Investigation of anomalous Nernst effect in ferromagnetic Weyl semimetal
- D.B.College, University of Delhi, Kalkaji, New Delhi, India
Received: 2024-09-08
Revised: 2024-10-21
Accepted: 2024-11-04
Published 2024-12-30
Copyright (c) -1 Udai Prakash Tyagi, Partha Goswami (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 87
Abstract
In a three-dimensional Dirac semimetal the time reversal symmetry (TRS) or the inversion symmetry (IS) is not broken. With either of these symmetries broken, the Dirac points in the three-dimensional band structure split up into pairs of so-called Weyl points. The ferromagnetic Weyl semimetals (FMWSM), such as Co3Sn2S2, feature pairs of Weyl points characterized by the opposite chiralities. In this communication we study FMWSM based on TRS broken continuum and lattice Hamiltonians. The latter one is more realistic and represents Co3Sn2S2. These models include all essential ingredients leading to the formation of a pair of Weyl nodes and tilted Weyl cones. Our analysis shows a large anomalous Nernst conductivity which is unlocked due to the divergent Berry curvature - a local manifestation of the geometric properties of electronic wavefunctions - at Weyl points.
Keywords
- Ferromagnetic Weyl semimetal,
- Weyl points of opposite chiralitie,
- Tilted Weyl cone,
- Berry curvature,
- Anomalous Nernst conductivity
References
- S.Jia, M.Z. Hasan,et al., Weyl semimetals, Fermi arcs and chiral anomalies, 4787Nature Mater 15, 1140 (2016). https://doi.org/10.1038/nmat4787.
- Q. Ma, S.Y. Xu, et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nature Phys 13, 842–847 (2017). https://doi.org/10.1038/nphys4146.
- J. Bell and R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Nuovo Cimento A 60, 47 (1969). https://doi.org/10.1007/BF02823296.
- K. Landsteiner, Notes on Anomaly Induced Transport,Acta Physica Polonica B 47, 2617 (2016). https://doi.org/10.5506/APhysPolB.47.2617
- S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177, 2426 (1969). https://doi.org/10.1103/PhysRev.177.2426
- W.C. Chiu, G. Chang, G. Macam, et al., Causal structure of interacting Weyl fermions in condensed matter systems,Nat Commun 14, 2228 (2023). https://doi.org/10.1038/s41467-023-37931-w
- D. Liu, A. Liang, E. Liu, Q. Xu, et al., Magnetic Weyl semimetal phase in a Kagomé crystal, Science 365, 1282 (2019). DOI: 10.1126/science.aav2873
- L. Yang, Z. Liu, Y. Sun, H. Peng, et al., Weyl semimetal phase in the non-centrosymmetric compound TaAs, Nature physics 11, 728 (2015). https://doi.org/10.1038/nphys3425
- H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides,Phys. Rev. X 5, 011029 (2015). DOI: 10.1103/PhysRevX.5.011029
- S.-M. Huang, S.-Y. Xu, I. Belopolski, et al., A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nature communications 6, 7373 (2015). https://doi.org/10.1038/ncomms8373
- C.L. Zhang, S.Y. Xu, I. Belopolski, et al., Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat Commun 7, 10735 (2016). https://doi.org/10.1038/ncomms10735
- N. Xu, H. Weng, B. Lv, C. E. Matt, et al., Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nature communications 7, 11006 (2016). https://doi.org/10.1038/ncomms11006
- P. Li, Y. Wen, X. He, et al., Evidence for topological type-II Weyl semimetal WTe2 , Nat Commun 8, 2150 (2017). https://doi.org/10.1038/s41467-017-02237-1
- E. Liu, Y. Sun, N. Kumar, L. Müchler, et al., Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal, Nat. Phys. 14 1125-1131(2018). DOI: 10.1038/s41567-018-0234-5
- L. Ye, M. Kang, J. Liu, et al., Massive Dirac fermions in a ferromagnetic kagome metal,Nature 555 638(2018). DOI:10.1038/nature25987
- A. Ozawa and K. Nomura, Two-Orbital Effective Model for Magnetic Weyl Semimetal in Kagome-Lattice Shandite, Journal of the Physical Society of Japan 88, 123703 (2019). https://doi.org/10. 7566/ JPSJ.88.123703
- N. Morali, R. Batabyal, et al., Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2, Science 365 1286 (2019). DOI: 10.1126/science.aav2334
- S. N. Guin, J. Gooth, et al., Zero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co3 Sn2 S2, Adv. Mater. 31 (2019) e1806622. DOI: 10.1002/adma.201806622
- D. F. Liu, A. J. Liang, et al., Magnetic Weyl semimetal phase in a Kagomé crystal ,Science 365 1282(2019). DOI: 10.1126/science.aav2873
- S. Howard, L. Jiao, Z. Wang, N. Morali, R. Batabyal, et al., Evidence for one-dimensional chiral edge states in a magnetic Weyl semimetal Co3Sn2S2, Nature Communications 12 4269 (2021). https://doi.org/10.1038/s41467-021-24561-3
- A. Ozawa, and K. Nomura, Self-consistent analysis of doping effect for magnetic ordering in stacked-kagome Weyl system , Phys.Rev.Materials 6, 024202 (2022). doi.org/10.1103/PhysRevMaterials.6.024202
- I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, et al.,Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet,Science 365, 1278 (2019). DOI: 10.1126/science.aav2327
- I. Belopolski,S.-Y.Xu, et al.,Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals,Phys. Rev. Lett. 116, 066802 (2016). DOI: https://doi.org/10.1103/PhysRevLett.116.066802
- S.-Y.Xu, I. Belopolski, et al.,Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs , Phys. Rev. Lett. 116, 096801 (2016). DOI: https://doi.org/10.1103/PhysRevLett.116.096801
- S. Nandy, C. Lane, and J.-X. Zhu, Quantum Hall effect in a Weyl-Hubbard model:Interplay between topology and correlation,Phys. Rev. B 109, 085111(2024). 10.1103/PhysRevB.109.085111
- H. B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions,Phys. Lett. B105, 219 (1981). https://doi.org/10.1016/0370-2693(81)91026-1
- Z. Ren,H. Li, S. Sharma, et al., Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films, npj Quantum Mater. 7, 109 (2022). 10.1038/s41535-022-00521-y
- M.Z.Hasan, et al., Weyl, Dirac and high-fold chiral fermions in topological quantum matter, Nat. Rev. Mater. 6, 784–803 (2021). https://doi.org/ 10.1038/s41578-021-00301-3
- S. Fang, et al.,Ferromagnetic helical nodal line and Kane-Mele spin-orbit coupling in kagome metal Fe3Sn2,Phys. Rev. B 105, 035107 (2022). DOI: https://doi.org/10.1103/PhysRevB.105.035107
- J. Gooth, B. Bradlyn, et al., Axionic charge-density wave in the Weyl semimetal (TaSe4)2I ,Nature Vol 575 315 (2019). DOI: 10.1038/s41586-019-1630-4.
- S. Nie, T. Hashimoto, and F. B. Prinz, Magnetic Weyl Semimetal in K2Mn3(AsO4)3 with the Minimum Number of Weyl Points, Phys. Rev. Lett. 128, 176401(2022). https://doi.org/10.1103/PhysRevLett.128.176401
- X. Feng,K.Ziang,et al.,Chiral flux phase in the Kagome superconductor AV3Sb5, Sci.Bull. 66,1384(2021).
- https://doi.org/10.1016/j.scib.2021.04.043
- H.-S. Xu,Y.-J Yan,et al.,Multiband Superconductivity with Sign-Preserving Order Parameter in Kagome Superconductor CsV3Sb5,Phys.Rev.Lett. 127,187004(2021). https://doi.org/10.1103/PhysRevLett.127.187004
- W.Zhang,X.Liu, et al., Nodeless Superconductivity in Kagome Metal CsV3Sb5 with and without Time Reversal Symmetry Breaking, NanoLett.,23,872(2023). https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04103
- E. Liu, Y. Sun,et al., Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal,Nat. Phys.,14, 1125(2018). https://doi.org/10.1038/s41567-018-0234-5
- C.L. Kane and E.J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
- https://doi.org/10.1103/PhysRevLett.95.226801
- F. D. M. Haldane, Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property,Phys. Rev. Lett. 93, 206602(2004). https://doi.org/10.1103/PhysRevLett.93.206602
- M. Chen and S. Wan, The quantum anomalous Hall effect on a star lattice with spin–orbit coupling and an exchange field,J. Phys.: Condens. Matter 24, 325502 (2012). DOI: 10.1088/0953-8984/24/32/325502
- D. Xiao, M.-C. Chang, Q. Niu, Berry Phase Effects on Electronic Properties, Rev. Mod. Phys. 82, 1959-2007 (2010). DOI: https://doi.org/10.1103/RevModPhys.82.1959
- D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry Phase Effect in Anomalous Thermoelectric Properties, Phys.Rev. Lett. 97, 026603 (2006). DOI: https://doi.org/10.1103/PhysRevLett.97.026603
- M. Ikhlas, T.Tomita, et al., Large anomalous Nernst effect at room temperature in a chiral antiferromagnet, Nat. Phys. 2017, 13, 1085 ( 2017). https://doi.org/10.1038/nphys4181
- P. Goswami, and S. Tewari,Axionic field theory of (3+1)-dimensional Weyl semimetals, Phys. Rev. B 88, 245107 (2013). https://doi.org/10.1103/PhysRevB.88.245107
- T. Zhang, R. Takahashi, et al., Twofold quadruple Weyl nodes in chiral cubic crystals,Phys. Rev. B 102, 125148 (2020). https://doi.org/10.1103/PhysRevB.102.125148
- Z.-M. Yu, Z. Zhang, et al., Encyclopedia of emergent particles in three-dimensional crystals,
- Science Bulletin 67, 375 (2022). https://doi.org/10.1016/j.scib.2021.10.023
- B. Singh, G. Chang, et al. , Tunable double-Weyl Fermion semimetal state in the SrSi2 materials class,Scientific reports 8, 10540 (2018). https://doi.org/10.1038/s41598-018-28644-y
- C. Cui, X.-P. Li, et al., Charge-four Weyl point: Minimum lattice model and chirality-dependent properties, Phys. Rev. B 104, 075115 (2021). https://doi.org/10.1103/PhysRevB.104.075115
- A. G. Grushin, Jörn W. F. Venderbos et al., Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels,Phys. Rev. X 6, 041046 (2016).
- https://doi.org/10.1103/PhysRevX.6.041046
- H.Zhang et al.,Giant Periodic Pseudomagnetic Fields in Strained Kagome Magnet FeSn Epitaxial Films on SrTiO3(111) Substrate,Nano Lett. 13;23(6):2397(2023). DOI: 10.1021/acs.nanolett.3c00345.
- N. P. Armitage, E. J. Mele, et al., Weyl and Dirac semimetals in three-dimensional solids,Rev. Mod. Phys. 90, 015001 (2018). DOI: https://doi.org/10.1103/RevModPhys.90.015001
- R.Ilan, A.G. Grushin ,and D.I. Pikulin, Pseudo-electromagnetic fields in 3D topological semimetals, Nat. Rev.Phys.2, 29(2020). DOI: 10.1038/s42254-019-0121-8
- H. Yang, W. You, et al., Giant anomalous Nernst effect in the magnetic Weyl semimetal Co3Sn2S2, Phys. Rev. Materials 4,024202(2020). DOI: https://doi.org/10.1103/PhysRevMaterials.4.024202
- E. K. Liu, Y. Sun, et al., Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal,Nat. Phys. 14, 1125 (2018). DOI: 10.1038/s41567-018-0234-5
- E. H. Sondheimer, The Theory of the Galvanomagnetic and Thermomagnetic Effects in Metals, Proc. R. Soc. London, Ser. A 193, 484 (1948). DOI: 10.1098/rspa.1948.0058