10.57647/j.jtap.2025.1901.04

Effects of topological defect on energy spectra and scattering phase shift of coshine yukawa potential for nickel monocarbide molecule

  1. Department of Physics, University of South Africa, Florida 1710, Johannesburg, South Africa
  2. Department of Physics, Theoretical Physics Group, University of Port Harcourt, Choba, Nigeria  AND  Western Caspian University, Baku, Azerbaijan
  3. Department of Physics, University of Agriculture and Environmental Sciences, Umuagwo, P. M. B. 1038 Imo State, Nigeria
  4. Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, P. C. 123, Al-Khod, Muscat, Sultanate of Oman

Received: 2024-09-19

Revised: 2024-12-14

Accepted: 2024-12-21

Published 2025-02-10

How to Cite

1.
S. Okorie U, N. Ikot A, J. Rampho G, Omugbe E, Horchani R. Effects of topological defect on energy spectra and scattering phase shift of coshine yukawa potential for nickel monocarbide molecule. J Theor Appl phys. 2025 Feb. 10;19(01). Available from: https://oiccpress.com/jtap/article/view/8599

PDF views: 82

Abstract

Topological defects generally contribute significant role in shaping the behaviour and interactions of molecular systems, with recognizable influence on their global and local characteristics. This influence often leads to profound changes in the dynamics of the molecules under study. To this end, the analytical eigensolutions of the radial Schrodinger equation with a point-like global monopole under the coshine Yukawa potential has been investigated via the Nikiforov-Uvarov Functional Analysis approach. The Greene-Aldrich approximation was used to overcome the centrifugal barrier which allows for the derivation of the energy and wave function in closed form. The solution of the energy and wave function were applied to investigate the wave function, probability density and scattering phase shift variations with topological defect parameter, dimension number and rotational quantum number for Nickel monocarbide diatomic molecule.  The results reveal that for the ground and excited states, the wave functions amplitudes were increased with the increase in the topological defect parameters but decreased with the dimension number. The scattering phase shifts were found to be sensitive to the rotational quantum number and topological defect values where the wave form is characterized by a rectangular periodic motion.

Keywords

  • Bound state energy spectra,
  • Scattering phase shift,
  • Topological defect,
  • Coshine Yukawa potential,
  • Diatomic molecules

References

  1. W. A. Hiscock. “Exact gravitational field of a string”. Physical Review D. 31:3288–3290, 1985. DOI: https://doi.org/10.1103/PhysRevD.31.3288.
  2. B. Linet. “The static metrics with cylindrical symmetry describing a model of cosmic strings”. General Relativity and Gravitation. 17:1109-1115, 1985. DOI: https://doi.org/10.1007/BF00774211
  3. A. Vilenkin and E. P. S. Shellard: Strings and Other Topological Defects. Cambrigde University Press, Cambridge, 1994.
  4. F. Ahmed. “Three-dimensional wormhole with cosmic string effects on eigenvalue solution of non-relativistic quantum particles”. Scientific Reports. 13:12953, 2023. DOI: https://doi.org/10.1038/s41598-023-40066-z
  5. R. A. Puntigam and H. H. Soleng. “Volterra distortions, spinning strings, and cosmic defects”. Classical and Quantum Gravity. 14:1129, 1997. DOI: https://doi.org/10.1088/0264-9381/14/5/017
  6. A. Vilenkin. “Cosmic strings and domain walls”. Physics Reports. 121(5):263-315, 1985. DOI: https://doi.org/10.1016/0370-1573(85)90033-X
  7. M. O. Katanaev and I. V. Volovich. “Theory of defects in solids and three-dimensional gravity”. Annals of Physics. 216(1):1-28, 1992. DOI: https://doi.org/10.1016/0003-4916(52)90040-7
  8. V. B. Bezerra. “Gravitational analogue of the Aharonov-Bohm effect in four and three dimensions”. Physical Review D. 35:2031, 1987. DOI: https://doi.org/10.1103/PhysRevD.35.2031
  9. G. de A-Marques, C. Furtado, V. B. Bezerra and F. Moraes. “Landau levels in the presence of topological defects”. Journal of Physics A: Mathematical and General. 34:5945, 2001. DOI: https://doi.org/10.1088/0305-4470/34/30/306
  10. K. Bakke, C. Furtado and S. Sergeenkov. “Holonomic quantum computation associated with a defect structure of conical graphene”. Europhysics Letters. 87:30002, 2009. DOI: https://doi.org/10.1209/0295-5075/87/30002
  11. H. Hassanabadi, S. Zare, J. Kriz and B. C. Lutfuoglu, “Electric quadrupole moment of a neutral non-relativistic particle in the presence of screw dislocation”. EuroPhysics Letters. 132:60005, 2020. DOI: https://doi.org/10.1209/0295-5075/132/60005
  12. S. Zare, H. Hassanabadi and M. de Montigny. “Nonrelativistic particles in the presence of a Cariñena–Perelomov–Rañada–Santander oscillator and a disclination” International Journal of Modern Physics A. 35:2050071, 2020. DOI: https://doi.org/10.1142/S0217751X20500712
  13. W. C. F. da Silva and K. Bakke. “Non-relativistic effects on the interaction of a point charge with a uniform magnetic field in the distortion of a vertical line into a vertical spiral spacetime”. Classical and Quantum Gravity. 36:235002, 2019. DOI: https://doi.org/10.1088/1361-6382/ab4f03
  14. B. C. Lutfuoglu, J. Kriz, S. Zare and H. Hassanabadi. “Interaction of the magnetic quadrupole moment of a non-relativistic particle with an electric field in the background of screw dislocations with a rotating frame”. Physica Scripta. 96:015005, 2021. DOI: https://doi.org/10.1088/1402-4896/abc78b
  15. H. Chen, S. Zare, H. Hassanabadi and Z.W. Long. “Quantum description of the moving magnetic quadrupole moment interacting with electric field configurations under the rotating background with the screw dislocation”. Indian Journal of Physics. 96:4219-4229, 2022. DOI: https://doi.org/10.1007/s12648-022-02328-w
  16. S. Zare, H. Hassanabadi, A. Guvendi and W. S. Chung. “On the interaction of a Cornell-type nonminimal coupling with the scalar field under the background of topological defects”. International Journal of Modern Physics A. 37:2250033, 2022. DOI: https://doi.org/10.1142/S0217751X22500336
  17. S. S. Alves, M. M. Cunha, H. Hassanabadi and E. O. Silva. “Approximate Analytical Solutions of the Schrödinger Equation with Hulthén Potential in the Global Monopole Spacetime”. Universe 9:132, 2023. DOI: https://doi.org/10.3390/universe9030132
  18. R. D. Lambaga and H. S. Ramadhan. “Gravitational field of global monopole within the Eddington-inspired Born-Infeld theory of gravity”. European Physical Journal C. 78:436, 2018. DOI: https://doi.org/10.1140/epjc/s10052-018-5906-x
  19. A. Boumali and H. Aounallah. “Exact solutions of vector bosons in the presence of the Aharonov-Bohm and Coulomb potentials in the gravitational field of topological defects in non-commutative space-time”. Revista Mexicana de Fisica. 66:192, 2020. DOI: https://doi.org/10.31349/RevMexFis.66.192
  20. E. A. F. Braganca, R. L. L. Vitoria, H. Belich and E. R. Bezerra de Mello. “Relativistic quantum oscillators in the global monopole spacetime”. European Physical Journal C. 80:206, 2020. DOI: https://doi.org/10.1140/epjc/s10052-020-7774-4
  21. R. L. L. Vitoria and H. Belich. “Harmonic oscillator in an environment with a pointlike defect”. Physica Scripta. 94:125301, 2019. DOI: https://doi.org/10.1088/1402-4896/ab3bc1
  22. K. Bakke and C. Furtado. “Analysis of the interaction of an electron with radial electric fields in the presence of a disclination”. International Journal of Geometric Methods in Modern Physics. 16:1950172, 2019. DOI: https://doi.org/10.1142/S021988781950172X
  23. N. Soheibi, M. Hamzavi, M. Eshghi and S. M. Ikhdair. “Screw dislocation and external fields effects on the Kratzer pseudodot”. European Physical Journal B. 90:212, 2017. DOI: https://doi.org/10.1140/epjb/e2017-80468-9
  24. C. Filgueiras, M. Rojas, G. Aciole and E. O. Silva. “2DEG on a cylindrical shell with a screw dislocation”. Physics Letters A. 379:2110, 2015. DOI: https://doi.org/10.1016/j.physleta.2015.06.035
  25. P. Nwabuzor, C. O. Edet, A. N. Ikot, U. S. Okorie, M. Ramantswana, R. Horchani, A. H. Abdel-Aty and G. J. Rampho. “Analyzing the Effects of Topological Defect (TD) on the Energy Spectra and Thermal Properties of LiH, TiC and I2 Diatomic Molecules“. Entropy 23:1060, 2021. DOI: https://doi.org/10.3390/e23081060
  26. C. O. Edet and A. N. Ikot. “Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of CO Diatomic Molecule”. Journal of Low Temperature Physics. 203:84, 2021. DOI: https://doi.org/10.1007/s10909-021-02577-9
  27. A. N. Ikot, U. S. Okorie, P. Sawangtong and H. Horchani. “Effects of Topological Defects and AB Fields on the Thermal Properties, Persistent Currents and Energy Spectra with an Exponential-Type Pseudoharmonic Potential”. International Journal of Theoretical Physics. 62:197, 2023. DOI: https://doi.org/10.1007/s10773-023-05453-2
  28. M. Bansal, V. Kumar, R. M. Singh, S. B. Bhardwaj and F. Chand. “Ro-vibrational energy spectra and thermal properties of some diatomic molecules”. Molecular Physics. 121(12):e2232472, 2023. DOI: https://doi.org/10.1080/00268976.2023.2232472
  29. A. N. Ikot, U. S. Okorie, G. J. Rampho, C. O. Edet, R. Horchani, A. Abdel-Aty, N. A. Alshehri and S. K. Elagan. “Bound and Scattering State Solutions of the Klein-Gordon Equation with Deng-Fan Potential in Higher Dimensions”. Few-Body Systems. 62:101, 2021. DOI: https://doi.org/10.1007/s00601-021-01693-2
  30. U. S. Okorie, A. N. Ikot, G. J. Rampho, M. C. Onyeaju, M. U. Ibezim-Ezeani, A. Abdel-Aty and M. Ramantswana. “Bound and scattering states of the Klein-Gordon equation for shifted Tietz-Wei potential with applications to diatomic molecules”. Mol. Phys. 119(11):e1922773, 2021. DOI: https://doi.org/10.1080/00268976.2021.1922773
  31. U. S. Okorie, A. N. Ikot, C. O. Edet, G. J. Rampho, R. Horchani and H. Jelessi. “Bound and scattering states solutions of the Klein–Gordon equation with generalized Mobius square potential in D-dimensions”. European Physical Journal D. 75:53, 2021. DOI: https://doi.org/10.1140/epjd/s10053-021-00059-x
  32. K. Aristizabal, A. Katzensteiner, A. Bachmaier, F. Mücklich and S. Suárez. “Microstructural evolution during heating of CNT/Metal Matrix Composites processed by Severe Plastic Deformation”. Scientific Reports. 10:857, 2020. DOI: https://doi.org/10.1038/s41598-020-57946-3
  33. Z. L. Schaefer, K. M. Weeber, R. Misra, P. Schiffer and R. E. Schaak. “Bridging hcp-Ni and Ni3C via a Ni3C 1-x solid solution: Tunable composition and magnetism in colloidal nickel carbide nanoparticles”. Chemistry of Materials. 23:2475, 2011. DOI: https://doi.org/10.1021/cm200410s
  34. M. Xing, J. Mohapatra, F. Zeng and J. P. Liu. “Magnetic properties of nickel carbide nanoparticles with enhanced coercivity”. AIP Advances. 8:056308, 2018. DOI: https://doi.org/10.1063/1.5006350
  35. A. Börjesson and K. Bolton. “First-principles studies of the effect of nickel carbide catalyst composition on carbon nanotube growth”. Journal of Physical Chemistry C. 114:18045–18050, 2010. DOI: https://doi.org/10.1021/jp1045707
  36. A. Furlan, J. Lu, L. Hultman, U. Jansson and M. Magnuson. “Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites”. Journal of Physics: Condensed Matter. 26:415501, 2014. DOI: https://doi.org/10.1088/0953-8984/26/41/415501
  37. D. V. Suetin and N. I. Medvedeva. “First-Principles Study of Structure, Magnetic Properties, and Stability of η-Carbides (M,Fe)3W3C (M = Ti, V, Cr, Mn, Co, and Ni)”. Physica Status Solidi B. 256:1900108, 2019. DOI: https://doi.org/10.1002/pssb.201900108
  38. J. Kelling, P. Zahn, J. Schuster and S. Gemming. “Elastic and piezoresistive properties of nickel carbides from first principles”. Physical Review B. 95:024113, 2017. DOI: https://doi.org/10.1103/PhysRevB.95.024113
  39. S. Uhlig, H. Schmid-Engel, T. Speicher and G. Schultes. “Pressure sensitivity of piezoresistive nickel–carbon Ni:a-C:H thin films”. Materials Science, Physics Sensors and Actuators A: Physical. 193:129, 2013. DOI: https://doi.org/10.1016/J.SNA.2012.12.027
  40. A. N. Ikot, U. S. Okorie, G. J. Rampho, P. O. Amadi, C. O. Edet, I. O. Akpan, H. Y. Abdullah and R. Horchani. “Klein–Gordon Equation and Nonrelativistic Thermodynamic Properties with Improved Screened Kratzer Potential”. Journal of Low Temperature Physics. 202:269, 2021. DOI: https://doi.org/10.1007/s10909-020-02544-w
  41. A. K. Roy. “Critical parameters and spherical confinement of H atom in screened Coulomb potential”. International Journal of Quantum Chemistry. 116:953, 2016. DOI: https://doi.org/10.1002/qua.25108
  42. S. A. Ekong, U. S. Okorie, A. N. Ikot, I. B. Okon, L. F. Obagboye, H. Y. Abdullah, R. Sever and K. W. Qadir. “Thermodynamic Evaluation of Coshine Yukawa Potential (Cyp) for Some Diatomic Molecule Systems”. European Physical Journal Plus. 138:364, 2023. DOI: https://doi.org/10.21203/rs.3.rs-2090492/v1
  43. E. R. Bezerra de Mello and A. A. Saharian. “Scalar self-energy for a charged particle in global monopole spacetime with a spherical boundary”. Classical and Quantum Gravity. 29:135007, 2012. DOI: https://doi.org/10.1088/0264-9381/29/13/135007
  44. R. L. Greene and C. Aldrich. “Variational wave functions for a screened Coulomb potential”. Physical Review A. 14, 2363 (1976). DOI: https://doi.org/10.1103/PhysRevA.14.2363
  45. M. Pillai, J. Goglio and T. G. Walker. Matrix Numerov method for solving Schrodinger nequation, American Journal of Physics. 80:1017, 2012. DOI: https://doi.org/10.1119/1.4748813
  46. A. D. Alhaidari. Solution of the nonrelativistic wave equation using the tridiagonal representation approach. Journal of Mathematical Physics. 58:072104, 2017. DOI: https://doi.org/10.1063/1.4993197
  47. A. Gkrepis, O. Kosmas, D. Vlachos and T. Kosmas, Numerical solution of the Schrodinger equation using Neural networks in Python. Journal of Physics: Conference Series. 2701:012133, 2024. DOI: https://doi.org/10.1088/1742-6596/2701/1/012133
  48. W. G. Feng, C. W. Li, W. H. Ying and L. Y. Yuan. “The scattering states of the generalized Hulthén potential with an improved new approximate scheme to the centrifugal term”. Chinese Physics B. 18:3663, 2009. DOI: https://doi.org/10.1088/1674-1056/18/9/010
  49. O. J. Oluwadare and K. J. Oyewumi. “Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential”. European Physical Journal Plus. 133:422, 2018. DOI: https://doi.org/10.1140/epjp/i2018-12210-0
  50. E. B. Al, E. Kasapoglu, H. Sari and I. Sökmen. “Zeeman splitting, Zeeman transitions and optical absorption of an electron confined in spherical quantum dots under the magnetic field”. Philosophical Magazine. 101:117, 2021. DOI: https://doi.org/10.1080/14786435.2020.1821112
  51. M. Jaouane, K. El-Bakkari, E. B. Al, A. Sali and F. Ungan. “Linear and nonlinear optical properties of CdSe/ZnTe core/shell nanostructures with screened modified Kratzer potential”. European Physical Journal Plus. 138:319, 2023. DOI: https://doi.org/10.1140/epjp/s13360-023-03934-1 ·
  52. H. R. Rastegar-Sedehi. “Magnetocaloric effect in Rashba spin-orbit coupling and Zeeman splitting of a narrow nanowire quantum dot”. European Physical Journal Plus. 136:514, 2021. DOI: https://doi.org/10.1140/epjp/s13360-021-01532-7
  53. E. B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sokmen and C. A. Duque. “Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field”. Physica E Low-Dimensional Systems and Nanostructures. 119:114011, 2020. DOI: https://doi.org/10.1016/j.physe.2020.114011
  54. A. Haghighatzadeh and A. Attarzadeh. “A comprehensive investigation on valence-band electronic structure and linear and nonlinear optical properties of a laser-driven GaAsSb-based Rosen–Morse quantum well”. European Physical Journal B. 96:125, 2023. DOI: https://doi.org/10.1140/epjb/s10051-023-00592-1
  55. E. Kasapoglu, M. B. Yucel and C. A. Duque. “Electronic and optical properties of the exponential and hyperbolic Rosen–Morse types quantum wells under applied magnetic field”. European Physical Journal Plus. 138:1026, 2023.DOI: https://doi.org/10.1140/epjp/s13360-023-04594-x
  56. H. Y. Abdullah and C. T. Londhe. “A Comparative Study of Potential Energy Curves of Osmium Nitride Molecule”. Iranian Journal of Science and Technology: Transactions A: Science. 43:1361, 2019. DOI: https://doi.org/10.1007/s40995-018-0638-1
  57. H. H. Abdallah and H. Y. Abdullah. “Contrastive studies of potential energy functions of some diatomic molecules”. AIP Conference Proceedings 1718:090001, 2016. DOI: https://doi.org/10.1063/1.4943340
  58. H. Y. Abdullah. “Potential energy curve and spectroscopic parameters of multi-charged LiF Molecule”. Canadian Journal of Physics. 95(11):1122, 2017. DOI: https://doi.org/10.1139/cjp-2017-015
  59. M. D. Mohammadi, R. Bhaskaran, H. Y. Abdullah, H. H. Abdallah, G. Biskos and S. Bhowmick. “Lowest electronic states of neutral and ionic LiN”. International Journal of Quantum Chemistry. 124(1):e27288, 2024. DOI: https://doi.org/10.1002/qua.27288
  60. H. Y. Abdullah. “A comparative study of potential energy curves with RKRV curves for the ground states of I2, F2 and CO molecules”. Bulletin of Material Science. 42:42, 2019. DOI: https://doi.org/10.1007/s12034-019-1824-2
  61. A. Maireche. “A new model describing improved bound-state and statistical properties in the framework of deformed Schr€odinger equation for the improved Coshine Yukawa potential in 3D-NR(NCPS) symmetries”. Modern Physics Letter A. 39:2450156, 2024. DOI: https://doi.org/10.1142/S0217732324501566
  62. A. F. Nikiforov and V. B. Uvarov. Special Functions of Mathematical Physics. Birkhauser, Basel, 1988.
  63. C. Tezcan and R. Sever. “A General Approach for the Exact Solution of the Schrödinger Equation”. International Journal of Theoretical Physics. 48:337, 2008. DOI: https://doi.org/10.1007/s10773-008-9806-y
  64. B. J. Falaye, K. J. Oyewumi, S. M. Ikhdair and M. Hamzavi. “Eigensolution techniques, their applications and Fisherʼs information entropy of the Tietz–Wei diatomic molecular model”. Physica Scripta. 89:115204, 2014. DOI: htps://doi.org/10.1088/0031-8949/89/11/115204