Iterative algorithms for common fixed points of a countable family of quasi-nonexpansive multivalued mappings in CAT(0) spaces
- Mathematics Institute, African University of Science and Technology, Garki, Abuja, NG Department of Mathematics, Sule Lamido University, Kafin Hausa, Jigawa, NG
- Mathematics Institute, African University of Science and Technology, Garki, Abuja, NG Department of Mathematical Sciences, Bayero University Kano, Kano, NG
Published 2024-08-16
How to Cite
Salisu, S., & Minjibir, M. S. (2024). Iterative algorithms for common fixed points of a countable family of quasi-nonexpansive multivalued mappings in CAT(0) spaces. Mathematical Sciences, 18(4 (December 2024). https://doi.org/10.1007/s40096-024-00524-9
Abstract
Abstract In this paper, we propose an iterative scheme for a common fixed point of a countable family of quasi-nonexpansive mappings. The scheme is computationally less expensive, built on a geodesic averaging technique involving only selected elements. At each iteration, the scheme requires only geodesic segments and no further technical looping or optimizations. Under distinct mild conditions, we establish both ▵\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangle$$\end{document} -convergence and strong convergence result for the proposed scheme to the required point, assuming existence. Notably, the considered mappings need not have compact images, among other relaxed conditions. Additionally, numerical experiments conducted show the robustness of the scheme. The results presented in this paper, not only enhances the existing related literature, but also offers valuable complements to previous studies.Keywords
- CAT (0) space,
- Multivalued quasi-nonexpansive mappings,
- Hausdorff metric,
- Strong convergence,
- ▵\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangle$$\end{document}-convergence,
- Demiclosedness-type property
References
- Abbas et al. (2021) Approximation of fixed points of multivalued generalized (σ,β)documentclass[12pt]{minimal}
- usepackage{amsmath}
- usepackage{wasysym}
- usepackage{amsfonts}
- usepackage{amssymb}
- usepackage{amsbsy}
- usepackage{mathrsfs}
- usepackage{upgreek}
- setlength{oddsidemargin}{-69pt}
- begin{document}$$(sigma ,beta )$$end{document}-nonexpansive mappings in an ordered CAT(0) space https://doi.org/10.3390/math9161945
- Abbas et al. (2011) Common fixed points of two multivalued nonexpansive mappings by one-step iterative scheme 24(2) (pp. 97-102) https://doi.org/10.1016/j.aml.2010.08.025
- Abkar and Eslamian (2012) Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in CAT(0) spaces 75(4) (pp. 1895-1903) https://doi.org/10.1016/j.na.2011.09.040
- Banach (1922) Sur les ope´documentclass[12pt]{minimal}
- usepackage{amsmath}
- usepackage{wasysym}
- usepackage{amsfonts}
- usepackage{amssymb}
- usepackage{amsbsy}
- usepackage{mathrsfs}
- usepackage{upgreek}
- setlength{oddsidemargin}{-69pt}
- begin{document}$$acute{e}$$end{document}rations dans les ensembles abstraits et leur application aux e´documentclass[12pt]{minimal}
- usepackage{amsmath}
- usepackage{wasysym}
- usepackage{amsfonts}
- usepackage{amssymb}
- usepackage{amsbsy}
- usepackage{mathrsfs}
- usepackage{upgreek}
- setlength{oddsidemargin}{-69pt}
- begin{document}$$acute{e}$$end{document}quations inte´documentclass[12pt]{minimal}
- usepackage{amsmath}
- usepackage{wasysym}
- usepackage{amsfonts}
- usepackage{amssymb}
- usepackage{amsbsy}
- usepackage{mathrsfs}
- usepackage{upgreek}
- setlength{oddsidemargin}{-69pt}
- begin{document}$$acute{e}$$end{document}grales 3(1) (pp. 133-181) https://doi.org/10.4064/fm-3-1-133-181
- Bridson and Haefliger (1999) Springer https://doi.org/10.1007/978-3-662-12494-9
- Brown, K.S.: Buildings. In: Buildings, pp. 76-98, Springer, New York (1989)
- Burago et al. (2001) American Math. Soc https://doi.org/10.1090/gsm/033
- Chaoha and Phon-on (2006) A note on fixed point sets in CAT(0) spaces 320(2) (pp. 983-987) https://doi.org/10.1016/j.jmaa.2005.08.006
- Chidume and Minjibir (2016) Krasnoselskii algorithm for fixed points of multivalued quasi-nonexpansive mappings in certain Banach spaces 17(2) (pp. 301-311)
- Dhompongsa et al. (2009) Common fixed points of a nonexpansive semigroup and a convergence theorem for Mann iterations in geodesic metric spaces 70(12) (pp. 4268-4273) https://doi.org/10.1016/j.na.2008.09.012
- Dhompongsa et al. (2005) Lim’s theorems for multivalued mappings in CAT(0) spaces 312(2) (pp. 478-487) https://doi.org/10.1016/j.jmaa.2005.03.055
- Dhompongsa et al. (2012) On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0)documentclass[12pt]{minimal}
- usepackage{amsmath}
- usepackage{wasysym}
- usepackage{amsfonts}
- usepackage{amssymb}
- usepackage{amsbsy}
- usepackage{mathrsfs}
- usepackage{upgreek}
- setlength{oddsidemargin}{-69pt}
- begin{document}$${rm CAT}(0)$$end{document} spaces 75(2) (pp. 459-468) https://doi.org/10.1016/j.na.2011.08.046
- Dhompongsa et al. (2007) Nonexpansive set-valued mappings in metric and banach spaces 8(1) (pp. 35-45)
- Dhompongsa et al. (2006) Fixed points of uniformly Lipschitzian mappings 65(4) (pp. 762-772) https://doi.org/10.1016/j.na.2005.09.044
- Dhompongsa and Panyanak (2008) On ▵documentclass[12pt]{minimal}
- usepackage{amsmath}
- usepackage{wasysym}
- usepackage{amsfonts}
- usepackage{amssymb}
- usepackage{amsbsy}
- usepackage{mathrsfs}
- usepackage{upgreek}
- setlength{oddsidemargin}{-69pt}
- begin{document}$$triangle$$end{document}-convergence theorems in CAT(0) spaces 56(10) (pp. 2572-2579) https://doi.org/10.1016/j.camwa.2008.05.036
- Djitte and Sene (2014) Convergence theorems for fixed points of multivalued mappings in Hilbert spaces
- García-Falset et al. (2011) Fixed point theory for a class of generalized nonexpansive mappings 375(1) (pp. 185-195) https://doi.org/10.1016/j.jmaa.2010.08.069
- Gromov, M.: Hyperbolic groups. Essays in group theory, 75-263. Math. Sci. Res. Inst. Publ., Springer, New York (1987)
- Kingkam and Nantadilok (2023) Iterative process for finding fixed points of quasi-nonexpansive multimaps in CAT(0) spaces 31(1) (pp. 35-48)
- Kirk and Shahzad (2014) Springer https://doi.org/10.1007/978-3-319-10927-5
- Kirk, W.A.: Geodesic geometry and fixed point theory. In: Seminar of math. anal, pp. 195–225. Universidad de Sevilla. Secretariado de Publicaciones, Seville (2003)
- Kirk and Panyanak (2008) A concept of convergence in geodesic spaces 68(12) (pp. 3689-3696) https://doi.org/10.1016/j.na.2007.04.011
- Klangpraphan and Panyanak (2019) Fixed point theorems for some generalized multivalued nonexpansive mappings in Hadamard spaces (pp. 543-555)
- Lim (1976) Remarks on some fixed point theorems (pp. 179-182) https://doi.org/10.1090/S0002-9939-1976-0423139-X
- Minjibir and Izuazu (2022) Iterative algorithm for approximating fixed points of multivalued quasinonexpansive mappings in Banach spaces https://doi.org/10.1186/s13663-022-00718-7
- Minjibir and Salisu (2022) Strong and ▵documentclass[12pt]{minimal}
- usepackage{amsmath}
- usepackage{wasysym}
- usepackage{amsfonts}
- usepackage{amssymb}
- usepackage{amsbsy}
- usepackage{mathrsfs}
- usepackage{upgreek}
- setlength{oddsidemargin}{-69pt}
- begin{document}$$triangle$$end{document}-convergence theorems for a countable family of multivalued demicontractive maps in Hadamard spaces 27(1) (pp. 45-58)
- Nadler (1970) Some results on multivalued contraction mappings (pp. 64-69) Springer
- Padcharoen et al. (2023) Projection methods for quasi-nonexpansive multivalued mappings in Hilbert spaces 8(3) (pp. 7242-7257) https://doi.org/10.3934/math.2023364
- Patir, B., Goswami, N., Mishra, V.N.: Some results on fixed point theory for a class of generalized nonexpansive mappings. Fixed Point Theory Appl (2018)
- Puttasontiphot (2010) Mann and Ishikawa iteration schemes for multivalued mappings in CAT(0) spaces 4(61–64) (pp. 3005-3018)
- Salisu et al. (2022) Strong convergence theorems for fixed point of multivalued mappings in Hadamard spaces https://doi.org/10.1186/s13660-022-02870-5
- Suantai et al. (2017) A new one-step iterative process for approximating common fixed points of a countable family of quasi-nonexpansive multivalued mappings in CAT(0) spaces 43(5) (pp. 1127-1141)