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Abstract:
This study employs a novel approach to solving two and three-dimensional time fractional wave equations by
utilizing the new results of fractional derivative definition, with a particular focus on the newly introduced
“New conformable fractional derivative” as outlined in [1]:(

Dβ N
)
(t) = limh−→0

N(t+he(β−1)t)−N(t)
h ,

where N : [0,∞)→ R a function and β ∈ [0,1). This definition offers simplicity and high effectiveness in
addressing fractional differential equations with complex solutions, surpassing traditional fractional derivative
definitions such as Caputo and Riemann-Liouville. Our findings indicate that the new conformable fractional
derivative definition is both practical and efficient for resolving higher-dimensional fractional differential
equations.
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1. Introduction

Fractional calculus (FC) represents a powerful extension
of traditional calculus by allowing for differentiation and
integration to be performed at non-integer orders. This
concept aims to generalize the idea of derivatives and inte-
grals beyond the integer domain, thus enabling more ver-
satile modeling of physical, biological, and engineering
systems. Numerous dynamic systems are better described
using fractional-order models, where the governing equa-
tions involve derivatives or integrals of non-integer orders.
These models provide more accurate representations of sys-
tems exhibiting memory effects, long-range interactions, or
complex dynamics that integer-order models fail to capture
adequately [1–5].
The study of systems governed by fractional-order equations
is significantly more intricate than that of integer-order sys-
tems. One of the hallmarks of such systems is their inherent
memory property, meaning that their future behavior de-
pends not only on their current state but also on their entire
history. This makes fractional systems intrinsically more
complex and capable of modeling real-world phenomena
that cannot be easily described using traditional methods

[6–8]. For instance, fractional differential equations are cru-
cial in modeling viscoelastic materials, diffusion processes,
anomalous transport, and other physical systems exhibiting
non-local behavior or power-law dynamics.
The concept of fractional derivatives, which extends the
classical derivative to non-integer orders, can be traced back
to the late 17th century. In fact, it was during a correspon-
dence between the mathematicians L’Hopital and Leibniz
on September 30, 1695, that the first discussions arose con-
cerning the definition of the operator dn/dxn for non-integer
n. Over the centuries, fractional derivatives have evolved
through various definitions, with the Riemann-Liouville and
Caputo derivatives being among the most prominent. The
Riemann-Liouville fractional derivative is based on an in-
tegral representation, while the Caputo derivative modifies
this definition to allow for better initial condition handling
in practical applications. Fractional differential equations
(FDEs) are often termed as extraordinary differential equa-
tions due to their distinctive mathematical structure, which
sets them apart from conventional integer-order differential
equations. These equations are now widely applied across
multiple disciplines of science and engineering, including
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physics, chemistry, biology, economics, and engineering.
The application of fractional calculus to dynamic systems
in these fields has proven invaluable, providing insights into
complex behaviors such as anomalous diffusion, memory-
dependent processes, and fractal-like patterns. In physics,
for instance, fractional differential equations are used to
describe a variety of phenomena such as wave propagation
in heterogeneous media, fluid dynamics in porous materials,
and the relaxation processes in complex systems. The use of
fractional derivatives allows for a more comprehensive and
nuanced understanding of these systems by incorporating
the effects of long-range correlations and non-local interac-
tions, which are not accounted for in traditional models.
The challenge of solving fractional differential equations
lies in their inherent non-locality and the need for special
techniques tailored to handle fractional orders. Over recent
years, a wealth of methodologies has been developed to
tackle these equations, including analytical, numerical, and
hybrid methods. These techniques aim to provide exact
or approximate solutions to fractional models, which are
often essential for real-world applications. Furthermore,
researchers continue to propose new definitions and ap-
proaches to fractional derivatives, many of which involve
integral representations that make it easier to solve and in-
terpret fractional-order systems [9–11].
One of the key developments in this area has been the grow-
ing effort to establish new fractional derivative definitions
that offer greater flexibility and applicability to practical
problems. Many of these definitions are constructed in an in-
tegral form, which allows for a more intuitive understanding
of fractional derivatives and simplifies their computation.
As such, fractional calculus continues to play a central role
in advancing our ability to model and understand complex
systems, offering tools that can address a wide range of
engineering, scientific, and technological challenges. The
ongoing research in this field promises to yield even more
efficient methods for solving fractional differential equa-
tions, further expanding the scope and impact of fractional
calculus in modern science and engineering.
The new method presented in this study offers several ad-
vantages in physics, particularly when solving two- and
three-dimensional time fractional wave equations. By uti-
lizing the newly introduced “New conformable fractional
derivative” [1], this approach provides a range of benefits
compared to traditional fractional derivative definitions such
as Caputo and Riemann-Liouville. Below are the primary
advantages of this method in the context of physics:
Simplicity in Implementation: The new conformable frac-
tional derivative definition simplifies the process of dealing
with fractional differential equations. Unlike traditional
definitions, which often involve complex procedures and
intricate computations, the conformable derivative provides
a straightforward and intuitive approach. This makes the
mathematical formulation and solution of complex wave
equations more accessible and efficient for researchers work-
ing in various areas of physics.
Improved Efficiency for Complex Solutions: This method
is particularly effective for solving fractional differential
equations with complex solutions. Traditional definitions,

such as those of Caputo or Riemann-Liouville, often strug-
gle to accurately describe systems where the behavior of
the solutions is non-local or involves memory effects. The
conformable fractional derivative provides a more effective
means of capturing these behaviors, offering clearer and
more reliable solutions in systems with anomalous diffu-
sion, non-local interactions, or fractal-like structures.
Better Handling of Higher-Dimensional Equations: The
new conformable fractional derivative is particularly useful
when dealing with higher-dimensional fractional differen-
tial equations, such as those encountered in two- and three-
dimensional wave equations. This method allows for the
seamless extension of fractional calculus to higher dimen-
sions, which is essential in describing wave phenomena in
more complex physical systems, such as multi-dimensional
media, heterogeneous materials, and systems with intricate
geometries.
Physical Relevance and Applicability: The use of this novel
fractional derivative is highly relevant in describing physical
systems exhibiting non-local or fractional-order behavior,
such as waves propagating in media with memory effects,
viscoelastic materials, or anomalous wave propagation in
porous structures. It offers an enhanced framework for
modeling these phenomena in a way that traditional integer-
order differential equations cannot capture adequately. The
conformable fractional derivative thus opens up new pos-
sibilities for modeling real-world physical systems that
were previously difficult to describe using classical methods
[12, 13].
Practicality for Real-World Problems: In addition to its
mathematical elegance, the conformable fractional deriva-
tive offers practical benefits for solving real-world problems.
By simplifying the equations and reducing computational
complexity, it allows for more efficient numerical simula-
tions and analysis of complex systems in physics, engineer-
ing, and applied sciences. This method also lends itself well
to experimental verification, as it offers clear and predictive
results that align well with observed physical behaviors in
systems exhibiting anomalous or fractional dynamics [14–
16].
In summary, fractional calculus extends classical calculus
to non-integer orders, offering more accurate and effective
models for a wide variety of dynamic systems. The study of
fractional differential equations presents unique challenges,
but it is essential for capturing the complexities of systems
with memory and non-local interactions. The continuous ad-
vancement of fractional calculus methods holds the promise
of further breakthroughs in science and engineering, pro-
viding deeper insights into both fundamental and applied
phenomena across many disciplines. Among these defini-
tions, two of the most prominent are:
If n is a positive integer and β ∈ [n−1,n] derivative of N is
given by

• Riemann-Liouville definition:

Dβ
a (N)(t) =

1
Γ(n−β )

dn

dtn

∫ t

a

N(u)
(t −u)β−n+1 du (1)

• Caputo definition:
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If n is a positive integer and β ∈ [n−1,n), β derivative of
N is given by

Dβ
a (N)(t) =

1
Γ(n−β )

∫ t

a

N(n)(u)
(t −u)β−n+1 du. (2)

In reference [12], R. Khalil et al. presented an innovative
concept of fractional derivative termed the “conformable
fractional derivative”.
Definition 1 Let N : [0,∞) → R be a function. β order
“conformable fractional derivative” of N is defined by

Dβ (N)(t) = lim
ε→0

N
(
t + εt1−β

)
−N(t)

ε
(3)

for all t > 0,β ∈ (0,1). If N is β -differentiable in (0,a),a>
0, and limt→0+ N(α)(t) exists, therefore define

N(β )(0) = lim
t→0+

N(β )(t). (4)

The properties satisfied by this new definition are outlined
in the following theorem [12].
Definition 2 Given a function N : [0,∞)−→ R, and there-
fore the “conformable fractional derivative” of N order α is
represented by

(
Dβ N

)
(t) = lim

k−→0

N
(

t + ke(β−1)t
)
−N(t)

k
, (5)

for all t > 0, and β ∈ (0,1).
If N is β differentiable in (0,a),a > 0, and
limt→0+

(
Dβ N

)
(t) exists, therefore define(

Dβ N
)
(0) = lim

t−→0+

(
Dβ N

)
(t). (6)

Theorem 1 [1] If a function N : [0,+∞)−→ R and β differ-
entiable at t0 > 0, then N is continuous at t0.
Theorem 2 If N be β differentiable at a point t > 0. We gets

1. Dβ (aN+bN) = a
(
Dβ N

)
+b
(
Dβ N

)
, for all a,b ∈ R

2. Dβ (tn) = ne(β−1)tt p−1 for all n ∈ R

3. Dβ (γ) = 0, for all constant N(t) = γ .

4.
(
Dβ NH

)
= N

(
Dβ H

)
+H

(
Dβ N

)
.

5.
(
Dβ (N/H)

)
=
(
N
(
Dβ H

)
+H

(
Dβ N

))
/H2.

6. If N is differentiable, then
(
Dβ N

)
(t) = e(β−1)tN′(t).

2. The fractional Wave equation (FWE) with
“new conformable fractional derivatives”

(NCFD)
The wave equation, which describes the propagation of
waves in a given medium, is a fundamental partial differ-
ential equation in classical physics and engineering. In its
standard form, it represents the relationship between the spa-
tial and temporal variations of a wave function. However,
when fractional calculus is applied, particularly through the
use of conformable fractional derivatives, the traditional

wave equation is modified to accommodate non-integer or-
ders of differentiation. This extension allows for a more
generalized description of wave propagation, especially in
complex systems where classical integer-order calculus may
not be sufficient. By introducing these fractional derivatives,
we are able to capture anomalous diffusion and memory
effects that are often observed in physical systems with
non-local properties or fractal structures. The following
equation incorporates this modification to the conventional
wave equation, where the fractional derivatives are used to
represent the more generalized dynamics of wave propaga-
tion in both space and time.
To explore the solution of the two-dimensional wave equa-
tion incorporating the “new conformable fractional deriva-
tives” [1], we shall begin by expressing the equation itself.
The two-dimensional wave equation in rectangular coordi-
nates is as follows:

δ β

δ tβ

∂ β N
∂ tβ

=L2
(

∂ 2N
∂u2 +

∂ 2N
∂v2

)
,0< u< a,0< v< b, t > 0,

(7)
in the rectangular domain D = {(u,v) : 0 < u < a,0 < v <
b,u,v ∈ R}, consider the vibrating membrane or plate.

N(0,v, t) = N(a,v, t) = N(u,0, t) = N(u,b, t) = 0 (8)

N(u,v,0) = M(u,v);0 ≤ u ≤ a,0 ≤ v ≤ b (9)

Nt(u,v,0) = P(u,v);0 ≤ u ≤ a,0 ≤ v ≤ b (10)

where 0 < β ≤ 1.
Let N(u,v, t)=H(u)Q(v)K(t). Hence, we proceed to derive
the requisite derivatives in equation (7) and dividing all sides
by L2H(u)Q(v)K(t) we gets,

1
L2K(t)

δ β

δ tβ

∂ β K
∂ tβ

=
1

H(u)
∂ 2H
∂u2 +

1
Q(v)

∂ 2Q
∂v2 =−µ

2. (11)

We manipulate the right side of the formula, we obtain:

1
H(u)

∂ 2H
∂u2 =− 1

Q(v)
∂ 2Q
∂v2 −µ

2. (12)

For 0 < u < a and 0 < v < b in the right and left side of the
formula (12), we gets

1
H(u)

∂ 2H
∂u2 =− 1

Q(v)
∂ 2Q
∂v2 −µ

2 =−ν
2 (13)

Let ν denote the separation constant. Equations (11) and
(13) yield the subsequent equalities:

δ β

δ tβ

∂ β K
∂ tβ

+L2
µ

2K(t) = 0 (14)

∂ 2H
∂u2 +ν

2H = 0 (15)

∂ 2Q
∂v2 + ι

2Q = 0 (16)

Utilizing equation (6) from Theorem (1) alongside Eq. (29)
in [13], which defines the sequential “conformable frac-
tional derivative”, transforms the first equation into:
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(β −1)e(2β−1)tK′(t)+ e(2β−2)tK′′(t)+L2
µ

2K(t) = 0.
(17)

The solution to the mentioned equation can be readily ob-
tained as follows:

K(t) = Acos

(
Lµe(1−β )t

1−β

)
+Bsin

(
Lµe(1−β )t

1−β

)
(18)

In figure 1, we represent the comparative solutions K(t) for
several values of β , illustrating how variations in β affect
the oscillatory behavior of the system.
Then, solutions for the remaining equations can be obtained
as follows:

H(u) =C cos(ϑu)+Dsin(ϑu) (19)

Q(v) = E cos(lv)+F sin(lv) (20)

The conditions referenced as (8) necessitate the fulfillment
of these equalities

H(u) =
∞

∑
n=1

Dn sin
(nπu

a

)
, (21)

Q(v) =
∞

∑
m=1

Fm sin
(mπv

b

)
. (22)

Therefore, based on our assumption, N(u,v, t) can be de-
rived as.

N(u,v, t) =
∞

∑
n=1

∞

∑
m=1

[
Φmn cos

(
γmnLe(1−β )t

1−β

)
+

Ψmn sin
(

γmnLe(1−β )t

1−β

)]
sin
(nπu

a

)
sin
(mπv

b

)
(23)

with γmn =
π2n2

a2 + π2m2

b2 .
Now, leveraging conditions (9) and (10), we can determine
the coefficients in equation (23) as follows:

Φmn =
4

ab

∫ a

0

∫ b

0
M(u,v)sin

(nπu
a

)
sin
(mπv

b

)
dvdu,

(24)

Figure 1. Comparative solutions for serval values of β .

Ψmn =
4

γmnabL

∫ a

0

∫ b

0
P(u,v)sin

(nπu
a

)
sin
(mπv

b

)
dvdu.

(25)
Therefore, the solution to equation (7) is derived as follows:

N(u,v, t) =
∞

∑
n=1

∞

∑
m=1

[[
4

ab

∫ a

0

∫ b

0
M(u,v)sin

(nπu
a

)
sin
(mπv

b

)
dvdu

]
cos

(
γmnLe(1−β )t

1−β

)

+

[
4

γmnabL

∫ b

0

∫ b

0
P(u,v)sin

(nπu
a

)
sin
(mπy

b

)
dv

du
]

sin

(
γmnLe(1−β )t

1−β

)]
sin
(nπu

a

)
sin
(mπv

b

)
.

(26)

3. The three Dimensional Fractional Wave
Equation (FWE)

The vibrational motion of an object or gas, in the absence of
external influences, follows the principles of wave propaga-
tion, where the displacement of points within the medium
varies as a function of both spatial position and time. In
classical mechanics, this motion is governed by the tradi-
tional wave equation, which links the second derivatives of
the displacement with respect to space and time. However,
in systems exhibiting complex behaviors such as fractality,
non-local interactions, or anomalous diffusion, fractional
calculus provides a more accurate description of wave phe-
nomena. By extending the wave equation using fractional
derivatives, we are able to account for these non-standard
effects that cannot be captured by integer-order calculus.
The fractional form of the wave equation, which incorpo-
rates derivatives of non-integer order, offers a more general
framework that can describe wave propagation in materials
or media with memory, elasticity, or heterogeneous prop-
erties. In particular, the fractional derivatives reflect the
non-local behavior of the medium, where the response at
a given point may depend not only on the current state of
the point itself but also on its historical or spatially distant
states. This extended form of the wave equation is crucial
for modeling a wide range of real-world phenomena, such
as vibrations in materials with complex microstructures or
the behavior of gases in confined geometries.
In three-dimensional space, when an object or gas under-
goes free vibrational motion within a prism, unaffected
by external forces, this motion is described by the three-
dimensional wave equation. Expressed in fractional form,
this equation can be written as:

δ β

δ tβ

∂ β N
∂ tβ

= L2
(

∂ 2N
∂u2 +

∂ 2N
∂v2 +

∂ 2N
∂ z2

)
,

0 < u < a,0 < v < b,0 < z < d, t > 0
(27)

where the following conditions:

N(0,v,z, t) = N(a,v,z, t) = N(u,0,z, t) = N(u,b,z, t) =

N(u,v,0, t) = N(u,v,d, t) = 0.
(28)
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N(u,v,z,0)=P(u,v);0≤ u≤ a,0≤ v≤ b,0≤ z≤ d. (29)

Nt(u,v,z,0) = M(u,v);0 ≤ u ≤ a,0 ≤ v ≤ b,0 ≤ z ≤ d.
(30)

Here, 0 < β ≤ 1, and the derivative represents a con-
formable fractional derivative. Let’s consider N(u,v, t) =
H(u)Q(v)K(z)J(t). Next, by taking the necessary
derivatives in equation (27) and dividing both sides by
L2H(u)Q(v)R(z)J(t), we obtain:

1
L2J(t)

δ β

δ tβ

∂ β J
∂ tβ

=
1

H(u)
∂ 2H
∂u2 +

1
Q(y)

∂ 2Q
∂v2 +

1
K(z)

∂ 2K
∂ z2 =

−µ
2

(31)

By following the procedure outlined in section 2, we derive
the following equations:

δ β

δ tβ

∂ β J
∂ tβ

+L2
µ

2J(t) = 0, (32)

∂ 2H
∂u2 +ϑ

2H = 0, (33)

∂ 2Q
∂v2 + i2Q = 0, (34)

∂ 2K
∂ z2 +ρ

2K = 0. (35)

Utilizing equation (6) from Theorem (1) alongside Eq. (29)
in [13], which defines the sequential conformable fractional
derivative, transforms the first equation into:

(β −1)e(2β−1)tJ′(t)+ e(2β−2)tJ′′(t)+L2
µ

2J(t) = 0 (36)

We can be easily get the following solution of above equa-
tion:

J(t) = Acos

(
Lue(1−β )t

1−β

)
+Bsin

(
Lue(1−β )t

1−β

)
. (37)

In figure 2, we represent the comparative solutions J(t) for
several values of β , illustrating how variations in β affect

Figure 2. Comparative solutions for serval values of β .

the oscillatory behavior of the system.
Moreover, solutions to other equations can be derived as
follows:

H(u) =C cos(ϑu)+Dsin(ϑu) (38)

Q(v) = E cos(tv)+F sin(tv) (39)

The conditions described by (28) necessitate these equalities
to hold.

H(x) =
∞

∑
n=1

Dn sin
(nπu

a

)
, (40)

Q(v) =
∞

∑
m=1

Fm sin
(mπv

b

)
, (41)

K(z) =
∞

∑
r=1

Kr sin
( rπz

d

)
. (42)

Thus, according to our assumption, we obtain N(u,v,z, t) as
follows:

N(u,v, t) =
∞

∑
n=1

∞

∑
m=1

∞

∑
r=1

Φmnr cos

(
γmnrLe(1−β )t

1−β

)
sin
(nπu

a

)
sin
(mπv

b

)
sin
( rπz

d

)
+φmmr sin

(
γmnrLe(1−β )t

1−β

)
sin
(nπu

a

)
sin
(mπv

b

)
sin
( rπz

d

)
(43)

Utilizing conditions (29) and (30), we determine the coeffi-
cients Φmn and φmnr as follows:

Φmn =
8

abd

∫ a

0

∫ b

0

∫ d

0
P(u,v,z)sin

(nπu
a

)
sin
(mπv

b

)
sin
( rπz

d

)
dzdvdu,

(44)

φmn =
8

γmnrabdL

∫ a

0

∫ b

0

∫ d

0
M(u,v,z)sin

(nπu
a

)
sin
(mπv

b

)
sin
( rπz

d

)
dzdvdu.

(45)

4. Conclusion
This paper explores the resolution of the “two and
three-dimensional” fractional wave formula. Utilizing the
new conformable fractional derivative (NCFD) [1], we can
seamlessly convert fractional differential equations into
familiar classical differential equations. This approach
eliminates the necessity for complex methods or definitions,
simplifying the attainment of exact solutions. The solution
procedure and outcomes demonstrate the practicality
and suitability of this definition for addressing “higher-
dimensional” partial fractional differential equations.
The key advantage of the NCFD lies in its ability to trans-
form complex fractional problems into more manageable
forms, enabling researchers and practitioners to leverage
existing analytical techniques and tools traditionally
used for classical differential equations. By applying the
NCFD, we reduce computational complexity and enhance

2251-7227[https://doi.org/10.57647/j.jtap.2025.1905.52]

https://doi.org/10.57647/j.jtap.2025.1905.52


6/6 JTAP19 (2025) -192552 Brahim et al.

the efficiency of obtaining precise solutions, which is
particularly beneficial in modeling physical phenomena
where fractional derivatives play a crucial role.
Our study highlights the robustness of the NCFD in ex-
tending the applicability of classical methods to fractional
differential equations in higher dimensions. The results
obtained not only affirm the validity of the NCFD but
also showcase its versatility in various scientific and
engineering contexts. For instance, in wave propagation,
heat conduction, and other dynamic systems, where
fractional calculus provides a more accurate description of
underlying processes, the NCFD proves to be a valuable
tool.
Furthermore, the straightforward implementation of
the NCFD fosters a deeper understanding of fractional
dynamics and promotes its integration into mainstream
mathematical modeling. This can potentially lead to
new insights and advancements in fields such as physics,
engineering, finance, and biology, where the behavior of
systems often exhibits fractional-order characteristics.
In conclusion, the use of the new conformable fractional
derivative presents a significant step forward in solving
higher-dimensional partial fractional differential equations.
It bridges the gap between classical and fractional calculus,
offering a simplified yet powerful method for exact
solutions. Future research can build upon this foundation,
exploring more complex systems and further validating
the broad applicability of the NCFD in diverse scientific
domains.
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