10.57647/j.jtap.2024.1806.84

A parametric study on coherent wake emission generation based on relativistic laser plasma interaction

  1. Photonics Department, Sciences and Modern Technologies Faculty, Graduate University of Advanced Technology, Kerman, Iran
  2. Laser Research Department, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
A parametric study on coherent wake emission generation based on relativistic laser plasma interaction

Received: 2024-09-10

Revised: 2024-11-05

Accepted: 2024-11-23

Published 2024-12-30

How to Cite

1.
Rostami Ravari MN, Ganjovi A. A parametric study on coherent wake emission generation based on relativistic laser plasma interaction. J Theor Appl phys. 2024 Dec. 30;18(6):1-12. Available from: https://oiccpress.com/jtap/article/view/8438

PDF views: 54

Abstract

In this work, a 2D Particle-In-Cell-Monte Carlo Collision (PIC-MCC) simulation scheme is used to study the generation of Coherent Wake Emission (CWE) in the process of attosecond pulse generation based on relativistic laser-plasma interactions. This study uniquely contributes to the field by systematically examining the effects of laser pulse intensity, duration, wavelength, and beam waist which are known as the key operating parameters of incident laser for CWE generation in the process of laser-plasma interactions. The specific conditions that maximize the generated CWE fields are identified to confirm the parameter interactions and threshold values that are critical for efficient CWE generation. It is shown that, under optimal conditions, the CWE field magnitude is maximized at a laser intensity of 3×1019W/cm2, with further enhancement at a pulse duration of 10-13s and a beam waist size of 5×10-5m. Additionally, both CWE electric and magnetic fields reach peak values at a wavelength of 10-5m. Besides, the threshold values for CWE electric and magnetic fields in the relativistic region were identified at laser intensities of 1016W/cm2 and 1012W/cm2, respectively, which are achieved with beam waists of 1.5×10-7m and pulse durations of 5×10-16s. Furthermore, results are compared with existing findings in the literature.

Keywords

  • Attosecond Pulse Generation,
  • Coherent Wake Emission,
  • PIC-MCC Simulation Scheme

References

  1. B. Dromey, S. G. Rykovanov, D. Adams, R. Hörlein, Y. Nomura, D. C. Carroll, P. S. Foster, S. Kar, K. Markey, and P. McKenna, “Tunable enhancement of high harmonic emission from laser solid interactions,” Physical review letters, vol. 102, no. 22, p. 225002, 2009, doi: https://doi.org/10.1103/PhysRevLett.102.225002.
  2. F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, and P. Audebert, “Coherent wake emission of high-order harmonics from overdense plasmas,” Physical review letters, vol. 96, no. 12, p. 125004, 2006, doi: https://doi.org/10.1103/PhysRevLett.96.125004.
  3. J. H. Easter, J. A. Nees, B. X. Hou, A. Mordovanakis, G. Mourou, A. G. R. Thomas, and K. Krushelnick, “Angular emission and polarization dependence of harmonics from laser–solid interactions,” New Journal of Physics, vol. 15, no. 2, p. 025035, 2013, doi: https://doi.org/10.1088/1367-2630/15/2/025035.
  4. G. Ma, W. Dallari, A. Borot, F. Krausz, W. Yu, G. D. Tsakiris, and L. Veisz, “Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses,” Physics of Plasmas, vol. 22, no. 3, p. 033105, 2015, doi: https://doi.org/10.1063/1.4914087.
  5. P. A. Cherenkov, “Visible light from clear liquids under the action of gamma radiation,” Comptes Rendus (Doklady) de l’Aeademie des Sciences de l’URSS, vol. 2, no. 8, pp. 451–454, 1934.
  6. P. Kaw and J. Dawson, “Relativistic Nonlinear Propagation of Laser Beams in Cold Overdense Plasmas,” The Physics of Fluids, vol. 13, no. 2, pp. 472–481, Feb. 1970, doi: 10.1063/1.1692942.
  7. G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, E. Hemsing, K. Kusche, P. Muggli, B. O’Shea, X. Wei, O. Williams, V. Yakimenko, and J. B. Rosenzweig, “Dielectric Wakefield Acceleration of a Relativistic Electron Beam in a Slab-Symmetric Dielectric Lined Waveguide,” Phys. Rev. Lett., vol. 108, no. 24, p. 244801, Jun. 2012, doi: 10.1103/PhysRevLett.108.244801.
  8. X. Lavocat-Dubuis and J.-P. Matte, “Numerical and theoretical study of the generation of extreme ultraviolet radiation by relativistic laser interaction with a grating,” Physics of Plasmas, vol. 17, no. 9, 2010, Accessed: Jan. 27, 2024. [Online]. Available: https://pubs.aip.org/aip/pop/article/17/9/093105/261273
  9. X. Liu, D. Yue, Q. Dong, Z. Shao, Z. Li, H. Teng, Z. Wei, F. Liu, B. Li, X. Yuan, M. Chen, Z. Sheng, and J. Zhang, “Generation of extreme-ultraviolet and x-ray light from a propagating nanometer electron layer in few-cycle laser interaction with solid targets,” Phys. Rev. A, vol. 109, no. 4, p. 043519, Apr. 2024, doi: 10.1103/PhysRevA.109.043519.
  10. I. Nam, V. V. Kulagin, M. S. Hur, I. W. Lee, and H. Suk, “Generating nearly single-cycle pulses with increased intensity and strongly asymmetric pulses of petawatt level,” Phys. Rev. E, vol. 85, no. 2, p. 026405, Feb. 2012, doi: 10.1103/PhysRevE.85.026405.
  11. M. N. R. RAVARI, A. Ganjovi, F. Shojaei, and A. Falahat, “Temperature measurements in a manufactured RF plasma jet in various Ar/N _ {2} mixtures,” Turkish Journal of Physics, vol. 41, no. 6, pp. 507–519, 2017, doi: https://doi.org/10.3906/fiz-1705-10.
  12. E. Porat, H. Yehuda, I. Cohen, A. Levanon, and I. Pomerantz, “Diffraction-limited coherent wake emission,” Physical Review Research, vol. 3, no. 3, p. L032059, 2021, doi: https://doi.org/10.1103/PhysRevResearch.3.L032059.
  13. V. E. Fortov, I. T. Iakubov, and A. G. Khrapak, “ELECTRICAL CONDUCTIVITY OF FULLY IONIZED PLASMA,” in Physics of Strongly Coupled Plasma, V. Fortov, I. Iakubov, and A. Khrapak, Eds., Oxford University Press, 2006, p. 0. doi: 10.1093/acprof:oso/9780199299805.003.0007.
  14. A. Barkhordari, A. Ganjovi, I. Mirzaei, A. Falahat, and M. N. Rostami Ravari, “A pulsed plasma jet with the various Ar/N 2 mixtures,” Journal of Theoretical and Applied Physics, vol. 11, pp. 301–312, 2017, doi: https://doi.org/10.1007/s40094-017-0271-y.
  15. J. P. Verboncoeur, “OOPIC: object oriented particle-in-cell code,” in International Conference on Plasma Science (papers in summary form only received), IEEE, 1995, p. 244. doi: https://doi.org/10.1109/PLASMA.1995.533235.
  16. J. P. Verboncoeur, “Particle simulation of plasmas: review and advances,” Plasma Physics and Controlled Fusion, vol. 47, no. 5A, p. A231, 2005, doi: https://doi.org/10.1088/0741-3335/47/5A/017.
  17. V. V. Strelkov, V. T. Platonenko, A. F. Sterzhantov, and M. Y. Ryabikin, “Attosecond electromagnetic pulses: generation, measurement, and application. Generation of high-order harmonics of an intense laser field for attosecond pulse production,” Physics-Uspekhi, vol. 59, no. 5, p. 425, 2016, doi: https://doi.org/10.3367/ufne.2015.12.037670.
  18. J. D. Jackson, Classical electrodynamics. American Association of Physics Teachers, 1999.
  19. L. Lorenz, “XXXVIII. On the identity of the vibrations of light with electrical currents,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 34, no. 230, pp. 287–301, 1867, doi: https://doi.org/10.1080/14786446708639882.
  20. J. Van Bladel, “Lorenz or Lorentz?,” IEEE Antennas and Propagation Magazine, vol. 33, no. 2, pp. 69–69, 1991, doi: https://doi.org/10.1109/MAP.1991.5672647.
  21. A. Arefiev, V. Khudik, A. Robinson, G. Shvets, L. Willingale, and M. Schollmeier, “Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas,” Physics of Plasmas, vol. 23, no. 5, 2016, doi: https://doi.org/10.1063/1.4946024.
  22. A. Spitkovsky and P. Chen, “Laser Shaping and Optimization of the Laser-Plasma Interaction,” in AIP Conference Proceedings, 2001, pp. 183–194. doi: 10.1063/1.1384349.
  23. T. Tajima, X. Q. Yan, and T. Ebisuzaki, “Wakefield acceleration,” Rev. Mod. Plasma Phys., vol. 4, no. 1, p. 7, May 2020, doi: 10.1007/s41614-020-0043-z.
  24. C. Thaury, F. Quere, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, and P. Audebert, “Plasma mirrors for ultrahigh-intensity optics,” Nature Physics, vol. 3, no. 6, pp. 424–429, 2007, doi: https://doi.org/10.1038/nphys595.
  25. D. Adams, B. Dromey, M. Geissler, S. Kar, K. Markey, M. Zepf, R. Hörlein, Y. Nomura, S. Rykovanov, G. Tsakiris, and others, “Tunable enhancement of coherent wake emission harmonics from laser solid interactions,” HIGH POWER LASER SCIENCE I Femtosecond Pulse Physics, vol. CENTRAL LASER FACILITY Annual Report 2008/2009, pp. 76–78, 2009.
  26. M. King, R. Wilson, E. F. J. Bacon, E. J. Dolier, T. P. Frazer, J. Goodman, R. J. Gray, and P. McKenna, “Perspectives on laser-plasma physics in the relativistic transparency regime,” Eur. Phys. J. A, vol. 59, no. 6, p. 132, Jun. 2023, doi: 10.1140/epja/s10050-023-01043-2.
  27. V. Bagnoud, J. Hornung, T. Schlegel, B. Zielbauer, C. Brabetz, M. Roth, P. Hilz, M. Haug, J. Schreiber, and F. Wagner, “Studying the Dynamics of Relativistic Laser-Plasma Interaction on Thin Foils by Means of Fourier-Transform Spectral Interferometry,” Phys. Rev. Lett., vol. 118, no. 25, p. 255003, Jun. 2017, doi: 10.1103/PhysRevLett.118.255003.
  28. F. Böhle, M. Thévenet, M. Bocoum, A. Vernier, S. Haessler, and R. Lopez-Martens, “Generation of XUV spectral continua from relativistic plasma mirrors driven in the near-single-cycle limit,” J. Phys. Photonics, vol. 2, no. 3, p. 034010, Jul. 2020, doi: 10.1088/2515-7647/ab9715.
  29. H. Kallala, F. Quéré, and H. Vincenti, “Techniques to generate intense isolated attosecond pulses from relativistic plasma mirrors,” Phys. Rev. Research, vol. 2, no. 4, p. 043007, Oct. 2020, doi: 10.1103/PhysRevResearch.2.043007.
  30. D. Golovin, A. Yogo, T. Pikuz, A. Faenov, H. Nishimura, M. Alkhimova, I. Skobelev, S. Pikuz, Y. Abe, and Y. Arikawa, “Development of laser driven kilo-Tesla magnetic field generator in micron scale,” presented at the 12th International Conference on High Energy Density Laboratory Astrophysics (HEDLA), Kurashiki, Okayama, Japan: Institute of Laser Engineering, Osaka University, 2018.
  31. F. Wan, C. Lv, K. Xue, Z.-K. Dou, Q. Zhao, M. Ababekri, W.-Q. Wei, Z.-P. Li, Y.-T. Zhao, and J.-X. Li, “Simulations of spin/polarization-resolved laser–plasma interactions in the nonlinear QED regime,” Matter and Radiation at Extremes, vol. 8, no. 6, p. 064002, Sep. 2023, doi: 10.1063/5.0163929.
  32. L. Fedeli, A. Formenti, L. Cialfi, A. Pazzaglia, and M. Passoni, “Ultra-intense laser interaction with nanostructured near-critical plasmas,” Sci Rep, vol. 8, no. 1, p. 3834, Mar. 2018, doi: 10.1038/s41598-018-22147-6.
  33. S. Kubodera, Y. Nagata, Y. Akiyama, K. Midorikawa, M. Obara, H. Tashiro, and K. Toyoda, “High-order harmonic generation in laser-produced ions,” Physical Review A, vol. 48, no. 6, p. 4576, 1993.
  34. H. K. Malik, S. Kumar, and Y. Nishida, “Electron acceleration by laser produced wake field: Pulse shape effect,” Optics Communications, vol. 280, no. 2, pp. 417–423, 2007, doi: https://doi.org/10.1016/j.optcom.2007.08.013.
  35. Y. Heydarzadeh and H. Akou, “Effect of Laser Polarization Mode on Wake Wave Excitation in Magnetized Plasma,” IEEE Trans. Plasma Sci., vol. 48, no. 9, pp. 3088–3097, Sep. 2020, doi: 10.1109/TPS.2020.3014699.
  36. P. Tomassini, V. Horny, and D. Doria, “Attosecond Pulses from Ionization Injection Wakefield Accelerators,” Instruments, vol. 7, no. 4, p. 34, 2023.
  37. X. Wang, G. Hu, B. Shen, H. Tang, Z. Zhang, and Y. Gu, “Correlation of fast electron ejections, terahertz waves, and harmonics emitted from plasma mirrors driven by sub-relativistic ultrashort laser pulse,” AIP Advances, vol. 12, no. 5, May 2022, doi: 10.1063/5.0077354.
  38. I. Y. Elnasharty, “Study on the influence of laser pulse duration in the long nanosecond regime on the laser induced plasma spectroscopy,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 124, pp. 1–15, Oct. 2016, doi: 10.1016/j.sab.2016.08.004.
  39. K. Gopal, D. N. Gupta, and H. Suk, “Pulse-length Effect on Laser Wakefield Acceleration of Electrons by Skewed Laser Pulses,” IEEE Transactions on Plasma Science, vol. 49, no. 3, pp. 1152–1158, Mar. 2021, doi: 10.1109/TPS.2021.3059643.
  40. V. Sharma and V. Thakur, “Maximizing energy efficiency in laser-plasma electron acceleration through pulse length and plasma density optimization,” J Opt, pp. 1–8, Mar. 2024, doi: 10.1007/s12596-024-01758-5.
  41. O. J. Allegre, “Laser Beam Measurement and Characterization Techniques,” in Handbook of Laser Micro- and Nano-Engineering, K. Sugioka, Ed., Cham: Springer International Publishing, 2021, pp. 1885–1925. doi: 10.1007/978-3-030-63647-0_45.
  42. V. F. Kovalev and V. Yu. Bychenkov, “Analytic theory of relativistic self-focusing for a Gaussian light beam entering a plasma: Renormalization-group approach,” Phys. Rev. E, vol. 99, no. 4, p. 043201, Apr. 2019, doi: 10.1103/PhysRevE.99.043201.
  43. S. T. Mahmoud and R. P. Sharma, “Relativistic self-focusing and its effect on stimulated Raman and stimulated Brillouin scattering in laser plasma interaction,” Physics of Plasmas, vol. 8, no. 7, pp. 3419–3426, Jul. 2001, doi: 10.1063/1.1377048.
  44. C. Schroeder, C. Benedetti, E. Esarey, J. van Tilborg, and W. Leemans, “Group velocity and pulse lengthening of mismatched laser pulses in plasma channels,” Physics of Plasmas, vol. 18, no. 8, 2011.
  45. H. Zhong, L. Zhang, Y. Li, and D. Fan, “Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation,” Scientific Reports, vol. 5, no. 1, p. 10887, 2015.
  46. B. Cros, “Laser-driven plasma wakefield: Propagation effects,” arXiv preprint arXiv:1705.10566, 2017.
  47. A. K. Upadhyay, S. A. Samant, and S. Krishnagopal, “Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration,” Physics of Plasmas, vol. 20, no. 1, 2013.