10.1007/s40096-024-00524-9

Iterative algorithms for common fixed points of a countable family of quasi-nonexpansive multivalued mappings in CAT(0) spaces

  1. Mathematics Institute, African University of Science and Technology, Garki, Abuja, NG Department of Mathematics, Sule Lamido University, Kafin Hausa, Jigawa, NG
  2. Mathematics Institute, African University of Science and Technology, Garki, Abuja, NG Department of Mathematical Sciences, Bayero University Kano, Kano, NG

Published 2024-08-16

How to Cite

Salisu, S., & Minjibir, M. S. (2024). Iterative algorithms for common fixed points of a countable family of quasi-nonexpansive multivalued mappings in CAT(0) spaces. Mathematical Sciences, 18(4 (December 2024). https://doi.org/10.1007/s40096-024-00524-9

Abstract

Abstract In this paper, we propose an iterative scheme for a common fixed point of a countable family of quasi-nonexpansive mappings. The scheme is computationally less expensive, built on a geodesic averaging technique involving only selected elements. At each iteration, the scheme requires only geodesic segments and no further technical looping or optimizations. Under distinct mild conditions, we establish both ▵\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangle$$\end{document} -convergence and strong convergence result for the proposed scheme to the required point, assuming existence. Notably, the considered mappings need not have compact images, among other relaxed conditions. Additionally, numerical experiments conducted show the robustness of the scheme. The results presented in this paper, not only enhances the existing related literature, but also offers valuable complements to previous studies.

Keywords

  • CAT (0) space,
  • Multivalued quasi-nonexpansive mappings,
  • Hausdorff metric,
  • Strong convergence,
  • ▵\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangle$$\end{document}-convergence,
  • Demiclosedness-type property

References

  1. Abbas et al. (2021) Approximation of fixed points of multivalued generalized (σ,β)documentclass[12pt]{minimal}
  2. usepackage{amsmath}
  3. usepackage{wasysym}
  4. usepackage{amsfonts}
  5. usepackage{amssymb}
  6. usepackage{amsbsy}
  7. usepackage{mathrsfs}
  8. usepackage{upgreek}
  9. setlength{oddsidemargin}{-69pt}
  10. begin{document}$$(sigma ,beta )$$end{document}-nonexpansive mappings in an ordered CAT(0) space https://doi.org/10.3390/math9161945
  11. Abbas et al. (2011) Common fixed points of two multivalued nonexpansive mappings by one-step iterative scheme 24(2) (pp. 97-102) https://doi.org/10.1016/j.aml.2010.08.025
  12. Abkar and Eslamian (2012) Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in CAT(0) spaces 75(4) (pp. 1895-1903) https://doi.org/10.1016/j.na.2011.09.040
  13. Banach (1922) Sur les ope´documentclass[12pt]{minimal}
  14. usepackage{amsmath}
  15. usepackage{wasysym}
  16. usepackage{amsfonts}
  17. usepackage{amssymb}
  18. usepackage{amsbsy}
  19. usepackage{mathrsfs}
  20. usepackage{upgreek}
  21. setlength{oddsidemargin}{-69pt}
  22. begin{document}$$acute{e}$$end{document}rations dans les ensembles abstraits et leur application aux e´documentclass[12pt]{minimal}
  23. usepackage{amsmath}
  24. usepackage{wasysym}
  25. usepackage{amsfonts}
  26. usepackage{amssymb}
  27. usepackage{amsbsy}
  28. usepackage{mathrsfs}
  29. usepackage{upgreek}
  30. setlength{oddsidemargin}{-69pt}
  31. begin{document}$$acute{e}$$end{document}quations inte´documentclass[12pt]{minimal}
  32. usepackage{amsmath}
  33. usepackage{wasysym}
  34. usepackage{amsfonts}
  35. usepackage{amssymb}
  36. usepackage{amsbsy}
  37. usepackage{mathrsfs}
  38. usepackage{upgreek}
  39. setlength{oddsidemargin}{-69pt}
  40. begin{document}$$acute{e}$$end{document}grales 3(1) (pp. 133-181) https://doi.org/10.4064/fm-3-1-133-181
  41. Bridson and Haefliger (1999) Springer https://doi.org/10.1007/978-3-662-12494-9
  42. Brown, K.S.: Buildings. In: Buildings, pp. 76-98, Springer, New York (1989)
  43. Burago et al. (2001) American Math. Soc https://doi.org/10.1090/gsm/033
  44. Chaoha and Phon-on (2006) A note on fixed point sets in CAT(0) spaces 320(2) (pp. 983-987) https://doi.org/10.1016/j.jmaa.2005.08.006
  45. Chidume and Minjibir (2016) Krasnoselskii algorithm for fixed points of multivalued quasi-nonexpansive mappings in certain Banach spaces 17(2) (pp. 301-311)
  46. Dhompongsa et al. (2009) Common fixed points of a nonexpansive semigroup and a convergence theorem for Mann iterations in geodesic metric spaces 70(12) (pp. 4268-4273) https://doi.org/10.1016/j.na.2008.09.012
  47. Dhompongsa et al. (2005) Lim’s theorems for multivalued mappings in CAT(0) spaces 312(2) (pp. 478-487) https://doi.org/10.1016/j.jmaa.2005.03.055
  48. Dhompongsa et al. (2012) On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0)documentclass[12pt]{minimal}
  49. usepackage{amsmath}
  50. usepackage{wasysym}
  51. usepackage{amsfonts}
  52. usepackage{amssymb}
  53. usepackage{amsbsy}
  54. usepackage{mathrsfs}
  55. usepackage{upgreek}
  56. setlength{oddsidemargin}{-69pt}
  57. begin{document}$${rm CAT}(0)$$end{document} spaces 75(2) (pp. 459-468) https://doi.org/10.1016/j.na.2011.08.046
  58. Dhompongsa et al. (2007) Nonexpansive set-valued mappings in metric and banach spaces 8(1) (pp. 35-45)
  59. Dhompongsa et al. (2006) Fixed points of uniformly Lipschitzian mappings 65(4) (pp. 762-772) https://doi.org/10.1016/j.na.2005.09.044
  60. Dhompongsa and Panyanak (2008) On ▵documentclass[12pt]{minimal}
  61. usepackage{amsmath}
  62. usepackage{wasysym}
  63. usepackage{amsfonts}
  64. usepackage{amssymb}
  65. usepackage{amsbsy}
  66. usepackage{mathrsfs}
  67. usepackage{upgreek}
  68. setlength{oddsidemargin}{-69pt}
  69. begin{document}$$triangle$$end{document}-convergence theorems in CAT(0) spaces 56(10) (pp. 2572-2579) https://doi.org/10.1016/j.camwa.2008.05.036
  70. Djitte and Sene (2014) Convergence theorems for fixed points of multivalued mappings in Hilbert spaces
  71. García-Falset et al. (2011) Fixed point theory for a class of generalized nonexpansive mappings 375(1) (pp. 185-195) https://doi.org/10.1016/j.jmaa.2010.08.069
  72. Gromov, M.: Hyperbolic groups. Essays in group theory, 75-263. Math. Sci. Res. Inst. Publ., Springer, New York (1987)
  73. Kingkam and Nantadilok (2023) Iterative process for finding fixed points of quasi-nonexpansive multimaps in CAT(0) spaces 31(1) (pp. 35-48)
  74. Kirk and Shahzad (2014) Springer https://doi.org/10.1007/978-3-319-10927-5
  75. Kirk, W.A.: Geodesic geometry and fixed point theory. In: Seminar of math. anal, pp. 195–225. Universidad de Sevilla. Secretariado de Publicaciones, Seville (2003)
  76. Kirk and Panyanak (2008) A concept of convergence in geodesic spaces 68(12) (pp. 3689-3696) https://doi.org/10.1016/j.na.2007.04.011
  77. Klangpraphan and Panyanak (2019) Fixed point theorems for some generalized multivalued nonexpansive mappings in Hadamard spaces (pp. 543-555)
  78. Lim (1976) Remarks on some fixed point theorems (pp. 179-182) https://doi.org/10.1090/S0002-9939-1976-0423139-X
  79. Minjibir and Izuazu (2022) Iterative algorithm for approximating fixed points of multivalued quasinonexpansive mappings in Banach spaces https://doi.org/10.1186/s13663-022-00718-7
  80. Minjibir and Salisu (2022) Strong and ▵documentclass[12pt]{minimal}
  81. usepackage{amsmath}
  82. usepackage{wasysym}
  83. usepackage{amsfonts}
  84. usepackage{amssymb}
  85. usepackage{amsbsy}
  86. usepackage{mathrsfs}
  87. usepackage{upgreek}
  88. setlength{oddsidemargin}{-69pt}
  89. begin{document}$$triangle$$end{document}-convergence theorems for a countable family of multivalued demicontractive maps in Hadamard spaces 27(1) (pp. 45-58)
  90. Nadler (1970) Some results on multivalued contraction mappings (pp. 64-69) Springer
  91. Padcharoen et al. (2023) Projection methods for quasi-nonexpansive multivalued mappings in Hilbert spaces 8(3) (pp. 7242-7257) https://doi.org/10.3934/math.2023364
  92. Patir, B., Goswami, N., Mishra, V.N.: Some results on fixed point theory for a class of generalized nonexpansive mappings. Fixed Point Theory Appl (2018)
  93. Puttasontiphot (2010) Mann and Ishikawa iteration schemes for multivalued mappings in CAT(0) spaces 4(61–64) (pp. 3005-3018)
  94. Salisu et al. (2022) Strong convergence theorems for fixed point of multivalued mappings in Hadamard spaces https://doi.org/10.1186/s13660-022-02870-5
  95. Suantai et al. (2017) A new one-step iterative process for approximating common fixed points of a countable family of quasi-nonexpansive multivalued mappings in CAT(0) spaces 43(5) (pp. 1127-1141)