10.57647/j.jtap.2024.1806.78

Assessment of a compressible lattice Boltzmann method in analyzing shock wave/boundary layer interaction in a supersonic inlet

  1. Aerospace Division, Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
Assessment of a compressible lattice Boltzmann method in analyzing shock wave/boundary layer interaction in a supersonic inlet

Received: 2024-09-24

Revised: 2024-10-26

Accepted: 2024-11-04

Published 2024-12-30

How to Cite

1.
Hosseini H, Goshtasbi Rad E. Assessment of a compressible lattice Boltzmann method in analyzing shock wave/boundary layer interaction in a supersonic inlet. J Theor Appl phys. 2024 Dec. 30;18(6):1-12. Available from: https://oiccpress.com/jtap/article/view/8334

PDF views: 73

Abstract

The double distribution function lattice Boltzmann method (DDF LBM) has been explored for its potential applications in a supersonic inlet. The goal is to evaluate its ability to estimate the physics of shock wave/boundary layer interaction (SWBLI), including shock formation and separation bubble size. To validate the stability characteristics of DDF LBM, authors studied a well-known benchmark problem—the shock tube and the compressible flow around an airfoil. This involved calculating the propagation of normal and oblique shocks and predicting the location of contact discontinuities. Subsequently, the method was tested to predict the physics of shock wave and boundary layer interaction near a supersonic inlet. Notably, accurate predictions require careful consideration of space discretization, proper selection of the Courant-Friedrichs-Lewy (CFL) number, and parameter adjustments. Two discretization schemes—the fifth-order weighted essentially non-oscillatory (WENO) and the third-order weighted non-free-parameter dissipation (WNND) schemes—were assessed for their effectiveness in capturing the relevant physics.

Keywords

  • Lattice Boltzmann method,
  • Compressible flow,
  • Shock wave/boundary layer interaction

References

  1. - Kruger T., Kusumaatmaja H., Kuzmin A., Shardt O., Silva G., Viggen E.M., (2017), "The lattice Boltzmann method; principles and practice", Springer, https://doi.org/10.1007/978-3-319-44649-3
  2. - Mohamad A.A., (2011), "Lattice Boltzmann method; Fundamentals and engineering applications with computer codes", Springer, https://doi.org/10.1007/978-0-85729-455-5
  3. - Latt J., (2007), "Hydrodynamic limit of lattice Boltzmann equations", PhD dissertation, University of Geneva, https://doi.org/10.13097/archive-ouverte/unige:464
  4. - Viggen E.M., (2009), "The lattice Boltzmann method with applications in acoustics", Master Thesis, Norwegian University of Science and Technology
  5. - Dolling D.S., (2001), "Fifty years of shock-wave/boundary-layer interaction research: What next?", AIAA Journal, Vol. 39, No. 8, https://doi.org/10.2514/3.14896
  6. - Kun Q., (2008), "Development of lattice Boltzmann method for compressible flows", PhD dissertation, National University of Singapore
  7. - Xu A.G., Zhang G.C., Gan Y.B., Chen F., Yu X.J., (2012), "Lattice Boltzmann modeling and simulation of compressible flows", Front. Phys, Vol 7, No 5, Pages 582-600, https://doi.org/10.1007/s11467-012-0269-5
  8. - Li K., Zhong C., (2014), "A lattice Boltzmann model for simulation of compressible flows", International Journal for Numerical Methods in Fluids, https://doi.org/10.1002/fld.3984
  9. - Li Q., He Y.L., Wang Y., Tao W.Q., (2007), “Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations”, Physical review E 76, https://doi.org/10.1103/physreve.76.056705
  10. - Qiu R.F., You Y.C., Zhu C.X., Chen R.Q., (2017), "Lattice Boltzmann simulation for high-speed compressible viscous flows with a boundary layer", Applied Mathematical Modeling, Vol 48, Pages 567-583, https://doi.org/10.1016/j.apm.2017.03.016
  11. - Jammalamadaka A., Li Y., Gopalakrishnan P., Zhang R., Chen H., (2018), "Simulation of a canonical shock wave-boundary layer interaction using an LBM-VLES approach", Aviation Forum, Fluid Dynamics Conference, June 25-29, Atlanta, Georgia, https://doi.org/10.2514/6.2018-4030
  12. - Qiu R.F., Che H.H., Zhou T., Zhu J.F., You Y.C., (2020), "Lattice Boltzmann simulation for unsteady shock wave/boundary layer interaction in a shock tube", Computers and Mathematics with Applications, https://doi.org/10.1016/j.camwa.2020.07.012
  13. - Zhou G., Xu K., Liu F., (2018), “Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube”, Physics of fluids, https://doi.org/10.1063/1.4998300
  14. - Viggen E.M., (2014), "The lattice Boltzmann method: Fundamentals and acoustics", PhD dissertation, Norwegian University of Science and Technology
  15. - Prasiankis N.I., Karlin I.V., (2008), "Lattice Boltzmann method for simulation of compressible flows on standard lattices", Physical Review E78, https://doi.org/10.1103/physreve.78.016704
  16. - Yang L.M., Shu J., Wu J., Zhao N., Lu Z.L., (2013), "Circular function-based gas-kinetic scheme for simulation of inviscid compressible flows", Journal of Computational Physics, No 255, Pages 540-557, https://doi.org/10.1016/j.jcp.2013.08.025
  17. - He B., Chen Y., Feng W., Li Q., Song A., Wang Y., Zhang M., Zhang W., (2012), "Compressible lattice Boltzmann method and applications", International Journal of Numerical Analysis and Modeling, Vol 9, No 2, Pages 410-418, https://doi.org/10.1007/978-3-642-11842-5_3
  18. - Hinton F.L., Rosenbluth M.N., Wong S.K., Lin-Liu Y.R., Miller R.L., (2000), "Modified lattice Boltzmann method for compressible fluid simulations", Physical Review E, https://doi.org/10.1103/physreve.63.061212
  19. - Chen F., Xu A., Zhang G., Li Y., Succi S., (2010), "Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number", A letters Journal Exploring the Frontiers of Physics, https://doi.org/10.1209/0295-5075/90/54003
  20. - Hejranfar K., Ghaffarian A., "A spectral difference lattice Boltzmann method for solution of inviscid compressible flows on structured grids", Computers and Mathematics with Applications, https://doi.org/10.1016/j.camwa.2016.06.043
  21. - Qian Y.H., d'Humieres D., Lallemand P., (1992), "Lattice BGK models for Navier-Stokes equation", Europhysics Letters, Vol 17, No 6, Pages 479-484, https://doi.org/10.1209/0295-5075/17/6/001
  22. - Wang Y., He Y.L., Li Q., Tang G.H., Tao W.Q., (2010), "Lattice Boltzmann model for simulating viscous compressible flows", International Journal of Modern Physics C, Vol 21, No 3, Pages 383-407, https://doi.org/10.1142/s0129183110015178
  23. - Coreixas C., Wissocq G., Chopard B., Latt J., (2020), "Impact of collision models on the physical properties and the stability of lattice Boltzmann methods", Philosophical Transactions A, https://doi.org/10.1098/rsta.2019.0397
  24. - Latt, J., Coreixas C., Beny J., Parmigiani A., (2020), "Efficient supersonic flows through high-order guided equilibrium with lattice Boltzmann", Philosophical Transactions A
  25. - Sun C., Hsu A., (2003), "Three-dimensional lattice Boltzmann model for compressible flows", Physical Review E, Vol 68, https://doi.org/10.1103/physreve.68.016303
  26. - Dolling D.S., Or C.T., (1985), "Unsteadiness of the shock wave structure in attached and separated compression ramp flows", Experiments in Fluids, Vol 3, Pages 24-32, https://doi.org/10.2514/6.1983-1715
  27. - Fage A., Sargent R.F., (2012), "Shock-wave and boundary-layer phenomena near a flat surface", Proceedings of the Royal Society A, Mathematical, Physical & Engineering Sciences, No 190, 1-20, https://doi.org/10.1098/rspa.1947.0058
  28. - Gan T., Wu Y., Sun Z., Jin D., Song H., Jia M., (2018), "Shock wave boundary layer interaction controlled by surface arc plasma actuators", Physics of Fluids, Vol 30, https://doi.org/10.1063/1.5013166
  29. - Grilli M., Schmid P.J., Hickel S., Adams N.A., (2012), "Analysis of unsteady behavior in shockwave turbulent boundary layer interaction", Journal of Fluid Mechanics, Vol 700, Pages 16-28, https://doi.org/10.1017/jfm.2012.37
  30. - Hadjadj A., (2012), "Large-eddy simulation of shock/boundary-layer interaction", AIAA Journal, Vol. 50, No.12, https://doi.org/10.2514/1.j051786
  31. - Verschaeve J.C.G., (2011), "Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method", Philosophical Transactions of the Royal Society, Vol 369, Pages 2184-2192, https://doi.org/10.1098/rsta.2011.0045
  32. - Renard F., Feng Y., B J.F., Sagaut P., (2020), "Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows", Physics, Fluid dynamics, https://doi.org/10.1016/j.compfluid.2021.104867
  33. - Li Y., Fan H., Nie X., Zhang R., Shan X., Chen H., Chi X., Shih T.I.P., (2009), "Application of a higher order lattice Boltmann hybrid method for simulation of compressible viscous flows with curved boundaries", 47th AIAA aerospace sciences meeting, 5-8 Jan, Orlando, Florida, https://doi.org/10.2514/6.2009-1336
  34. - Feng Y., Sagaut P., Tao W., (2016), "A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices", Computers and fluids, https://doi.org/10.1016/j.compfluid.2016.03.009
  35. - Konig B., Fares E., Wright M.C.N., (2010), "Lattice Boltzmann simulation of the ETW slotted wall test section", S&T Organization
  36. - Oliver A.B., Lillard R.P., Schwing A.M., Blaisdell G.A., Lyrintzis A.S., (2007), "Assessment of turbulent shock-boundary layer interaction computations using the OVERFLOW code", 45th AIAA Aerospace Sciences Meeting and Exhibit, 8-11 January, Reno, Nevada, https://doi.org/10.2514/6.2007-104
  37. - Yao J., Lin T., Liu G.R., Chen C.L., (2014), "An adaptive GSM-CFD solver and its application to shock-wave boundary layer interaction", International Journal of Numerical Methods for Heat and Fluid Flow, Vol 25, No 6, Pages 1282-1310, https://doi.org/10.1108/hff-07-2014-0220
  38. - Sun C., (2000), "Adaptive lattice Boltzmann model for compressible flows: Viscous and conductive properties", Physical Review E, Vol 61, No 3, https://doi.org/10.1103/physreve.61.2645
  39. - Soltani M.R., Daliri A., Younesi J.S., (2016), "Effects of shock wave/boundary-layer interaction on performance and stability of a mixed-compression inlet", Scientia Iranica, Vol 23, No 4, Pages 1811-1825, https://doi.org/10.24200/sci.2016.3928
  40. - Sadeghi R., Shadloo M.S., Hopp-Hirschler M., Hadjadj A., Nieken U., (2017), "Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media", Computers and Mathematics with Applications, https://doi.org/10.1016/j.camwa.2017.12.028
  41. - Saadat M.H., Bosch F., Karlin I.V., (2020), "Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes", Physical Review E, Vol 101, https://doi.org/10.1103/physreve.101.023311
  42. - Running C.L., Juliano T.J., Jewell J.S., Borg M.P., Kimmel R.L., (2019), "Hypersonic shock-wave/boundary-layer interactions on a cone/flare", Experimental Thermal and Fluid Science, Vol 109, https://doi.org/10.2514/6.2018-3702
  43. - Degrez G., Boccadoro C.H., Wendt J.F., (1987), "The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study", Journal of Fluid Mechanics, Vol 177, Pages 247-263, https://doi.org/10.1017/s0022112087000946
  44. - Coreixas C., Chopard B., Latt J., (2019), "Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations", Physical Review E, Vol 100, https://doi.org/10.1103/physreve.100.033305
  45. - Chen S., Doolen G.D., (1998), "Lattice Boltzmann method for fluid flows", Annual Review of Fluid Mechanics, Vol 30, Pages 329-364, https://doi.org/10.1146/annurev.fluid.30.1.329
  46. - Agostini, L., Larcheveque L., Dupont P., Debieve J.F., Dussauge J.P., (2012), "Zones of influence and shock motion in a shock/boundary-layer interaction", AIAA Journal, https://doi.org/10.2514/1.j051516
  47. - Saadat M.H., Karlin I.V., (2020), "Arbitrary Lagrangian-Eulerian formulation of lattice Boltzmann model for compressible flows on unstructured moving meshes", Physics Computations, https://doi.org/10.1063/5.0004024
  48. - Ribeiro A.F.P., Singh D., Konig B., Fares E., (2017), "Buffet simulations with a lattice-Boltzmann based transonic solver", AIAA SciTech Forum, 55th Aerospace Sciences Meeting, 9-13 January, Grapevine, Texas, https://doi.org/10.2514/6.2017-1438
  49. - Qiu R.F., Zhu C.X., Chen R.Q., Zhu Y.C., You Y.C., (2018), "A double-distribution-function lattice Boltzmann model for high-speed compressible viscous flows", Computers and Fluids, Vol 166, Pages 24-31, https://doi.org/10.1016/j.compfluid.2018.01.039
  50. - Lallemand P., Luo L.S., (2000), "Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance and stability", Physical Review E, Vol 61, No 6, https://doi.org/10.1103/physreve.61.6546
  51. - Ji C.Z., Shu C., Zhao N., (2009), "A lattice Boltzmann method-based flux solver and its application to solve shock tube problem", Modern Physics Letters B, Vol 23, No 3, Pages 313-316, https://doi.org/10.1142/s021798490901828x
  52. - Malaspinas C., Sagaut P., (2011), "Advanced large-eddy simulation for lattice Boltzmann methods: The approximate deconvolution model", Physics of Fluids, Vol 23, https://doi.org/10.1063/1.3650422
  53. - Lew P.T., Gopalakrishnan P., Casalino D., Shock R., Li Y., Zhang R., Chen H., (2014), "An extended lattice Boltzmann methodology for high subsonic jet noise prediction", 20th AIAA/CEAS aeroacoustics conference, AIAA aviation, 16-20 June, Atlanta, GA, https://doi.org/10.2514/6.2014-2755
  54. - Casalino D., Lele S.K., (2014), "Lattice Boltzmann simulation of coaxial jet noise generation", Center for turbulence research, Proceedings of the summer program
  55. - Yu D., Mei R., Luo L.S., Shyy W., (2003), "Viscous flow computations with the method of lattice Boltzmann equation", Progress in aerospace sciences, Vol 39, Pages 329-367, https://doi.org/10.1016/s0376-0421(03)00003-4
  56. - Li Q., He Y.L., Wang Y., Tao W.Q., (2007), "Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations", Physical Review E, Vol 76, https://doi.org/10.1103/physreve.76.056705
  57. - Doerffer P., Szulc O., Magagnato F., (2005), “Unsteady shock wave-turbulent boundary layer interaction in the Laval nozzle”, Task Quarterly 9, No 1, 115-132
  58. - Polivanov P.A., Sidorenko A.A., Maslov A.A., (2015), “Transition effect on shock wave/boundary layer interaction at M=1.47”, AIAA SciTech, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, https://doi.org/10.2514/6.2015-1974
  59. - Pirozzoli S., Bernardini M., (2011), “Direct numerical simulation database for impinging shoch wave/turbulent boundary-layer interaction”, AIAA Journal, Vol 49, No 6, https://doi.org/10.2514/1.j050901
  60. - Loginov M.S., Adams N.A., Zheltovodov A.A., (2006), “Large-eddy simulation of shock-wave/turbulent boundary-layer interaction”, Journal of Fluid Mechanics, Vol 565, pp 135-169, https://doi.org/10.1017/s0022112006000930
  61. - Saidi B.H., Tenaud C., Fournier G., (2019), “Direct numerical simulation of the shock wave boundary layer interaction (SWBLI)”, 24th French Congress on Mechanics, Brest
  62. - Wu M., Martin M.P., (2008), “Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data”, Journal of Fluid Mehcnaics, Vol 594, pp 71-83, https://doi.org/10.1017/s0022112007009044
  63. - Nie X., Shan X., Chen H., (2009), “Lattice-Boltzmann/finite difference hybrid simulation of transonic flow”, 47th AIAA Aerospace Sciences Meeting, Orlando, Florida, https://doi.org/10.2514/6.2009-139
  64. - Kopriva J.E., Laskowski G.M., Polidoro F., Li Y., Jammalamadka A., Nardari C., (2019), “Lattice-Boltzmann simulations of an underexoanded jet from a rectangular nozzle with and without aft-deck”, AIAA Propulsion and Energy Forum, Indianapolis, Indiana, https://doi.org/10.2514/6.2019-3929
  65. - Xu A., Lin C., Zhang G., Li Y., (2015), “Multiple-relaxation-time lattice Boltzmann kinetic model for combustion”, Physical Review E, Vol 91, https://doi.org/10.1103/physreve.91.043306
  66. - Qiu R., Zhou T., Bao Y., Zhou K., Che H., You Y., (2021), “Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube”, Physical Review E, Vol 103, https://doi.org/10.1103/physreve.103.053113
  67. - Qiu R., Bao Y., Zhou T., Che H., Chen R., You Y., (2020), “Study of regular reflection shock waves using a mesoscopic kinetic approach: curvature pattern and effects of viscosity”, Physics of fluids, Vol 32, https://doi.org/10.1063/5.0024801
  68. - Zhou C., Zhong C., Li K., Xiong S., Chen X., Cao J., (2010), “Application of lattice Boltzmann method to simulation of compressible turbulent flow”, Communications in Computational Physics, Vol 8, No 5, pp 1208-1223, https://doi.org/10.4208/cicp.300110.070510a
  69. - Hafez M., Wahba E., (2007), “Simulations of viscous transonic flow over lifting airfoils and wings”, Computers and fluids, Vol 36, pp 39-52, https://doi.org/10.2514/6.2005-4802
  70. - Bao Y., Qiu R., Zhou T., Weng Y., Lin K., You Y., (2022), “Study of shock wave/boundary layer interaction from the perspective of non-equilibrium effects”, Physics of Fluids, Vol 34, Issue 34, https://doi.org/10.1063/5.0085570