Double layers in an electron beam-plasma with suprathermal electron species
- Physics Department of K. N. Toosi University of Technology, Tehran, Iran
Received: 2024-10-10
Revised: 2024-04-12
Accepted: 2025-12-01
Published 2025-02-10
Copyright (c) 2025 Mohammad Mohsen Hatami (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 72
Abstract
Based on Sagdeev potential technique, ion-acoustic double layers (IADLs) have been investigated numerically in an unmagnetized plasma consisting of two species of kappa-distributed electrons (cold and hot), warm positive ions and a warm electron beam. It is found that the formation and properties of IADLs can exist in such plasma system depend on some relevant plasma parameters such as concentration of electron beam, concentration of hot electron species, spectral index of electron species and hot-to-cold electron temperature ratio. The results obtained may provide to a better understanding of the propagation of IADLs on Saturn, where the main plasma species may consist of an electron beam, positive ions, and two kappa-distributed electrons.
Keywords
- Ion-acoustic double layers,
- Sagdeev potential,
- Kappa distribution,
- Fluid model,
- Electron beam,
- Two-temperature electrons
References
- G. S. Lakhina, S. V. Singh, and A. P. Kakad. “Ion- and electron-acoustic solitons and double layers in multi-component space plas-mas.”. Adv. Space Res., 47:1558–1567, 2011. DOI: https://doi.org/10.1016/j.asr.2010.12.013.
- S. Ali Shan and H. Saleem. “Small amplitude ion-acoustic double layers with cold electron beam and q-nonextensive electrons.”. Phys. Lett. A, 378:795–799, 2014. DOI: https://doi.org/10.1016/j.physleta.2013.03.016.
- S. A. Shan and N. Imtiaz. “Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons.”. Phys. Lett. A, 382:1247–1254, 2018. DOI: https://doi.org/10.1016/j.physleta.2018.03.007.
- B. Basu. “Low frequency electrostatic waves in weakly inhomoge-neous magnetoplasma modeled by Lorentzian (kappa) distributions.”. Phys. Plasmas, 15:042108, 2008. DOI: https://doi.org/10.1063/1.2906217.
- E. I. El-Awady, S. A. El-Tantawy, W. M. Moslem, and P. K. Shukla. “Electron-positron-ion plasma with kappa distribution: Ion acoustic soliton propagation.”. Phys. Lett. A, 374:3216, 2010. DOI: https://doi.org/10.1016/j.physleta.2010.05.053.
- V. M. Vasyliunas. “A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3.”. J Geophys. Res., 73:2839, 1968. DOI: https://doi.org/10.1029/JA073i009p02839.
- R. L. Tokar and S. P. Gary. “Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp.”. Geophys. Res. Lett., 11:1180–1183, 1984. DOI: https://doi.org/10.1029/GL011i012p01180.
- C. S. Lin, J. L. Burch, S. D. Shawhan, and D. A. Gurnett. “Correla-tion of auroral hiss and upward electron beams near the polar cusp.”. J. Geophys. Res., 89:925–935, 1984. DOI: https://doi.org/10.1029/JA089iA02p00925.
- K. W. Ogilvie, R. J. Fitzenreiter, and J. D. Scudder. “Observations of electron beams in the low-latitude boundary layer.”. J. Geophys. Res., 89:10723–10732, 1984. DOI: https://doi.org/10.1029/JA089iA12p10723.
- C. Cattell, J. Wygant, J. Dombeck, F. S. Mozer, M. Temerin, and C. T. Russell. “Observations of large amplitude parallel electric field wave packets at the plasma sheet boundary.”. Geophys. Res. Lett., 25:126–136, 1998. DOI: https://doi.org/10.1029/98GL00497.
- B. T. Tsurutani, J. K. Arballo, G. S. Lakhina, C. M. Ho, B. Buti, J. S. Pickett, and D. A. Gurnett. “Plasma waves in the dayside polar cap boundary layer: Bipolar and monopolar electric pulses and whistler mode waves.”. Geophys. Res. Lett., 25:4117–4120, 1998. DOI: https://doi.org/10.1029/1998GL900114.
- A. A. Mamun. “Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas.”. Phys. Rev. E, 55:1852, 1997. DOI: https://doi.org/10.1103/PhysRevE.55.1852.
- M. S. Alam, M. M. Masud, and A. A. Mamuna. “Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas.”. Chin. Phys. B, 22:115202–115208, 2013. DOI: https://doi.org/10.1088/1674-1056/22/11/115202.
- A. Danehkar. “Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons.”. Plasma Phys. Control. Fusion, 60:065010, 2018. DOI: https://doi.org/10.1088/1361- 6587/aabc40.
- A. E. Dubinov. “On a widespread inaccuracy in defining the mach number of solitons in a plasma.”. Plasma Phys. Rep., 35:991–993, 2009. DOI: https://doi.org/10.1134/S1063780X09110105.
- P. Schippers, M. Blanc, N. Andr´e, I. Dandouras, G. R. Lewis, L. K. Gilbert, A. M. Persoon, N. Krupp, et al. “Multi-instrument analysis of electron populations in Saturn’s magnetosphere.”. J. Geophys. Res., 113:A07208, 2008. DOI: https://doi.org/10.1029/2008JA013098.
- N. S. Saini and I. Kourakis. “Electron beam-plasma interaction and ionacoustic solitary waves in plasmas with a superthermal electron component.”. Plasma Phys. Controlled Fusion, 52:075009, 2010. DOI: https://doi.org/10.1088/0741-3335/52/7/075009.
- E. Saberian, A. Esfandyari-Kalejahi, A. Rastkar-Ebrahimzadeh, and M. Afsari-Ghazi. “Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Lin-ear and fully nonlinear investigation.”. Phys. Plasmas, 20:032307, 2013. DOI: https://doi.org/10.1063/1.4795745.
- O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina. “Low frequency solitons and double layers in a magnetized plasma with two temperature electrons.”. Phys. Plasmas, 19:122308, 2012. DOI: https://doi.org/10.1063/1.4771574.
- S. Ali Shan and H. Saleem. “Electrostatic double layers and soli-tary structures in non-Maxwellian unmagnetized plasmas.”. AIP Advances, 7:085119, 2017. DOI: https://doi.org/10.1063/1.4991082.
- S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar. “Large Mach number ion acoustic rarefactive solitary waves for a two electron temperature warm ion plasma.”. Phys. Plasmas, 3:3939, 1996. DOI: https://doi.org/10.1063/1.871567.
- R. Kakoti and K. Saharia. “Effect of nonextensivity on the char-acteristics of supersolitons in a two-temperature electron plasma.”. Contrib. Plasma Phys., 60:e201900167, 2020. DOI: https://doi.org/10.1002/ctpp.201900167.
- S. V. Badman, N. Achilleos, C. S. Arridge, K. H. Baines, R. H. Brown, E. J. Bunce, A. J. Coates, et al. “Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. ”. J. Geophys. Res., 117:A01211, 2012. DOI: https://doi.org/10.1029/2011JA017222.