10.1007/s40096-023-00519-y

Traveling fronts of viscous Burgers’ equations with the nonlinear degenerate viscosity

  1. School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, CN

Published 2023-09-13

How to Cite

Ghani, M., & Nurwidiyanto, . (2023). Traveling fronts of viscous Burgers’ equations with the nonlinear degenerate viscosity. Mathematical Sciences, 18(4 (December 2024). https://doi.org/10.1007/s40096-023-00519-y

Abstract

Abstract In this paper, we continue the study of viscous Burgers’ equations by Il’in and Oleinik for single model equation with convex nonlinearity [ 6 ] by introducing the nonlinear degenerate viscosity. Since the degeneracy of this paper is considered, then there are two conditions for estimate of the traveling fronts U when m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} and 00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document} and m>b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>b$$\end{document} . Moreover, the following Taylor expansion is employed f(U+πz)-f′(U)πz-f(U)=∫01(1-s)f(U+sπz)dsπz2=O(1)πz2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f(U + \pi _{z} ) - f^{'} (U)\pi _{z} - f(U){\text{ }} = \int_{0}^{1} {\left( {(1 - s)f^{} (U + s\pi _{z} )ds} \right)} \pi _{z}^{2} = \rm{\mathcal{O}}(1)\pi _{z}^{2} $$\end{document} to overcome the estimate of term F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1$$\end{document} , where this term is transformation result of nonlinearity for first order derivative in ( 1 ). The stability of traveling fronts U is presented to give the information how close the distance between the solution u of ( 1 ) and the traveling fronts U is under the small perturbations. This stability result is based on the energy estimates under the condition N(t)≤Dm(u++u-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(t)\le Dm(u_++u_-)$$\end{document} . To validate our works and to illustrate the effect of nonlinear degenerate viscosity, the numerical simulations are provided by using the standard finite difference for discretization steps.

Keywords

  • Stability,
  • Degenerate viscous Burgers’ equations,
  • Small perturbation,
  • Large wave amplitude

References

  1. Buckmire et al. (2009) Numerical studies of a nonlinear heat equation with square root reaction term (pp. 598-609) https://doi.org/10.1002/num.20361
  2. Choi and Kim (2020) Chemotactic traveling waves with compact support https://doi.org/10.1016/j.jmaa.2020.124090
  3. Debnath (1997) Birkhauser https://doi.org/10.1007/978-1-4899-2846-7
  4. Ghani, M.: Analysis of degenerate Burgers’ equations involving small perturbation and large wave amplitude, Mathematical Methods in the Applied Sciences, (2023), 1-16. (Early View)
  5. Ghani et al. (2021) Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion (pp. 6253-6265) https://doi.org/10.3934/dcdsb.2021017
  6. Il’in and Oleinik (1960) Asymptotic behavior of solutions of the Cauchy problem for certain quasilinear equationsfor large time (in Russian) (pp. 191-216)
  7. Hu (2013) Asymptotic nonlinear stability of traveling waves to a system of coupled Burgers equations (pp. 322-333) https://doi.org/10.1016/j.jmaa.2012.07.043
  8. Jin et al. (2013) Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity (pp. 193-219) https://doi.org/10.1016/j.jde.2013.04.002
  9. Jordan (2014) A Note on the Lambert W-function: Applications in the mathematical and physical sciences (pp. 247-263) https://doi.org/10.1090/conm/618/12351
  10. Li et al. (2014) Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity (pp. 2819-2849) https://doi.org/10.1142/S0218202514500389
  11. Li and Wang (2020) Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space (pp. 6940-6970) https://doi.org/10.1016/j.jde.2019.11.076
  12. Li and Wang (2010) Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis (pp. 1522-1541) https://doi.org/10.1137/09075161X
  13. Kawashima and Matsumura (1994) Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Communicatins on (pp. 1547-1569) https://doi.org/10.1002/cpa.3160471202
  14. Li and Wang (2011) Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis (pp. 1310-1333) https://doi.org/10.1016/j.jde.2010.09.020
  15. Martinez et al. (2018) Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology (pp. 1383-1424) https://doi.org/10.1512/iumj.2018.67.7394
  16. Matsumura and Nishihara (1985) On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan (pp. 17-25)
  17. Mickens (2008) Exact finite difference scheme for an advection equation having square-root dynamics (pp. 1149-1157) https://doi.org/10.1080/10236190802332209
  18. Mickens (2012) Wave front behavior of traveling waves solutions for a PDE having square-root dynamics (pp. 1271-1277) https://doi.org/10.1016/j.matcom.2010.08.010
  19. Mickens and Oyedeji (2019) Traveling wave solutions to modified Burgers and diffusionless Fisher PDE’s (pp. 139-147) https://doi.org/10.3934/eect.2019008
  20. Nishida (1978) D’epartement de Math’ematique. Universit’e de ParisSud. Orsay
  21. Sattinger (1976) On the stability of waves of nonlinear parabolic systems (pp. 312-355) https://doi.org/10.1016/0001-8708(76)90098-0
  22. Whitham (1974) Wiley-Interscience