Identify the color of pollution with fabrication of nanofibers for smart masks containing antibacterial nanoparticles and photoluminescence
- Physics Department, West Tehran Branch, Islamic Azad University, Tehran, Iran
- Department Of Physics, Saxion University, Enschede, Overijssel, Netherlands
Received: 2024-10-09
Revised: 2024-11-05
Accepted: 2024-11-20
Published 2024-12-30
Copyright (c) -1 Amir Hoshang Ramezani, Zhaleh Ebrahiminejad, Somayeh Asgary, Laya Dejam, Kasra Behzad (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 31
Abstract
This work presents a comprehensive investigation into the fabrication and characterization of nanofibers comprising silver nanoparticles and carbon nanoparticles. The nanofibers were synthesized through the electrospinning method, employing a range of voltages (5 to 20 kV) to explore their structural and functional variations. Analytical techniques, including XRD, SEM, UV-VIS, and (PL), were employed to scrutinize the nanofiber structure and properties.
The XRD analysis exposed distinct crystal planes in silver nanoparticles. Antibacterial tests revealed the remarkable antibacterial properties of these nanofibers, showcasing their efficacy in inhibiting the growth of coliform and pseudomonas bacteria. Furthermore, the PL spectroscopy of nanofibers containing silver nanoparticles and carbon nanoparticles were critically evaluated, considering the impact of pollution and bacteria on the nanofiber's photoluminescence. The findings open new avenues for controlling and preventing the spread of diseases, offering innovative solutions for respiratory protection in the face of environmental challenges.
Keywords
- Nanofibers,
- Luminous carbon,
- Antibacterial silver,
- Smart mask,
- Photoluminescence,
- Electrospinning
References
- Huang, Z. M., Zhangb, Y. Z., Kotakic, M. and Ramakrishna, S., A review on polymer nanofi bers by electrospinning and their applications in nanocomposites, Composites Science and Technology , 63 , 2223–53. (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
- Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M. and Steinhart, M., et al., Nanostructured fibers via electrospinning, Advanced Materials, 13, 70–2. (2001). https://doi.org/10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
- Choi, S. W., Jo, S. M., Lee, W. S. and Kim, Y.-R., An electrospun poly(vinylidene fl uoride) nanofi brous membrane and its battery applications, Advanced Materials , 15 , 2027–32. (2003). https://doi.org/10.1002/adma.200304617
- . Kim, G. M., Michler, G. H., Ania, F. and Calleja, F. J. B., Temperature dependence of polymorphism in electrospun nanofi bres of PA6 and PA6/clay nanocomposite, Polymer , 48 , 4814–23. (2007). https://doi.org/10.1016/j.polymer.2007.05.082
- Huang, L., McMillan, R. A., Apkarian, R. P., Pourdeyhimi, B., Conticello, V. P. and Chaikof, E. L., Generation of synthetic elastin-mimetic small diameter fibers and fiber networks, Macromolecules , 33 , 2989–97. (2000). DOI: 10.1021/ma991858f
- Naragund, V. S., & Panda, P. K. Electrospun nanofiber-based respiratory face masks-A review. Emergent materials, 5(2), 261-278. (2022). doi: 10.1007/s42247-022-00350-6
- W. Essa, S. Yasin, I. Saeed, G. Ali, Nanofiber-based face masks and respirators as COVID-19 protection: a review, Membranes 11 250, https://doi.org/ 10.3390/membranes11040250.
- Z. Zhang, D. Ji, H. He, S. Ramakrishna, Electrospun ultrafine fibers for advanced face masks, Mater. Sci. Eng. R Rep. 143 (2021), 100594, https://doi.org/ 10.1016/j.mser.2020.100594.
- I. Armentano, M. Barbanera, E. Carota, S. Crognale, M. Marconi, S. Rossi, G. Rubino, M. Scungio, J. Taborri, G. Calabr`o, Polymer materials for respiratory protection: processing, end use, and testing methods, ACS Appl. Polym. Mater. 3 531–548, (2021). https://dx.doi.org/10.1021/acsapm.0c01151
- S. Das, S. Sarkar, A. Das, S. Das, P. Chakraborty, J. Sarkar, A comprehensive review of various categories of face masks resistant to Covid-19, Clin. Epidemiol. Glob. Health 12 100835, (2021), doi: 10.1016/j.cegh.2021.100835
- S. Rossettie, C. Perry, M. Pourghaed, M. Zumwalt, Effectiveness of manufactured surgical masks, respirators, and home-made masks in prevention of respiratory infection due to airborne microorganisms, Chronicles 8 (2020) 11–26, https:// doi.org/10.12746/swrccc.v8i34.675.
- Maher, A., Abdo, M. S., & Abdo, H. S. Nanotechnology-Enhanced Face Masks: Future Scopes and Perspectives. Advances in Materials Science and Engineering, (2022), https://doi.org/10.1155/2022/1497910
- De Sio, L., Ding, B., Focsan, M., Kogermann, K., Pascoal‐Faria, P., Petronela, F & Pierini, F., Personalized reusable face masks with smart nano‐assisted destruction of pathogens for COVID‐19: A Visionary Road. Chemistry–A European Journal, 27(20), 6112-6130. (2021). https://doi.org/10.1002/chem.202004875
- Cimini, A., Imperi, E., Picano, A., & Rossi, M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. Applied Materials Today, 32, 101833. (2023). https://doi.org/10.1016/j.apmt.2023.101833
- Le, T. T., Curry, E. J., Vinikoor, T., Das, R., Liu, Y., Sheets, D., ... & Nguyen, T. D.. Piezoelectric nanofiber membrane for reusable, stable, and highly functional face mask filter with long‐term biodegradability. Advanced Functional Materials, 32(20), 2113040. (2022). https://doi.org/10.1002/adfm.202113040.
- Cho, Y., Son, Y., Ahn, J., Lim, H., Ahn, S., Lee, J., ... & Kim, I. D.. Multifunctional filter membranes based on self-assembled core–shell biodegradable nanofibers for persistent electrostatic filtration through the triboelectric effect. ACS nano, 16(11), 19451-19463. (2022). DOI: 10.1021/acsnano.2c09165
- Zhang, F., Lin, J., Yang, M., Wang, Y., Ye, Z., He, J., ... & Wang, B.. High-breathable, antimicrobial and water-repellent face mask for breath monitoring. Chemical Engineering Journal, 466, 143150. (2023). DOI: 10.1016/j.cej.2023.143150
- A. H. Ramezani, S. Hoseinzadeh and Zh. Ebrahiminejad, Statistical and fractal analysis of nitrogen ion implanted tantalum thin films, Applied Physics A, 126, 481, (2020). https://doi.org/10.1007/s00339-020-03671-7
- Cheng, Y., Wang, C., Zhong, J., Lin, S., Xiao, Y., Zhong, Q., ... & Zhou, J. Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 34, 562-569. (2017). https://doi.org/10.1016/j.nanoen.2017.03.011
- A. H. Ramezani, M. R. Hantehzadeh, M. Ghoranneviss and E. Darabi, Structural modification of tantalum crystal induced by nitrogen ion implantation, Bulletin of Materials Science, 39, 633-640, (2016). https://doi.org/10.1007/s12034-016-1212-0
- Zhao, P., Wang, R., Xiang, J., Zhang, J., Wu, X., Chen, C., & Liu, G. Antibacterial, antiviral, and biodegradable collagen network mask for effective particulate removal and wireless breath monitoring. Journal of Hazardous Materials, 456, 131654. (2023). doi: 10.1016/j.jhazmat.2023.131654
- Suo, J., Liu, Y., Wu, C., Chen, M., Huang, Q., Liu, Y., ... & Li, W. J. Wide‐Bandwidth Nanocomposite‐Sensor Integrated Smart Mask for Tracking Multiphase Respiratory Activities. Advanced Science, 9(31), 2203565. (2022). https://doi.org/10.1002/advs.202203565
- Lee, P., Kim, H., Kim, Y., Choi, W., Zitouni, M. S., Khandoker, A., ... & Jeong, Y.. Beyond pathogen filtration: Possibility of smart masks as wearable devices for personal and group health and safety management. JMIR mHealth and uHealth, 10(6), 38614. (2022). DOI: 10.2196/38614