Study of compressed air pressure on the properties of coatings obtained by supersonic metallization
- Shakarim University NJSC, Engineering Center SC, Semey, Kazakhstan AND Plasma Science LLP, Ust-Kamenogorsk, Kazakhstan
- hakarim University NJSC, Engineering Center SC, Semey, Kazakhstan AND Engineering company MetPro LLP, Semey, Kazakhstan
- Shakarim University NJSC, Engineering Center SC, Semey, Kazakhstan
- Shakarim University NJSC, Engineering Center SC, Semey, Kazakhstan AND Plasma Science LLP, Ust-Kamenogorsk, Kazakhstan AND INNOTECH MASH Engineering Center, Ust-Kamenogorsk, Kazakhsta
Received: 2024-09-13
Revised: 2024-10-21
Accepted: 2024-11-04
Published 2024-12-30
Copyright (c) -1 Bauyrzhan Rakhadilov, Aibek Shynarbek, Rinat Kusainov, Dauir Kakimzhanov, Kuanysh Ormanbekov, Ainur Zhassulan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 26
Abstract
The wear and degradation of machine parts significantly impact industrial efficiency, leading to material loss and increased maintenance costs. Supersonic arc metallization (SAM) is a promising method to improve the surface properties of components by enhancing wear and corrosion resistance. This study aims to optimize the SAM process, particularly compressed air pressure, to improve the mechanical and tribological properties of 30KhGSA steel coatings. 30KhGSA steel wire was used to coat grade 45 steel samples. The effect of varying compressed air pressure was examined through tests on coating porosity, roughness, hardness, corrosion resistance, and adhesion strength. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for microstructural analysis. Increasing air pressure led to denser coatings with lower porosity and reduced surface roughness. XRD confirmed the presence of iron oxide phases that contribute to increased hardness. Coatings produced at 9 atm displayed superior wear and corrosion resistance, with the highest hardness (331 HV) and lowest friction coefficient. Corrosion tests showed improved resistance due to lower porosity and protective oxide layers. Optimizing compressed air pressure during SAM significantly improves the wear, corrosion resistance, and adhesion strength of 30KhGSA steel coatings, offering enhanced durability for industrial applications.
Keywords
- Supersonic electric arc metallization,
- Compressed air pressure,
- Coatings,
- Wear resistance,
- Corrosion resistance,
- Hardness,
- Porosity
References
- Krmela, J., Hovorun, T. P., Berladir, K. V., & Artiukhov, A. Y. (2021). Increasing the structural strength of corrosion-resistant steel for elastic components of diaphragm compressor. Manufacturing Technology. 2021;21(2):207-213. DOI: https://doi.org/10.21062/mft.2021.034
- Ivanov, A. A., & Oskolkova, T. N. (2018, September). Heat treatment of steel 30KhGSA on the specialized equipment. In IOP Conference Series: Materials Science and Engineering (Vol. 411, No. 1, p. 012034). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/411/1/012034
- Singh, S., Berndt, C. C., Singh Raman, R. K., Singh, H., & Ang, A. S. (2023). Applications and developments of thermal spray coatings for the iron and steel industry. Materials, 16(2), 516. DOI: https://doi.org/10.1088/1757-899X/233/1/012027
- Kosenko, P. V. (2017, August). The applicability of existing renovation methods in technology of screw compressors repairing. In IOP Conference Series: Materials Science and Engineering (Vol. 233, No. 1, p. 012027). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/233/1/012027
- Gildersleeve, E. J., & Vaßen, R. (2023). Thermally sprayed functional coatings and multilayers: a selection of historical applications and potential pathways for future innovation. Journal of Thermal Spray Technology, 32(4), 778-817. DOI: https://doi.org/10.1007/s11666-023-01587-1
- Hardwicke, C. U., & Lau, Y. C. (2013). Advances in thermal spray coatings for gas turbines and energy generation: a review. Journal of Thermal Spray Technology, 22(5), 564-576. DOI: https://doi.org/10.1007/s11666-013-9904-0
- Tejero-Martin, D., Rezvani Rad, M., McDonald, A., & Hussain, T. (2019). Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. Journal of Thermal Spray Technology, 28, 598-644. DOI: https://doi.org/10.1007/s11666-019-00857-1
- Dapkunas, S. J. (1993). Conference Report: NIST-INDUSTRY WORKSHOP ON THERMAL SPRAY COATINGS RESEARCH Gaithersburg, MD July 20, 1992. Journal of Research of the National Institute of Standards and Technology, 98(3), 383. DOI: https://doi.org/10.6028/jres.098.030
- Bell, G. R. (1983). Thermal spraying for cost reduction and efficiency. Materials and Design, 4, 783-790.
- Vuoristo, P., & Nylén, P. (2007). Industrial and research activities in thermal spray technology in the Nordic region of Europe. Journal of Thermal Spray Technology, 16, 466-471. DOI: https://doi.org/10.1007/s11666-007-9136-2
- Wang, S., Cui, X., Jin, G., Liu, Y., Wen, X., Zheng, W., & Wan, S. (2024). Study on microstructure and wear resistance of laser cladding TiAlZrVNiX high entropy alloy coating based on Laves phase modulation. Surface and Coatings Technology, 490, 131197. DOI: https://doi.org/10.1016/j.surfcoat.2024.131197
- Oberste-Berghaus, J., Aghasibeig, M., Burgess, A., Khamsepour, P., Moreau, C., & Dolatabadi, A. (2023). Exploring Miniaturized HVOF Systems for the Deposition of Ti-6Al-4V. Journal of Thermal Spray Technology, 32(2), 760-772. DOI: https://doi.org/10.1007/s11666-023-01531-3
- Sample, C. M., Champagne, V. K., Nardi, A. T., & Lados, D. A. (2020). Factors governing static properties and fatigue, fatigue crack growth, and fracture mechanisms in cold spray alloys and coatings/repairs: A review. Additive Manufacturing, 36, 101371. DOI: https://doi.org/10.1016/j.addma.2020.101371
- Espallargas, N. (2015). Introduction to thermal spray coatings. In Future development of thermal spray coatings (pp. 1-13). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-85709-769-9.00001-4
- Celotto, S., Pattison, J., Ho, J. S., Johnson, A. N., & O'Neill, W. (2007). The economics of the cold spray process. In The Cold Spray Materials Deposition Process (pp. 72-101). Woodhead Publishing. DOI: https://doi.org/10.1533/9781845693787.1.72
- Tucker Jr, R. C. (Ed.). (2013). Thermal spray technology. DOI: https://doi.org/10.31399/asm.hb.v05a.a0005748
- Vardelle, A., Moreau, C., Akedo, J., Ashrafizadeh, H., Berndt, C. C., Berghaus, J. O., ... & Vuoristo, P. (2016). The 2016 thermal spray roadmap. Journal of Thermal Spray Technology, 25, 1376-1440. DOI: https://doi.org/10.1007/s11666-016-0473-x
- Dorfman, M. R. (2018). Thermal spray coatings. In Handbook of environmental degradation of materials (pp. 469-488). William Andrew Publishing. DOI: https://doi.org/10.1016/B978-0-323-52472-8.00023-X
- Korobov, Y. S. (2005). Efficiency of using activated arc metallising for the deposition of protective coatings. Welding international, 19(7), 580-582. DOI: https://doi.org/10.1533/wint.2005.3483
- Parkansky, N., Boxman, R. L., & Goldsmith, S. (1993). Development and application of pulsed-air-arc deposition. Surface and Coatings Technology, 61(1-3), 268-273. DOI: https://doi.org/10.1016/0257-8972(93)90237-I
- Steffens, H. D., Babiak, Z., & Wewel, M. (1990). Recent developments in arc spraying. IEEE Transactions on plasma science, 18(6), 974-979. DOI: https://doi.org/10.1109/27.61512
- Chen, J. S., Lu, Y., Li, X. R., & Zhang, Y. M. (2012). Gas tungsten arc welding using an arcing wire. Welding Journal, 91(10), 261-269.
- Singh, A., Sharma, V., Mittal, S., Pandey, G., Mudgal, D., & Gupta, P. (2018). An overview of problems and solutions for components subjected to fireside of boilers. International Journal of Industrial Chemistry, 9, 1-15. DOI: https://doi.org/10.1007/s40090-017-0133-0
- Qian, Y. P., Huang, J. H., Zhang, H. O., & Wang, G. L. (2008). Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology. Journal of materials processing technology, 208(1-3), 99-104. DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.116
- Shrivastava, P. K., Pandey, S., & Dangi, S. (2019). Electrical arc machining: process capabilities and current research trends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(15), 5190-5200. DOI: https://doi.org/10.1177/09544062198461
- Makienko, V., Romanov, I., Sokolov, P., Atenyaev, A., & Pervakov, D. (2018). Research into special technological effects for formation of wear resistant coatings using mineral raw materials of the far eastern region. In E3S Web of Conferences (Vol. 56, p. 03027). EDP Sciences. DOI: https://doi.org/10.1051/e3sconf/20185603027
- Smolentsev, V. P., Fedonin, O. N., & Smolentsev, E. V. (2017). Electroerosion formation and technology of cast iron coatings on aluminum alloys. In MATEC Web of Conferences (Vol. 129, p. 01016). EDP Sciences. DOI: https://doi.org/10.1051/matecconf/201712901016
- Vostřák, M., Brodský, J., Houdková, Š., & Šulcová, P. (2021, August). Possibilities of using thermally sprayed coatings for surface treatment of rail vehicles components. In IOP Conference Series: Materials Science and Engineering (Vol. 1178, No. 1, p. 012065). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/1178/1/012065
- Vetter, J., Eriksson, A. O., Reiter, A., Derflinger, V., & Kalss, W. (2021). Quo vadis: Alcr-based coatings in industrial applications. Coatings, 11(3), 344. DOI: https://doi.org/10.3390/coatings11030344
- Hesselbach, J., Böttcher, A. C., Kampen, I., Garnweitner, G., Schilde, C., & Kwade, A. (2018). Process and formulation strategies to improve adhesion of nanoparticulate coatings on stainless steel. Coatings, 8(5), 156. DOI: https://doi.org/10.3390/coatings8050156
- Häfner, T., Rothammer, B., Tenner, J., Krachenfels, K., Merklein, M., Tremmel, S., & Schmidt, M. (2018). Adaption of tribological behavior of aC: H coatings for application in dry deep drawing. In MATEC Web of Conferences (Vol. 190, p. 14002). EDP Sciences. DOI: https://doi.org/10.1051/matecconf/201819014002
- Schwarz, P., Weber, S., & Deuerler, F. (2020). Influence of Particle Reinforcement and Heat Treatment on the Wear Resistance of Inductively Melted Hardpaint Coatings. Metals, 10(7), 968. DOI: https://doi.org/10.3390/met10070968
- Slegers, S., Linzas, M., Drijkoningen, J., D’Haen, J., Reddy, N. K., & Deferme, W. (2017). Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating. Coatings, 7(12), 208. DOI: https://doi.org/10.3390/coatings7120208
- Bobzin, K., Brögelmann, T., Kruppe, N. C., & Carlet, M. (2020). Wear behavior and thermal stability of HPPMS (al, ti, cr, si) ON, (Al, ti, cr, si) n and (ti, al, cr, si) n coatings for cutting tools. Surface and Coatings Technology, 385, 125370. DOI: https://doi.org/10.1016/j.surfcoat.2020.125370
- Shlimas, D. I., Kozlovskiy, A. L., Kaliekperov, M. E., Kadyrzhanov, K. K., & Uglov, V. V. (2020). Study of the strength characteristics and radiation resistance of thin-film coatings based on CuX (X= Bi, Mg, Ni). DOI: https://doi.org/10.29317/ejpfm.2020040305
- Khimukhin, S., Eremina, K., & Ri, H. (2019). Nickel aluminides coatings on steel C1030 after thermal cycling. Materials Today: Proceedings, 11, 240-246. DOI: https://doi.org/10.1016/j.matpr.2018.12.137
- Eremin, E. N., Losev, A. S., Ponomarev, I. A., Borodikhin, S. A., & Volochayev, M. N. (2020, May). Wear resistance of steel obtained by surfacing a flux-cored wire 30N8Kh6M3STYu. In Journal of Physics: Conference Series (Vol. 1546, No. 1, p. 012060). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1546/1/012060
- Perovskaya, M. V., & Shmakov, V. V. (2020, December). Structure and properties of coatings based on chromium and boron carbides deposited in a relativistic electron beam.
- In AIP Conference Proceedings (Vol. 2310, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0034131Image J program.
- ImageProcessingandDataAnalysisinJava. National Institutes of Health, 2016. Available from: https://imagej.net/
- Ibatullin ID, Karlova MD, Zagidullina DR (2016) Instruments and methods for assessing the quality of coatings. Izvestiya of the Samara Scientific Center of the Russian Academy of Sciences 18: 291-296 (in Russian).
- Bodnya IS, Timoshenko VP (2018) Analysis of thermal regimes of the front composite edge of a small-sized aerospace vehicle wing. Engineering Journal: Science and Innovation 9: 6 (in Russian).
- Panteleenko FI, Belotserkovsky MA, Karpets MN, et al. (2019) Comparative analysis of the physico-mechanical properties of coatings applied by electric arc and hypersonic metallization methods. Mechanics of Machines, Mechanisms and Materials 4: 48-54 (in Russian).
- Astrashab E, Belotserkovsky M, Grigorchik A, et al. (2018) Influence of spraying air pressure during high-velocity thermal spraying of high-chromium steel coating on its structure and wear resistance. Mechanics of Machines, Mechanisms and Materials 4: 51-57 (in Russian).
- Borisov YuS, Vigilyanskaya NV, Demyanov IA, et al. (2013) Investigation of the influence of electric arc spraying modes on the structure and properties of pseudo-alloy coatings. Automatic Welding 12: 11-17 (in Russian).
- Wielage B, Pokhmurska H, Student M, et al. (2013) Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures. Surf Coat Technol 220: 27-35. DOI: https://doi.org/10.1016/j.surfcoat.2012.12.013
- Matyushkin BA, Denisov VI, Tolkachev AA (2016) Technological features of electric arc metallization in the agricultural sector. Weld Prod 12: 46-50 (in Russian).
- Logachev VN, Litovchenko NN (2014) Electric arc metallization: ways to improve equipment and technology. Proceedings of GOSNITI 117: 228-234 (in Russian).
- Kiryukhantsev-Korneev PV (2020) Pulsed magnetron sputtering of ceramic SHS targets as a promising technique for deposition of multifunctional coatings. Prot Met Phys Chem Surf 56: 343-357. DOI: https://doi.org/10.1134/S2070205120020124
- Hahn M, Theissmann R, Gleising B, et al. (2009) Microstructural alterations within thermal spray coatings during highly loaded diesel engine tests. Wear 267: 916-924. DOI: https://doi.org/10.1016/j.wear.2008.12.109
- Bobzin K, Ernst F, Richardt K, et al. (2008) Thermal spraying of cylinder bores with the Plasma Transferred Wire Arc process. Surf Coat Technol 202: 4438-4443. DOI: https://doi.org/10.1016/j.surfcoat.2008.04.023
- Saifullin RN, Pavlov AP (2013) Evaluation of the adhesion strength of coatings obtained by electrocontact welding of the mesh, depending on the welding modes. Bulletin of Polotsk State University. Series B. Industry. Applied Sciences 3: 91-96 (in Russian).
- Ushakov MV, Kutepov SN, Klementyev DS, et al. (2023) Influence of spraying process parameters on the physico-mechanical and corrosion properties of protective coatings. Tech Sci 2: 584-590 (in Russian). Available from: https://doi.org/10.24412/2071-6168-2023-2-584-591
- Lin J, Wang Z, Lin P, et al. (2014) Microstructure and corrosion resistance of iron-based coatings produced by twin-wire arc spraying. J Therm Spray Technol 23: 333-339. DOI: https: doi.org/10.1007/s11666-014-0110-9