10.1007/s40096-021-00377-6

Impact of thermal conductivity on the thermophysical properties and rheological behavior of nanofluid and hybrid nanofluid

  1. Physics Department, College of Science Al-Zulfi, Majmaah university, Al-Majmaah 11952, SA

Published 2021-02-12

How to Cite

Tlili, I. (2021). Impact of thermal conductivity on the thermophysical properties and rheological behavior of nanofluid and hybrid nanofluid. Mathematical Sciences, 18(4 (December 2024). https://doi.org/10.1007/s40096-021-00377-6

Abstract

Abstract A mathematical model is realistic to assess a comparative study of nanofluid and hybrid nanofluid flow between two eccentric pipes. Study of nanofluid has been developed recurrently over the earlier era. By taking the nanofluid study in higher level, the researchers tried to use hybrid nanofluid, which was modeled by placing different nanoparticles either in composite or mixture form. The method of using hybrid nanofluid is to get more thermal conductivity of base fluid. For this phenomena, we consider Ni and γAl2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma Al_2O_3$$\end{document} as nanoparticles and C2H6O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2H_6O_2$$\end{document} as a base fluid. The inner pipe is rigged and rotating with velocity (V), whereas the external pipe is sinusoidal (wave moving down to its boundaries) like the contracting and relaxation phenomena. Low Reynolds number and long wavelength approximation are used for analytic solution. The resulting nonlinear PDEs are converted into ODEs by using perturbation technique. After this, we compare graphically the behavior of friction forces on inner and outer pipes, pressure gradient, pressure rise, velocity and temperature profiles for multi-values of solid volume fractions.

Keywords

  • Nanofluid (Ni/C2H6O2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Ni/C_2H_6O_2)$$\end{document},
  • Hybrid nanofluid (Ni-γAl2O3/C2H6O2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Ni-\gamma Al_2O_3/C_2H_6O_2)$$\end{document},
  • Eccentric pipes,
  • Peristaltic motion

References

  1. Choi, S.U.S.: Enhancing Thermal Conductivity of Fluids with Nanoparticles, In: D. A. Siginer and H. P. Wang, Eds., Developments and Applications of Non-Newtonian Flows, ASME, New York,
  2. 66
  3. , 99–105 (1995)
  4. Wang, B.X., Li, H., Peng, X.F.: Research on the heat conduction enhancement for liquid with nanoparticles suspensions, General Paper (G-1). In: International Symposium on Thermal Science and Engineering (TSE 2002), October, Beijing, pp 23–26 (2002)
  5. Maiga et al. (2005) Heat transfer enhancement by using nanofluids in forced convection flows (pp. 530-546) https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
  6. Nassan et al. (2010) A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct (pp. 924-928) https://doi.org/10.1016/j.icheatmasstransfer.2010.04.009
  7. Turkyilmazoglu (2012) Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids (pp. 182-187) https://doi.org/10.1016/j.ces.2012.08.029
  8. Mat et al. (2012) Radiation effect on Marangoni convection boundary layer flow of a nanofluid https://doi.org/10.1186/2251-7456-6-21
  9. Saha and Paul (2014) Numerical analysis of the heat transfer behaviour of water based Al2O3documentclass[12pt]{minimal}
  10. usepackage{amsmath}
  11. usepackage{wasysym}
  12. usepackage{amsfonts}
  13. usepackage{amssymb}
  14. usepackage{amsbsy}
  15. usepackage{mathrsfs}
  16. usepackage{upgreek}
  17. setlength{oddsidemargin}{-69pt}
  18. begin{document}$$Al_2O_3$$end{document} and TiO2documentclass[12pt]{minimal}
  19. usepackage{amsmath}
  20. usepackage{wasysym}
  21. usepackage{amsfonts}
  22. usepackage{amssymb}
  23. usepackage{amsbsy}
  24. usepackage{mathrsfs}
  25. usepackage{upgreek}
  26. setlength{oddsidemargin}{-69pt}
  27. begin{document}$$TiO_2$$end{document} nanofluids in a circular pipe under the turbulent flow condition (pp. 96-108) https://doi.org/10.1016/j.icheatmasstransfer.2014.06.008
  28. Haroun et al. (2015) Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method https://doi.org/10.1186/s13661-015-0424-3
  29. Unknown (2016) Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate (pp. 235-246) https://doi.org/10.1016/j.expthermflusci.2015.12.012
  30. Shu et al. (2016) Preparation and rheological behavior of ethylene glycol-based TiO2documentclass[12pt]{minimal}
  31. usepackage{amsmath}
  32. usepackage{wasysym}
  33. usepackage{amsfonts}
  34. usepackage{amssymb}
  35. usepackage{amsbsy}
  36. usepackage{mathrsfs}
  37. usepackage{upgreek}
  38. setlength{oddsidemargin}{-69pt}
  39. begin{document}$$TiO_2$$end{document} nanofluids (pp. 86-90) https://doi.org/10.1016/j.colsurfa.2016.08.091
  40. Saha and Paul (2017) Transition of nanofluids flow in an inclined heated pipe (pp. 49-62) https://doi.org/10.1016/j.icheatmasstransfer.2017.02.017
  41. Ghadikolaei et al. (2017) Investigation on thermophysical properties of Tio2documentclass[12pt]{minimal}
  42. usepackage{amsmath}
  43. usepackage{wasysym}
  44. usepackage{amsfonts}
  45. usepackage{amssymb}
  46. usepackage{amsbsy}
  47. usepackage{mathrsfs}
  48. usepackage{upgreek}
  49. setlength{oddsidemargin}{-69pt}
  50. begin{document}$$Tio_2$$end{document}-Cu/H2Odocumentclass[12pt]{minimal}
  51. usepackage{amsmath}
  52. usepackage{wasysym}
  53. usepackage{amsfonts}
  54. usepackage{amssymb}
  55. usepackage{amsbsy}
  56. usepackage{mathrsfs}
  57. usepackage{upgreek}
  58. setlength{oddsidemargin}{-69pt}
  59. begin{document}$$Cu/H_2O$$end{document} hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow (pp. 428-438) https://doi.org/10.1016/j.powtec.2017.09.006
  60. Torabi et al. (2017) The effect of Al2O3-water nanofluid on the heat transfer and entropy generation of laminar forced convection through isotropic porous media https://doi.org/10.1007/s40819-017-0366-9
  61. Das (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids (pp. 420-446) https://doi.org/10.1016/j.molliq.2017.05.071
  62. Akilu et al. (2017) Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2documentclass[12pt]{minimal}
  63. usepackage{amsmath}
  64. usepackage{wasysym}
  65. usepackage{amsfonts}
  66. usepackage{amssymb}
  67. usepackage{amsbsy}
  68. usepackage{mathrsfs}
  69. usepackage{upgreek}
  70. setlength{oddsidemargin}{-69pt}
  71. begin{document}$$TiO_2$$end{document}-CuO/Cdocumentclass[12pt]{minimal}
  72. usepackage{amsmath}
  73. usepackage{wasysym}
  74. usepackage{amsfonts}
  75. usepackage{amssymb}
  76. usepackage{amsbsy}
  77. usepackage{mathrsfs}
  78. usepackage{upgreek}
  79. setlength{oddsidemargin}{-69pt}
  80. begin{document}$$CuO/C$$end{document} inclusions (pp. 396-405) https://doi.org/10.1016/j.molliq.2017.09.017
  81. Talebizadehsardari et al. (2019) An experimental investigation for study the rheological behavior of water-carbon nanotube/magnetite nanofluid subjected to a magnetic field https://doi.org/10.1016/j.physa.2019.122129
  82. Martinez et al. (2019) Numerical study of TiO2-based nanofluids flow in microchannel heat sinks: effect of the Reynolds number and the microchannel height https://doi.org/10.1016/j.applthermaleng.2019.114130
  83. Ruhani et al. (2019) Statistical investigation for developing a new model for rheological behavior of Silica-ethylene glycol/Water hybrid Newtonian nanofluid using experimental data (pp. 616-627) https://doi.org/10.1016/j.physa.2019.03.119
  84. Umavathi and Hemavathi (2019) Flow and heat transfer of composite porous medium saturated with nanofluid (pp. 173-181) https://doi.org/10.1016/j.jppr.2019.01.010
  85. Li et al. (2020) Numerical assessment on the hydrothermal behavior and irreversibility of MgO-Ag/water hybrid nanofluid flow through a sinusoidal hairpin heat-exchanger https://doi.org/10.1016/j.icheatmasstransfer.2020.104628
  86. Guo et al. (2020) The effect of flow pulsation on Al2O3documentclass[12pt]{minimal}
  87. usepackage{amsmath}
  88. usepackage{wasysym}
  89. usepackage{amsfonts}
  90. usepackage{amssymb}
  91. usepackage{amsbsy}
  92. usepackage{mathrsfs}
  93. usepackage{upgreek}
  94. setlength{oddsidemargin}{-69pt}
  95. begin{document}$$Al_2O_3$$end{document} nanofluids heat transfer behavior in a helical coil: a numerical analysis (pp. 76-85) https://doi.org/10.1016/j.cherd.2020.01.016
  96. Ahmad and Khan (2019) Importance of activation energy in development of chemical covalent bonding in flow of Sisko magneto-nanofluids over a porous moving curved surface (pp. 10197-10206) https://doi.org/10.1016/j.ijhydene.2019.02.162
  97. Chu et al. (2020) Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis https://doi.org/10.1016/j.icheatmasstransfer.2020.104893
  98. Mekheimer et al. (2013) Peristaltic transport through eccentric cylinders: Mathematical model (pp. 19-27) https://doi.org/10.1155/2013/902097