Semiconductor Chipping Improvement via a Full Sandwich Wafer Mounting Technique
- Mohd Syahrin Amri 1, 2
- Ghazali Omar * Email ORCID 1, 2
- Mohd Syafiq Mispan 3
- Fuaida Harun 4
- Zaleha Mustafa 5
Abstract
Silicon wafers have been widely used in semiconductor manufacturing, and chipping issues often highlighted during wafer dicing which affects device performance and reliability. The phenomenon of chipping has been observed to have detrimental effects on die strength, leading to the potential of crack formation. Cracks became a major concern because its sometimes undetected during testing and had been reported to cause malfunctions at user applications. This study aims to comprehensively analyze the fragile behavior of silicon concerning its chipping and flexural strength performance, providing valuable insights for engineering applications. The research employed new wafer mounting techniques, including chipping analysis, a three-point bending test and scanning electron microscopy (SEM) to reduce silicon die chipping and increase the flexural strength by evaluating the novel semi and full sandwich wafer mounting techniques. The study demonstrated that the implementation of novel full sandwich mounting technique had improved significantly the silicon die chipping and flexural die performance among all the wafer mounting techniques.
References
[1]Â Â Â Â Â Â JV. Lindroos, A. Lehto, T. Motooka, and M. Tilli, âHandbook of Silicon Based MEMS Materials and Technologiesâ. 2010.
[2]Â Â Â Â Â Â J. G. Croissant, K. S. Butler, J. I. Zink, and C. J. Brinker, âSynthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications,â Nat. Rev. Mater., vol. 5, no. 12, pp. 886â909, 2020, doi: 10.1038/s41578-020-0230-0.
[3]      M. Paulasto-Kroâckel, M. Tilli, G. Ross, and H. Kuisma, âWhere is silicon based MEMS heading to? Handbook of Silicon Based MEMS Materials and Technologiesâ. pp. xxiâxxix, 2020, doi: 10.1016/B978-0-12-817786-0.00062-1.
[4]Â Â Â Â Â Â C. Control and C. July, âSurface Position Detection Method of Silicon Melt in CZ Furnace,â pp. 5021â5026, 2016.
[5]Â Â Â Â Â Â Y. Zhao, X. Zhao, M. Roders, A. Gumyusenge, A. L. Ayzner, and J. Mei, âMelt-Processing of Complementary Semiconducting Polymer Blends for High Performance Organic Transistors,â Adv. Mater., vol. 29, no. 6, pp. 1â7, 2017, doi: 10.1002/adma.201605056.
[6]Â Â Â Â Â Â F. Inoue et al., âMorphological characterization and mechanical behavior by dicing and thinning on direct bonded Si wafer,â J. Manuf. Process., vol. 58, no. January, pp. 811â818, 2020, doi: 10.1016/j.jmapro.2020.08.050.
[7]Â Â Â Â Â Â F. Inoue et al., âInfluence of Si wafer thinning processes on (sub)surface defects,â Appl. Surf. Sci., vol. 404, pp. 82â87, 2017, doi: 10.1016/j.apsusc.2017.01.259.
[8]Â Â Â Â Â Â J. Shen, X. Zhu, J. Chen, P. Tao, and X. Wu, âInvestigation on the edge chipping in ultrasonic assisted sawing of monocrystalline silicon,â Micromachines,â vol. 10, no. 9, 2019, doi: 10.3390/mi10090616.
[9]Â Â Â Â Â Â S. Takyu et al., âA Novel Dicing Technologies for WLCSP Using Stealth Dicing through Dicing Tape and Back Side Protection-Film,â Proc. - Electron. Components Technol. Conf., vol. 2016-Augus, pp. 1241â1246, 2016, doi: 10.1109/ECTC.2016.138.
[10]Â Â Â D. Xue, C. Zhong, E. Zhang, W. Jiang, and C. Zhang, âDie chipping FDC development at wafer saw process,â 2021 22nd Int. Conf. Electron. Packag. Technol. ICEPT 2021, 2021, doi: 10.1109/ICEPT52650.2021.9568039.
[11]Â Â Â M. Xue, T. Chen, X. Zhang, L. Gao, and M. Li, âEffect of Blade dicing parameters on Die Strength,â Proc. - 2018 19th Int. Conf. Electron. Packag. Technol. ICEPT 2018, pp. 180â183, 2018, doi: 10.1109/ICEPT.2018.8480532.
[12]Â Â Â H. Zhang, W. F. Wang, and P. Y. Huang, âOptimization of Wafer Dicing-Saw to Reduce the Chipping Defect by Using the Response Surface Methodology,â 2022 China Semicond. Technol. Int. Conf. CSTIC 2022, pp. 24â27, 2022, doi: 10.1109/CSTIC55103.2022.9856868.
[13]Â Â Â T. J. Su, Y. F. Chen, J. C. Cheng, and C. L. Chiu, âAn artificial neural network approach for wafer dicing saw quality prediction,â Microelectronics Reliability, vol. 91. pp. 257â261, 2018, doi: 10.1016/j.microrel.2018.10.013.
[14]Â Â Â K. J. Kim, âDevelopment of waxless wafer mounting system for silicon wafer polishing process,â Appl. Mech. Mater., vol. 339, pp. 762â765, 2013, doi: 10.4028/www.scientific.net/AMM.339.762.
[15]Â Â Â M. K. Bin Zainal, A. Bin Abdul Aziz, and V. Ramalingam, âBackside Chipping Investigation & Improvement on TiNiVAg Back Metal Silicon Die,â Proc. IEEE/CPMT Int. Electron. Manuf. Technol. Symp., vol. 2022-Octob, pp. 0â3, 2022, doi: 10.1109/IEMT55343.2022.9969494.
[16]Â Â Â M. A. Mendoza, A. G. S. Gablan, H. L. Tierra, and F. R. I. Gomez, âProcess Simplification on Integration of UV Cure Machine with Tape Saw Singulation,â J. Eng. Res. Reports, vol. 20, no. 10, pp. 1â5, 2021, doi: 10.9734/jerr/2021/v20i1017382.
[17]Â Â Â C. P. Orlando, J. L. Goodrich, and E. L. Gosselin, âBackside Mounting Procedures for Semiconductor Wafer Processing,â 2001.
[18]Â Â Â C. S. Premachandran et al., âWafer level high temperature reliability study by backside probing f or a 50um thin TSV wafer,â Proc. - Electron. Components Technol. Conf., vol. 2015-July, pp. 2144â2148, 2015, doi: 10.1109/ECTC.2015.7159899.
[19]   B. C. S. Bacquian, âDicing before Grindingâ¯: A Robust Wafer Thinning and Dicing Technology,â vol. 11, no. 4, pp. 25â34, 2020, doi: 10.9734/JERR/2020/v11i417067.
[20]Â Â Â Fabiana Meijon Fadul, âAnalysis of Crystalline in GaN Epitaxial Layer after the Wafer Dicing Process,â vol. 1593, pp. 1â6, 2019.
[21]   H. Sekhar et al., âMechanical strength problem of thin silicon wafers (120 and 140 μm) cut with thinner diamond wires (Si kerf 120 â 100 μm) for photovoltaic use,â Materials Science in Semiconductor Processing, vol. 119. 2020, doi: 10.1016/j.mssp.2020.105209.
[22]Â Â Â H. Liu, T. Yang, X. Tian, S. Chen, F. Dong, and J. Han, âIterative method for obtaining nonuniform grinding-induced residual stress distribution of silicon wafers based on global deformation,â Mater. Sci. Semicond. Process., vol. 150, no. July, p. 106971, 2022, doi: 10.1016/j.mssp.2022.106971.
[23]Â Â Â Z. M. Chang and H. M. Ler, âEffect of Wafer Back Metal Thickness and Surface Roughness towards Backend Assembly Processes,â Proc. IEEE/CPMT Int. Electron. Manuf. Technol. Symp., vol. 2022-Octob, 2022, doi: 10.1109/IEMT55343.2022.9969478.
[24]   H. Sekhar, T. Fukuda, K. Tanahashi, and H. Takato, âThe impact of silicon brick polishing on thin (120â¯Î¼m) silicon wafer sawing yields and fracture strengths in diamond-wire sawing,â Mater. Sci. Semicond. Process., vol. 105, no. September 2019, p. 104751, 2020, doi: 10.1016/j.mssp.2019.104751.
[25]Â Â Â X. Wu, F. Ren, and H. Ma, âThe effect of surface morphology on the peel performance of UV-induced adhesion-reducing adhesives The effect of surface morphology on the peel performance of UV- induced adhesion-reducing adhesives,â 2022.
[26]Â Â Â H. Liu, Y. Wei, J. Wang, and S. Xu, âInvestigation of single cut process in mechanical dicing for thick metal wafer,â 2016 17th Int. Conf. Electron. Packag. Technol. ICEPT 2016, pp. 26â30, 2016, doi: 10.1109/ICEPT.2016.7583083.
[27]Â Â Â Gao, R. Kang, Z. Dong, and B. Zhang, âEdge chipping of silicon wafers in diamond grinding,â International Journal of Machine Tools and Manufacture, vol. 64. pp. 31â37, 2013, doi: 10.1016/j.ijmachtools.2012.08.002.
[28]Â Â Â M. Y. Tsai and P. S. Huang, âCorrection factors to strength of thin silicon die in three- and four-point bending tests due to nonlinear effects,â Microelectron. Reliab., vol. 128, no. September 2021, p. 114424, 2022, doi: 10.1016/j.microrel.2021.114424.
[29]Â Â Â J. Talledo, âComparison of Silicon Die Strength Using Different Loading Anvil Shapes,â J. Eng. Res. Reports, vol. 20, no. 6, pp. 17â23, 2021, doi: 10.9734/jerr/2021/v20i617323.
[30]Â Â Â J. Talledo, âEffect of Silicon Die Condition on the Breaking Load Performance of a Dam and Fill Semiconductor Package,â J. Eng. Res. Reports, vol. 20, no. 6, pp. 64â69, 2021, doi: 10.9734/jerr/2021/v20i617328.
[31]Â Â Â S. E. Nikitin et al., âFracture strength of silicon solar wafers with different surface textures,â Mater. Sci. Semicond. Process., vol. 140, no. November 2021, p. 106386, 2022, doi: 10.1016/j.mssp.2021.106386.
[32]Â Â Â H. N. Li, T. B. Yu, L. Da Zhu, and W. S. Wang, âAnalytical modeling of ground surface topography in monocrystalline silicon grinding considering the ductile-regime effect,â Arch. Civ. Mech. Eng., vol. 17, no. 4, pp. 880â893, 2017, doi: 10.1016/j.acme.2017.03.010.
Â