of this research, the authors suggest a framework 
for the dependent time series in a long-term prediction, 
especially in the real-world applications such as climate 
changes and global pollutions based on novel autoencoder 
and fuzzy-stacked deep learning methods. Also, a tuning 
procedure on the IT2FLSTM cell structure parameters 
based on optimization algorithms can be used to improve 
the performance of the current proposed IT2FLSTM 
model.
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