10.57647/j.jtap.2024.1806.79

Quantum entanglement dynamics of the three-qubit Wζ quantum state coupled to spin chain with ternary interaction

  1. Department of Physics, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
Quantum entanglement dynamics of the three-qubit Wζ quantum state coupled to spin chain with ternary interaction

Received: 2024-05-28

Revised: 2024-10-02

Accepted: 2024-11-09

Published 2024-12-30

How to Cite

1.
Moosavi Khansari SM, Kazemi Hasanvand F. Quantum entanglement dynamics of the three-qubit Wζ quantum state coupled to spin chain with ternary interaction. J Theor Appl phys. 2024 Dec. 30;18(6):1-14. Available from: https://oiccpress.com/jtap/article/view/8335

PDF views: 33

Abstract

In this study, we explore the dynamics of quantum entanglement using the negativity criterion for the  quantum state. We investigate changes in negativity in terms of anisotropy parameters, , the strength of the external magnetic field applied to the spin chain, , the triple interaction strength, . We examine how these parameters affect the entanglement properties of the system and discuss the implications for quantum information processing and quantum communication protocols. By analyzing the negativity of the  state under different conditions, we gain insights into the behavior of entanglement in complex quantum systems. Our results shed light on the intricate interplay between various factors that influence quantum entanglement and provide a foundation for further investigations in this field of research

Keywords

  • Anisotropy,
  • Negativity,
  • uantum entanglement,
  • Wζ quantum state

References

  1. Bennett, C.H.: Quantum Cryptography Using Any Two Nonorthogonal States. Phys. Rev. Lett. 68, 3121 (1992)
  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A.,Wootters,W.K: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1899 (1993)
  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)
  4. Bennett, C.H., Wiesner, S.J.: Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States. Phys. Rev. Lett. 69, 2881 (1992)
  5. Acin, A., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)
  6. Grover, L.K.: Quantum Mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
  7. Nielsen, M. A., Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
  8. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)
  9. Bennett, C., DiVincenzo, D. Quantum information and computation. Nature 404, 247255 (2000). https://doi.org/10.1038/35005001
  10. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715
  11. M. Lucamarini, S. Paganelli, S. Mancini, Phys. Rev. A 69, 062308 (2004). https://doi.org/10.1103/PhysRevA.69.062308
  12. A. Hutton, S. Bose, Phys. Rev. A 69, 042312 (2004). https://doi.org/10.1103/PhysRevA.69.042312
  13. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004). https://doi.org/10.1103/PhysRevLett.93.140404
  14. K. Roszak, P. Machnikowski, Phys. Rev. A 73, 022313 (2006). https://doi.org/10.1103/PhysRevA.73.022313
  15. L. Derkacz, L. Jakobczyk, Phys. Rev. A 74, 032313 (2006). https://doi.org/10.1103/PhysRevA.74.032313
  16. X.Y. Yuan, H.S. Goan, K.D. Zhu, Phys. Rev. B 75, 045331 (2007). https://doi.org/10.1103/PhysRevB.75.045331
  17. M. Hernandez, M. Orszag, Phys. Rev. A 78, 042114 (2008). https://doi.org/10.1103/PhysRevA.78.042114
  18. F. Kazemi. Hasanvand, N. Naderi;“ Correlation dynamics of a qubit system interacting with a qutrit environment embedded in a magnetic field”; Eur. Phys. J. Plus, 136 (2021) 475-486.
  19. M. Jafarpour, F. Kazemi Hasanvand, and D. Afshar; “Dynamics of Entanglement and Measurement-Induced Disturbance for a Hybrid Qubit-Qutrit System Interacting with a Spin-Chain Environment: A Mean Field Approach”; Commun. Theor. Phys. 67 (2017) 27–32.
  20. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006). https://doi.org/10.1103/PhysRevLett.96.140604
  21. Z. Sun, X.G. Wang, C.P. Sun, Phys. Rev. A 75, 062312 (2007). https://doi.org/10.1103/PhysRevA.75.062312
  22. X.S. Ma, A.M. Wang, Y. Cao, Phys. Rev. B 76, 155327 (2007). https://doi.org/10.1103/PhysRevB.76.155327
  23. X.X. Yi, H.T. Cui, L.C. Wang, Phys. Rev. A 74, 054102 (2006). https://doi.org/10.1103/PhysRevA.74.054102
  24. Y.C. Ou, H. Fan, J. Phys. A Math. Theor. 40, 054102 (2007). doi 10.1088/1751-8113/40/10/014
  25. Z.G. Yuan, P. Zhang, S.S. Li, Phys. Rev. A 75, 012102 (2007). https://doi.org/10.1103/PhysRevA.75.012102
  26. Z.G. Yuan, P. Zhang, S.S. Li, Phys. Rev. A 76, 042118 (2007). https://doi.org/10.1103/PhysRevA.76.042118
  27. X.S. Ma, H.S. Cong, J.Y. Zhang, A.M. Wang, Eur. Phys. J. D 48, 285 (2008). https://doi.org/10.1140/epjd/e2008-00100-9
  28. S.L. Zhu, Phys. Rev. Lett. 96, 077206 (2006). https://doi.org/10.1103/PhysRevLett.96.077206
  29. P. Zanardi, H.T. Quan, X.G. Wang, C.P Sun, Phys. Rev. A 75, 032109 (2007). https://doi.org/10.1103/PhysRevA.75.032109
  30. A.M. Tsvelik, Phys. Rev. B 42, 779 (1990). https://doi.org/10.1103/PhysRevB.42.779
  31. H. Frahm, J. Phys. A 25, 1417 (1992). doi 10.1088/0305-4470/25/6/005
  32. A.A. Zvyagin, J. Phys. A 34, R21 (2001). doi 10.1088/0305-4470/34/41/201
  33. A.A. Zvyagin, A. Klumper, Phys. Rev. B 68, 144426 (2003). https://doi.org/10.1103/PhysRevB.68.144426
  34. P. Lou, W.C. Wu, M.C. Chang, Phys. Rev. B 70, 064405 (2004). https://doi.org/10.1103/PhysRevB.70.064405
  35. W.W. Cheng, J.M. Liu, Phys. Rev. A 81, 044304 (2010). https://doi.org/10.1103/PhysRevA.81.044304
  36. G. Vidal and R. F. Werner;"Computable measure of entanglement"; Phys. Rev. A 65 (2002) 032314. https://doi.org/10.1103/PhysRevA.65.032314
  37. S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith, Nature 425, 48 (2003). https://doi.org/10.1038/nature01888
  38. T. V´ertesi and E. Bene, Phys. Rev. B 73, 134404 (2006). https://doi.org/10.1103/PhysRevB.73.134404
  39. A. M. Souza, M. S. Reis, D. O. Soares-Pinto, I. S. Oliveira, and R. S. Sarthour, Phys. Rev. B 77, 104402 (2008).
  40. https://doi.org/10.1103/PhysRevB.77.104402
  41. T. G. Rappoport, L. Ghivelder, J. C. Fenandes, R. B. Guiaraes, and M. A. Continentino, Phys. Rev. B 75, 054422 (2007).
  42. https://doi.org/10.1103/PhysRevB.75.054422
  43. A. A. Zvyagin, Phys. Rev. B 80, 014414 (2009).
  44. https://doi.org/10.1103/PhysRevB.80.014414
  45. M. Roger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod. Phys. 55, 1 (1983). https://doi.org/10.1103/RevModPhys.55.1