10.57647/j.jtap.2024.1806.74

On the conformable fractional derivative and its applications in physics

  1. Laboratoire de Physique Math ´ematique et de Physique Subatomique (LPMPS), Universit ´e Fr `eres Mentouri, Constantine, Algeria
On the conformable fractional derivative and its applications in physics

Received: 2024-09-06

Revised: 2024-10-13

Accepted: 2024-10-19

Published 2024-12-30

How to Cite

1.
Haouam I. On the conformable fractional derivative and its applications in physics. J Theor Appl phys. 2024 Dec. 30;18(6). Available from: https://oiccpress.com/jtap/article/view/8330

PDF views: 190

Abstract

This research reviews the basics of the conformable fractional derivative (CFD) and explores various applications of it in physics. The conformable fractional versions of path integral approach, divergence and Green’s theorem are thoroughly discussed. Additionally, the basics of Newtonian mechanics in the context of CFD are covered, including velocity, acceleration, Newton's law, Yank, the classical Doppler effect, work, energies and the theory of conservation of momentum. Alongside some fundamentals of special relativity and its postulates are formulated within the frame of CFD, including the Lorentz transformation and fundamental four-vectors. Conformable fractional non-relativistic and relativistic quantum mechanics are also extensively explored, covering the ordinary and angular Schrödinger equations, as well as the Pauli equation. Moreover, a particle-in-a-box model scenario within CFD is investigated, along with the Klein-Gordon, Dirac, and Fisk-Tait equations. Additionally, the continuity equation and a classical limit using Ehrenfest's theorem are derived from the conformable fractional Dirac equation. Some graphics are also included to enhance understanding the behaviors of certain models within CFD, such as the divergence theorem and spherical harmonic.

Keywords

  • Conformable fractional derivative,
  • Path integra,
  • Divergence theorem,
  • Classical doppler effec,
  • Dirac equatio,
  • Conformable fractional quantum mechanic,
  • Conformable fractional spherical harmoni,
  • Conformable fractional special relativity

References

  1. Machado, J. T., et al. Recent history of fractional calculus. Commum. Nonlinear Sci. Numer. Simulat. 16, 1140 (2013). https://doi.org/10.1016/j.cnsns.2010.05.027
  2. Herrmann, R. (2011). Fractional Calculus: An Introduction for Physicists, World Sci. Publishing: Singapore.
  3. Machado, J.T., et al. Fractional Calculus: Quo Vadimus? (Where are we Going?). Frac. Calc. Appl. Anal. 18, 495 (2015). https://doi.org/10.1515/fca-2015-0031
  4. Leibniz, G.W. Letter from Hanover, Germany to G.F.A. L’Hospital, September 30, 1695, Leibniz Mathematis-che Schriften. Olms-Verlag, Hildesheim, Germany (1962) p. 301–302, first published in 1849
  5. Hadamard, J. Journal de Mathmatiques Pures et Appliques 8, 101 (1892).
  6. Caputo, M. Linear models of dissipation whose Q is almost frequency independent–II. Geophys. J. Int, 13(5), 529 (1967). https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  7. Povstenko, Y. (2015). Essentials of Fractional Calculus. In: Fractional Thermoelasticity. Solid Mechanics and Its Applications, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-15335-3_1
  8. Oldham, K., Spanier, J. (1974). The fractional calculus: Theory and applications of differentiation and integration to arbitrary order. Elsevier.
  9. Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier.
  10. Hilfer, R. Applications of fractional calculus in physics. World scientific Singapore, 2000, vol. 35, no. 12.
  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006. vol. 204.
  12. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999.
  13. Khalil, R., et al. A new definition of fractional derivative. J. Comput. Appl. Math, 264, 65 (2014). https://doi.org/10.1016/j.cam.2014.01.002
  14. Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math, 279, 57 (2015). https://doi.org/10.1016/j.cam.2014.10.016
  15. Anderson, D.R. Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives. In: Pardalos, P., Rassias, T. (eds) Contributions in Mathematics and Engineering. Springer, Cham. 2016. https://doi.org/10.1007/978-3-319-31317-7_2
  16. Zhang, Y., et al. PT symmetry in a fractional Schrödinger equation. Laser & Photonics Reviews, 10(3),526(2016). https://doi.org/10.1002/lpor.201600037
  17. Karayer, H., Demirhan, D., Büyükkılıç, F. Conformable Fractional Nikiforov-Uvarov Method. Comm. Theor. Phys. 66, 12 (2016). https://doi.org/10.1088/0253-6102/66/1/012
  18. Anderson, D. R., Ulness, D. J. Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56, 063502(2015). https://doi.org/10.1063/1.4922018
  19. W. S. Chung, S. Zare and H. Hassanabadi. Investigation of conformable fractional schrödinger equation in presence of killingbeck and hyperbolic potentials. Commun. Theor. Phys. 67, 250 (2017). https://doi.org/10.1088/0253-6102/67/3/250
  20. Mozaffari, F.S., et al. On the Conformable Fractional Quantum Mechanics. J. Korean Phys. Soc. 72, 980 (2018). https://doi.org/10.3938/jkps.72.980
  21. Al-Masaeed, M., Rabei, E. M., Al-Jamel, A. Wkb approximation with conformable operator. Mod. Phys. Lett. A, 37(22), 2250144 (2022). https://doi.org/10.1142/S0217732322501449
  22. Katugampola, U. N. (2014). A new fractional derivative with classical properties. arXiv preprint arXiv:1410.6535.
  23. Chung, W. S., Haouam, I., Hassanabadi, H. Quantum mechanics on a circle with a finite number of α-uniformly distributed points. Phys. Lett. A. 485, 129098(2023). https://doi.org/10.1016/j.physleta.2023.129098
  24. Enesiz, Y. C., Baleanu, D., Kurt, A., Tasbozan. O. New exact solutions of Burgers’ type equations with conformable derivative. Waves Rand. Complex Media 27, 103 (2017). https://doi.org/10.1080/17455030.2016.1205237
  25. Zhou, H.W., Yang, S., Zhang, S.Q. Conformable derivative approach to anomalous diffusion. Physica. A. Stat. Mech. Appl. 491, 1001 (2018). https://doi.org/10.1016/j.physa.2017.09.101
  26. Mozaffari, F.S., et al. Investigation of the Dirac Equation by Using the Conformable Fractional Derivative. J. Korean Phys. Soc. 72, 987 (2018). https://doi.org/10.3938/jkps.72.987
  27. Chung, W.S. Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math, 290, 150 (2015). https://doi.org/10.1016/j.cam.2015.04.049
  28. Ahmed, N., et al. New exact solutions to space–time fractional telegraph equation with conformable derivative. Int. J. Mod. Phys. B, 37(31), 2350275 (2023). https://doi.org/10.1142/S0217979223502752
  29. Lazo, Matheus J.; Torres, Delfim F. M. Variational calculus with conformable fractional derivatives. IEEE/CAA Journal of Automatica Sinica, 4(2), 340 (2017). https://doi.org/10.1109/JAS.2016.7510160
  30. Anderson, D. R., Camrud, E., Ulness, D. J. On the nature of the conformable derivative and its applications to physics. J. Fract. Calc. Appl, 10(2), 92 (2019).
  31. Seadawy, A. R., et al. A variety of soliton solutions for the fractional Wazwaz-Benjamin-Bona-Mahony equations. Results. Phys, 12, 2234 (2019). https://doi.org/10.1016/j.rinp.2019.02.064
  32. Chung, W. S., et al. Conformable fractional heat equation with fractional translation symmetry in both time and space. Chin. Phys. B, 32(4), 040202 (2023). http://doi.org/10.1088/1674-1056/ac935f
  33. Islam, M. T., et al. The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative. Optik, 287, 171140 (2023). https://doi.org/10.1016/j.ijleo.2023.171140
  34. Anagonou, J. P., et al. Noether’s currents for conformable fractional scalar field theories. Chaos. Soliton. Fract, 183, 114919 (2024). https://doi.org/10.1016/j.chaos.2024.114919
  35. Das, N., Saha Ray, S. Dynamical investigation of the perturbed Chen–Lee–Liu model with conformable fractional derivative. Z. Naturforsch. A, (0) (2024). https://doi.org/10.1515/zna-2024-0112
  36. Yazıcı, D., Topuz, S. Generalized fractional bi-Hamiltonian structure of Plebański’s second heavenly equation in terms of conformable fractional derivatives. J. Comput. Appl. Math, 452, 116121 (2024). https://doi.org/10.1016/j.cam.2024.116121
  37. Alkhidhr, H. A. An insight into the solitonic structure of two distinct fractional nonlinear Schrödinger models in optical fiber using conformable fractional derivative. AIP Advances, 14(2) (2024). https://doi.org/10.1063/5.0187732
  38. Ait brahim, A., et al. A Comparative Analysis of Conformable, Non-conformable, Riemann-Liouville, and Caputo Fractional Derivatives. Eur. J. Pure Appl. Math, 17(3), 1842-1854 (2024). https://doi.org/10.29020/nybg.ejpam.v17i3.5237
  39. Iqbal, M. A., et al. Extracting the ultimate new soliton solutions of some nonlinear time fractional PDEs via the conformable fractional derivative. Fractal Fract, 8(4), 210 (2024). https://doi.org/10.3390/fractalfract8040210
  40. Ahmed, S. A. An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives. J. Appl. Math, 2024(1), 5958560 (2024). https://doi.org/10.1155/2024/5958560
  41. Tarasov, V. E. No violation of the Leibniz rule. No fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 18(11), 2945-2948 (2013). https://doi.org/10.1016/j.cnsns.2013.04.001
  42. S.G. Samko, A.A. Kilbas, O.I. Marichev. Integrals and Derivatives of Fractional Order and Applications (Nauka i Tehnika, Minsk, 1987).
  43. S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives Theory and Applications (Gordon and Breach, New York, 1993).
  44. Ortigueira, M. D., Machado, J. T. What is a fractional derivative?. J. Comput. Phys, 293, 4-13 (2015). https://doi.org/10.1016/j.jcp.2014.07.019
  45. Katugampola, U.N. Correction to “What is a fractional derivative?” by Ortigueira and Machado [Journal of Computational Physics, 293, 15 July 2015, 4–13. Special issue on Fractional PDEs], J. Comput. Phys, 321, 1255 (2016). https://doi.org/10.1016/j.jcp.2016.05.052.
  46. Abdelhakim, A.A. The flaw in the conformable calculus: It is conformable because it is not fractional. Fract. Calc. Appl. Anal, 22(2), 242 (2019). https://doi.org/10.1515/fca-2019-0016
  47. Atangana. A., et al. New properties of conformable derivative. Open. Math. 13(1) 000010151520150081 (2015). https://doi.org/10.1515/math-2015-0081
  48. Zhao, D., Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017). https://doi.org/10.1007/s10092-017-0213-8
  49. Wiley, C. Ray Jr. Advanced Engineering Mathematics, 3rd Ed. McGraw-Hill. pp. 372–373.
  50. R. P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
  51. Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 268(4-6), (2000) 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
  52. Laskin, N. Principles of fractional quantum mechanics. Fractional Dynamics, pp 393-427 (2011). https://doi.org/10.1142/9789814340595_0017
  53. Sang Chung, W., Hassanabadi, H., Maghsoodi, E. A new fractional mechanics based on fractional addition. Rev. Mex. Fis, 67(1), (2021) 68-74. https://doi.org/10.31349/RevMexFis.67.68
  54. Sang Chung, W., Hassanabadi, H. Deformed classical mechanics with α-deformed translation symmetry and anomalous diffusion. Mod. Phys. Lett. B,33(30),(2019)1950368. https://doi.org/10.1142/S0217984919503688
  55. Halliday D, Resnick R, Walker J. (2014) Fundamentals of physics. John Wiley and Sons, Inc. (pp. 1135).
  56. Haouam, I. On the Monotonous Evolutions: Model and Applications. WSEAS Transactions on Systems, 22, (2023) 255-263. https://doi.org/10.37394/23202.2023.22.27
  57. Al-Jamel, et al., The effect of deformation of special relativity by conformable derivative. Rev. Mex. Fis, 68(5) (2022). https://doi.org/10.31349/RevMexFis.68.050705
  58. W. S. Chung, et al. The effect of fractional calculus on the formation of quantum- mechanical operators, Mathematical Methods in the Applied Sciences, 43(11),(2020)6950-6967. https://doi.org/10.1002/mma.6445
  59. Seadawy, A. R., Alsaedi, B. Contraction of variational principle and optical soliton solutions for two models of nonlinear Schrodinger equation with polynomial law nonlinearity. AIMS Math., 9(3), 6336 (2024). https://doi.org/10.3934/math.2024309
  60. Seadawy, A.R., et al. Conservation laws, optical molecules, modulation instability and Painlevé analysis for the Chen–Lee–Liu model. Opt. Quant. Electron, 53, 172 (2021). https://doi.org/10.1007/s11082-021-02823-0
  61. Shihab, H., Al-khayat, T. Y. Associated conformable fractional legendre polynomials. J. Phys.: Conf. Ser. 1999,(2021)012091.http://dx.doi.org/10.1088/1742-6596/1999/1/012091
  62. Al-Masaeed, M. G., Rabei, E. M., Al-Jamel, A. Analytical Solution of Conformable Schrodinger Wave Equation with Coulomb Potential. Progr. Fract. Differ. Appl. 10(1), (2024) 137-153. http://dx.doi.org/10.18576/pfda/100113
  63. Haouam, I. on the three-dimensional Pauli equation in noncommutative phase-space. Acta Polytechnica, 61(1), (2021) 230–241. https://doi.org/10.14311/AP.2021.61.0230
  64. Haouam, I. Two-Dimensional Pauli Equation in Noncommutative Phase-Space. Ukrainian Journal of Physics, 66(9), (2021) 771. https://doi.org/10.15407/ujpe66.9.771
  65. Haouam, I. A Classical Aspect of the Dirac Equation in the Context of Conformable Fractional Derivative (2024). Available at SSRN 4763889. http://dx.doi.org/10.2139/ssrn.4763889
  66. Haouam, I. Classical limit and Ehrenfest’s theorem versus non-relativistic limit of noncommutative Dirac equation in the presence of minimal uncertainty in momentum. Int. J. Theor. Phys, 62, 189 (2023). https://doi.org/10.1007/s10773-023-05444-3
  67. Haouam, I. Ehrenfest's theorem for the Dirac equation in noncommutative Phase-Space. Math. Comput. Sci. 4(4), 53 (2024). https://doi.org/10.30511/mcs.2023.2013583.1143Ma
  68. Haouam, I. On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud, 24(1) (2020), 1801(1-10). https://doi.org/10.30970/jps.24.1801
  69. Jhangeer, A., Rezazadeh, H., Seadawy, A. A study of travelling, periodic, quasiperiodic and chaotic structures of perturbed Fokas–Lenells model. Pramana, J. Phys, 95, 41 (2021). https://doi.org/10.1007/s12043-020-02067-9
  70. Seadawy, A. R., Arshad, M., Lu, D. The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows. Chaos. Solit. Fract, 139, 110141 (2020). https://doi.org/10.1016/j.chaos.2020.110141