The effect of nitrogen ion implantation on electrical impedance and corrosion resistance of Aluminum
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
Received: 2024-11-09
Revised: 2024-12-24
Accepted: 2025-01-13
Published 2025-02-10
Copyright (c) 2025 Fatemeh Abdi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 44
Abstract
In this work, in order to investigate the effect of implantation temperature on the corrosion resistance of the sample, nitrogen ions with energy of 30 keV were implanted on the aluminum substrate at different implantation temperatures. The thickness of created aluminum nitride, surface morphology and intensity of nitride and oxide phases were investigated by means of XPS, AFM and XRD respectively. The results showed that the intensity of the oxide and nitride phases depend on the implantation temperature and as the intensity of the oxide phases increases, the intensity of the nitride phases decreases. Also, the results showed that there is a critical temperature where the intensity of the nitride phase is minimum and the surface has the smallest grains. To investigate the effect of implantation temperature on corrosion resistance, polarization and EIS tests were performed. The results showed that at the critical temperature, the corrosion current is maximum. By simulating the equivalent circuit, the cause of low corrosion resistance at this temperature was investigated and attributed to the low electrical impedance. Finally, the surface of the corroded samples was observed by electron microscopy.
Keywords
- Aluminum,
- Ion implantation,
- Corrosion resistance,
- EIS,
- Equivalent Circuit
References
- Liu LL, Yang PX, Su CN, Guo HF, An MZ. Microstructure and corrosion behavior of micro-arc oxidation film on magnesium alloy. International Journal of Electrochemical Science. 2013 May 1;8(5):6077-84. https://doi.org/10.1016/S1452-3981(23)14742-0
- Abdi F. Corrosion Protection of AISI 304 Stainless Steel using Thin Films of Manganese Nitride. Journal of Applied Chemical Research. 2021 Oct 1;15(4):19-33.
- Xin Y, Liu C, Zhang W, Jiang J, Tang G, Tian X, Chu PK. Electrochemical behavior Al2O3∕ Al coated surgical AZ91 magnesium alloy in simulated body fluids. Journal of The Electrochemical Society. 2008 Mar 11;155(5):C178. DOI:10.1149/1.2844433
- Wu CS, Zhang Z, Cao FH, Zhang LJ, Zhang JQ, Cao CN. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions. Applied Surface Science. 2007 Feb 15;253(8):3893-8. https://doi.org/10.1016/j.apsusc.2006.08.020
- Khaled KF. Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques. Electrochimica Acta. 2010 Sep 1;55(22):6523-32. https://doi.org/10.1016/j.electacta.2010.06.027
- Spinks GM, Dominis AJ, Wallace GG, Tallman DE. Electroactive conducting polymers for corrosion control: part 2. Ferrous metals. Journal of Solid State Electrochemistry. 2002 Feb;6:85-100. https://doi.org/10.1007/s100080100211
- Racicot R, Brown R, Yang SC. Corrosion protection of aluminum alloys by double-strand polyaniline. Synthetic metals. 1997 Mar 15;85(1-3):1263-4. https://doi.org/10.1016/S0379-6779(97)80232-9
- Tallman DE, Pae YQ, Bierwagen GP. Conducting Polymers and Corrosion: Part 2 Polyaniline on Aluminum Alloys. Corrosion. 2000 Apr 1;56(04). DOI:10.5006/1.3280544
- Huerta-Vilca D, Moraes SR, Motheo AJ. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3. Journal of the Brazilian Chemical Society. 2003;14:52-8. https://doi.org/10.1590/S0103-50532003000100009
- Ogurtsov NA, Pud AA, Kamarchik P, Shapoval GS. Corrosion inhibition of aluminum alloy in chloride mediums by undoped and doped forms of polyaniline. Synthetic Metals. 2004 May 7;143(1):43-7. https://doi.org/10.1016/j.synthmet.2003.10.015
- Matero R, Ritala M, Leskelä M, Salo T, Aromaa J, Forsén O. Atomic layer deposited thin films for corrosion protection. Le Journal de Physique IV. 1999 Sep 1;9(PR8):Pr8-493. DOI:10.1051/jp4:1999862
- Ting WT, Chen KS, Wang MJ. Dense and anti-corrosion thin films prepared by plasma polymerization of hexamethyldisilazane for applications in metallic implants. Surface and Coatings Technology. 2021 Mar 25;410:126932. https://doi.org/10.1016/j.surfcoat.2021.126932
- Fusco MA, Ay Y, Casey AH, Bourham MA, Winfrey AL. Corrosion of single layer thin film protective coatings on steel substrates for high level waste containers. Progress in Nuclear Energy. 2016 May 1;89:159-69. https://doi.org/10.1016/j.pnucene.2016.02.016
- Flores JF, Valdez S B, Schorr M, Olaya JJ. Corrosion protection of steels by PVD TaN thin films. Anti-Corrosion Methods and Materials. 2006 Mar 1;53(2):88-94. DOI:10.1108/00035590610650785
- Ensinger W, Lensch O, Knecht J, Volz K, Matsutani T, Kiuchi M. Pitting corrosion of aluminum coated by ion beam assisted deposition of carbon with argon ions at different ion-to-atom arrival ratios. Surface and Coatings Technology. 2002 Sep 1;158:594-8. https://doi.org/10.1016/S0257-8972(02)00315-8
- Massiani Y, Crousier JP, Fedrizzi L, Gialanella S, Bonora PL. Electrochemical study of multiple-energy nitrogen-ion-implanted aluminium alloys. Materials Science and Engineering: A. 1989 Aug 15;116:53-7. https://doi.org/10.1016/0921-5093(89)90127-5
- Tait WS, Huber CO, Begnoche BC, Siettmann JR, Aita CR. Al, Al–N alloy, and AlN‐coated steel corrosion behavior in O2‐free KCl solutions. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1988 May 1;6(3):924-7. https://doi.org/10.1116/1.575031
- Venkatraman S, Nair MR, Kothari DC, Lal KB, Raman R. Anodic polarization behaviour of ion implanted aluminum in 3.5 wt.% NaCl electrolyte. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1987 Jan 1;19:241-6. https://doi.org/10.1016/S0168-583X(87)80051-4
- Zhang L, Booske JH, Shohet JL. Anti-corrosive surface modification of 6061 aluminum using plasma source ion implantation. Materials Letters. 1995 Jan 1;22(1-2):29-33. https://doi.org/10.1016/0167-577X(94)00215-0
- Booske JH, Zhang L, Wang W, Mente K, Zjaba N, Baum C, Shohet JL. Nitrogen plasma source ion implantation for corrosion protection of aluminum 6061-T4. Journal of materials research. 1997 May;12:1356-66. DOI: https://doi.org/10.1557/JMR.1997.0185
- Shim YK, Kim YK, Lee KH, Han S. The properties of AlN prepared by plasma nitriding and plasma source ion implantation techniques. Surface and Coatings Technology. 2000 Sep 1;131(1-3):345-9. https://doi.org/10.1016/S0257-8972(00)00807-0
- Priyantoro D, Mulyani E, Sujitno T. Effect of Nitrogen Ion Implantation on the Surface Hardness, Corrosion Rate, and Crystal Structure of Pure Aluminium. Adv Mater.. 2019 Oct 9;8:137. doi: 10.11648/j.am.20190804.12
- Starke Jr EA, Staley JT. Application of modern aluminum alloys to aircraft. Progress in aerospace sciences. 1996 Jan 1;32(2-3):131-72. https://doi.org/10.1016/0376-0421(95)00004-6
- Li Q, Jensen JO, Bjerrum N. Chemistry, electrochemistry, and electrochemical applications: Aluminum. InEncyclopedia of electrochemical power sources 2009 (pp. 695-708). Elsevier. https://doi.org/10.1016/B978-044452745-5.00951-5
- Tait WS. Corrosion prevention and control of chemical processing equipment. InHandbook of environmental degradation of materials 2005 Jan 1 (pp. 565-581). William Andrew Publishing. https://doi.org/10.1016/B978-1-4377-3455-3.00028-6
- F. Fateme AB, Savaloni H. Surface nanostructure modification of Al substrates by N+ ion implantation and their corrosion inhibition. Transactions of Nonferrous Metals Society of China. 2017 Mar 1;27(3):701-10. https://doi.org/10.1016/S1003-6326(17)60078-5
- Abdi F, Savaloni H. Influence of N+ ion implantation at different temperatures on nanostructural modifications and characteristics of Al alloy surface. Philosophical Magazine. 2016 May 2;96(13):1305-17. https://doi.org/10.1080/14786435.2016.1162912
- Savaloni H, Modiri F. Surface nano-structural modifications and characteristics in nitrogen ion implanted W as a function of temperature and N+ energy. Applied Surface Science. 2006 Nov 30;253(3):1135-42. https://doi.org/10.1016/j.apsusc.2006.01.066