10.57647/j.jtap.2024.1806.76

Investigation of anomalous Nernst effect in ferromagnetic Weyl semimetal

  1. D.B.College, University of Delhi, Kalkaji, New Delhi, India
Investigation of anomalous Nernst effect in ferromagnetic Weyl semimetal

Received: 2024-09-08

Revised: 2024-10-21

Accepted: 2024-11-04

Published 2024-12-30

How to Cite

1.
Tyagi UP, Goswami P. Investigation of anomalous Nernst effect in ferromagnetic Weyl semimetal. J Theor Appl phys. 2024 Dec. 30;18(6):1-12. Available from: https://oiccpress.com/jtap/article/view/8332

PDF views: 87

Abstract

In a three-dimensional Dirac semimetal the time reversal symmetry (TRS) or the inversion symmetry (IS) is not broken. With either of these symmetries broken, the Dirac points in the three-dimensional band structure split up into pairs of so-called Weyl points. The ferromagnetic Weyl semimetals (FMWSM), such as Co3Sn2S2,  feature pairs of Weyl points characterized by the opposite chiralities. In this communication we study FMWSM based on  TRS  broken continuum and lattice Hamiltonians. The latter one is more realistic and represents Co3Sn2S2. These models include  all essential ingredients leading to the formation of a pair of Weyl nodes and tilted Weyl cones. Our analysis shows a large anomalous Nernst conductivity which is unlocked due to the divergent Berry curvature - a local manifestation of the geometric properties of electronic wavefunctions - at Weyl points.

Keywords

  • Ferromagnetic Weyl semimetal,
  • Weyl points of opposite chiralitie,
  • Tilted Weyl cone,
  • Berry curvature,
  • Anomalous Nernst conductivity

References

  1. S.Jia, M.Z. Hasan,et al., Weyl semimetals, Fermi arcs and chiral anomalies, 4787Nature Mater 15, 1140 (2016). https://doi.org/10.1038/nmat4787.
  2. Q. Ma, S.Y. Xu, et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nature Phys 13, 842–847 (2017). https://doi.org/10.1038/nphys4146.
  3. J. Bell and R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Nuovo Cimento A 60, 47 (1969). https://doi.org/10.1007/BF02823296.
  4. K. Landsteiner, Notes on Anomaly Induced Transport,Acta Physica Polonica B 47, 2617 (2016). https://doi.org/10.5506/APhysPolB.47.2617
  5. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177, 2426 (1969). https://doi.org/10.1103/PhysRev.177.2426
  6. W.C. Chiu, G. Chang, G. Macam, et al., Causal structure of interacting Weyl fermions in condensed matter systems,Nat Commun 14, 2228 (2023). https://doi.org/10.1038/s41467-023-37931-w
  7. D. Liu, A. Liang, E. Liu, Q. Xu, et al., Magnetic Weyl semimetal phase in a Kagomé crystal, Science 365, 1282 (2019). DOI: 10.1126/science.aav2873
  8. L. Yang, Z. Liu, Y. Sun, H. Peng, et al., Weyl semimetal phase in the non-centrosymmetric compound TaAs, Nature physics 11, 728 (2015). https://doi.org/10.1038/nphys3425
  9. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides,Phys. Rev. X 5, 011029 (2015). DOI: 10.1103/PhysRevX.5.011029
  10. S.-M. Huang, S.-Y. Xu, I. Belopolski, et al., A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nature communications 6, 7373 (2015). https://doi.org/10.1038/ncomms8373
  11. C.L. Zhang, S.Y. Xu, I. Belopolski, et al., Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat Commun 7, 10735 (2016). https://doi.org/10.1038/ncomms10735
  12. N. Xu, H. Weng, B. Lv, C. E. Matt, et al., Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nature communications 7, 11006 (2016). https://doi.org/10.1038/ncomms11006
  13. P. Li, Y. Wen, X. He, et al., Evidence for topological type-II Weyl semimetal WTe2 , Nat Commun 8, 2150 (2017). https://doi.org/10.1038/s41467-017-02237-1
  14. E. Liu, Y. Sun, N. Kumar, L. Müchler, et al., Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal, Nat. Phys. 14 1125-1131(2018). DOI: 10.1038/s41567-018-0234-5
  15. L. Ye, M. Kang, J. Liu, et al., Massive Dirac fermions in a ferromagnetic kagome metal,Nature 555 638(2018). DOI:10.1038/nature25987
  16. A. Ozawa and K. Nomura, Two-Orbital Effective Model for Magnetic Weyl Semimetal in Kagome-Lattice Shandite, Journal of the Physical Society of Japan 88, 123703 (2019). https://doi.org/10. 7566/ JPSJ.88.123703
  17. N. Morali, R. Batabyal, et al., Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2, Science 365 1286 (2019). DOI: 10.1126/science.aav2334
  18. S. N. Guin, J. Gooth, et al., Zero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co3 Sn2 S2, Adv. Mater. 31 (2019) e1806622. DOI: 10.1002/adma.201806622
  19. D. F. Liu, A. J. Liang, et al., Magnetic Weyl semimetal phase in a Kagomé crystal ,Science 365 1282(2019). DOI: 10.1126/science.aav2873
  20. S. Howard, L. Jiao, Z. Wang, N. Morali, R. Batabyal, et al., Evidence for one-dimensional chiral edge states in a magnetic Weyl semimetal Co3Sn2S2, Nature Communications 12 4269 (2021). https://doi.org/10.1038/s41467-021-24561-3
  21. A. Ozawa, and K. Nomura, Self-consistent analysis of doping effect for magnetic ordering in stacked-kagome Weyl system , Phys.Rev.Materials 6, 024202 (2022). doi.org/10.1103/PhysRevMaterials.6.024202
  22. I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, et al.,Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet,Science 365, 1278 (2019). DOI: 10.1126/science.aav2327
  23. I. Belopolski,S.-Y.Xu, et al.,Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals,Phys. Rev. Lett. 116, 066802 (2016). DOI: https://doi.org/10.1103/PhysRevLett.116.066802
  24. S.-Y.Xu, I. Belopolski, et al.,Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs , Phys. Rev. Lett. 116, 096801 (2016). DOI: https://doi.org/10.1103/PhysRevLett.116.096801
  25. S. Nandy, C. Lane, and J.-X. Zhu, Quantum Hall effect in a Weyl-Hubbard model:Interplay between topology and correlation,Phys. Rev. B 109, 085111(2024). 10.1103/PhysRevB.109.085111
  26. H. B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions,Phys. Lett. B105, 219 (1981). https://doi.org/10.1016/0370-2693(81)91026-1
  27. Z. Ren,H. Li, S. Sharma, et al., Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films, npj Quantum Mater. 7, 109 (2022). 10.1038/s41535-022-00521-y
  28. M.Z.Hasan, et al., Weyl, Dirac and high-fold chiral fermions in topological quantum matter, Nat. Rev. Mater. 6, 784–803 (2021). https://doi.org/ 10.1038/s41578-021-00301-3
  29. S. Fang, et al.,Ferromagnetic helical nodal line and Kane-Mele spin-orbit coupling in kagome metal Fe3Sn2,Phys. Rev. B 105, 035107 (2022). DOI: https://doi.org/10.1103/PhysRevB.105.035107
  30. J. Gooth, B. Bradlyn, et al., Axionic charge-density wave in the Weyl semimetal (TaSe4)2I ,Nature Vol 575 315 (2019). DOI: 10.1038/s41586-019-1630-4.
  31. S. Nie, T. Hashimoto, and F. B. Prinz, Magnetic Weyl Semimetal in K2Mn3(AsO4)3 with the Minimum Number of Weyl Points, Phys. Rev. Lett. 128, 176401(2022). https://doi.org/10.1103/PhysRevLett.128.176401
  32. X. Feng,K.Ziang,et al.,Chiral flux phase in the Kagome superconductor AV3Sb5, Sci.Bull. 66,1384(2021).
  33. https://doi.org/10.1016/j.scib.2021.04.043
  34. H.-S. Xu,Y.-J Yan,et al.,Multiband Superconductivity with Sign-Preserving Order Parameter in Kagome Superconductor CsV3Sb5,Phys.Rev.Lett. 127,187004(2021). https://doi.org/10.1103/PhysRevLett.127.187004
  35. W.Zhang,X.Liu, et al., Nodeless Superconductivity in Kagome Metal CsV3Sb5 with and without Time Reversal Symmetry Breaking, NanoLett.,23,872(2023). https://pubs.acs.org/doi/10.1021/acs.nanolett.2c04103
  36. E. Liu, Y. Sun,et al., Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal,Nat. Phys.,14, 1125(2018). https://doi.org/10.1038/s41567-018-0234-5
  37. C.L. Kane and E.J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
  38. https://doi.org/10.1103/PhysRevLett.95.226801
  39. F. D. M. Haldane, Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property,Phys. Rev. Lett. 93, 206602(2004). https://doi.org/10.1103/PhysRevLett.93.206602
  40. M. Chen and S. Wan, The quantum anomalous Hall effect on a star lattice with spin–orbit coupling and an exchange field,J. Phys.: Condens. Matter 24, 325502 (2012). DOI: 10.1088/0953-8984/24/32/325502
  41. D. Xiao, M.-C. Chang, Q. Niu, Berry Phase Effects on Electronic Properties, Rev. Mod. Phys. 82, 1959-2007 (2010). DOI: https://doi.org/10.1103/RevModPhys.82.1959
  42. D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry Phase Effect in Anomalous Thermoelectric Properties, Phys.Rev. Lett. 97, 026603 (2006). DOI: https://doi.org/10.1103/PhysRevLett.97.026603
  43. M. Ikhlas, T.Tomita, et al., Large anomalous Nernst effect at room temperature in a chiral antiferromagnet, Nat. Phys. 2017, 13, 1085 ( 2017). https://doi.org/10.1038/nphys4181
  44. P. Goswami, and S. Tewari,Axionic field theory of (3+1)-dimensional Weyl semimetals, Phys. Rev. B 88, 245107 (2013). https://doi.org/10.1103/PhysRevB.88.245107
  45. T. Zhang, R. Takahashi, et al., Twofold quadruple Weyl nodes in chiral cubic crystals,Phys. Rev. B 102, 125148 (2020). https://doi.org/10.1103/PhysRevB.102.125148
  46. Z.-M. Yu, Z. Zhang, et al., Encyclopedia of emergent particles in three-dimensional crystals,
  47. Science Bulletin 67, 375 (2022). https://doi.org/10.1016/j.scib.2021.10.023
  48. B. Singh, G. Chang, et al. , Tunable double-Weyl Fermion semimetal state in the SrSi2 materials class,Scientific reports 8, 10540 (2018). https://doi.org/10.1038/s41598-018-28644-y
  49. C. Cui, X.-P. Li, et al., Charge-four Weyl point: Minimum lattice model and chirality-dependent properties, Phys. Rev. B 104, 075115 (2021). https://doi.org/10.1103/PhysRevB.104.075115
  50. A. G. Grushin, Jörn W. F. Venderbos et al., Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels,Phys. Rev. X 6, 041046 (2016).
  51. https://doi.org/10.1103/PhysRevX.6.041046
  52. H.Zhang et al.,Giant Periodic Pseudomagnetic Fields in Strained Kagome Magnet FeSn Epitaxial Films on SrTiO3(111) Substrate,Nano Lett. 13;23(6):2397(2023). DOI: 10.1021/acs.nanolett.3c00345.
  53. N. P. Armitage, E. J. Mele, et al., Weyl and Dirac semimetals in three-dimensional solids,Rev. Mod. Phys. 90, 015001 (2018). DOI: https://doi.org/10.1103/RevModPhys.90.015001
  54. R.Ilan, A.G. Grushin ,and D.I. Pikulin, Pseudo-electromagnetic fields in 3D topological semimetals, Nat. Rev.Phys.2, 29(2020). DOI: 10.1038/s42254-019-0121-8
  55. H. Yang, W. You, et al., Giant anomalous Nernst effect in the magnetic Weyl semimetal Co3Sn2S2, Phys. Rev. Materials 4,024202(2020). DOI: https://doi.org/10.1103/PhysRevMaterials.4.024202
  56. E. K. Liu, Y. Sun, et al., Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal,Nat. Phys. 14, 1125 (2018). DOI: 10.1038/s41567-018-0234-5
  57. E. H. Sondheimer, The Theory of the Galvanomagnetic and Thermomagnetic Effects in Metals, Proc. R. Soc. London, Ser. A 193, 484 (1948). DOI: 10.1098/rspa.1948.0058