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Abstract:
The double distribution function lattice Boltzmann method (DDF-LBM) is explored for its potential use
in a single expansion ramp nozzle. The main goal is to evaluate how well DDF-LBM can model shock
wave/boundary layer interactions (SWBLI), including shock formation and the size of separation bubbles.
The method which is validated in a previous paper by the same authors by examining its potential strengths
in well-known benchmark problems such as the shock tube and flow around an airfoil, is combined with
Spallart-Almaras turbulent model to simulate shock wave and turbulent boundary layer interactions near a
nozzle wall. Achieving accurate results required careful attention to spatial discretization, selecting suitable
Courant-Friedrichs-Lewy (CFL) numbers, and tuning parameters. The effectiveness of two discretization
schemes—the fifth-order weighted essentially non-oscillatory (WENO) and the third-order weighted non-
free-parameter dissipation (WNND)-was assessed for capturing key physical phenomena. The influence of
the entrance Mach number was also studied to evaluate the method’s ability to predict major flow variations.
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1. Introduction

Over the last thirty years, the lattice Boltzmann method
(LBM) has garnered significant interest among researchers
and academics. Its popularity stems from its straightfor-
wardness, compatibility with parallel computing, and ca-
pacity to handle complex geometries. Rooted in the funda-
mental Boltzmann equation, well-known techniques like the
Chapman-Enskog expansion link the microscopic dynamics
in LBM to macroscopic conservation laws. Acting as an
intermediary between micro- and macro-scales, the recent
form of LBM operates at the mesoscopic level, effectively
capturing key aspects of fluid flow. Though its origins lie
in lattice gas automata, its current iteration results from dis-
cretizing the Boltzmann equation in velocity space, along
with space and time. Since the Boltzmann equation incorpo-
rates all the necessary physics, LBM is used across a broad
spectrum of computational fluid dynamics applications.
A thorough review by Dolling in 2001 [1] examined re-
search on shock wave-boundary layer interaction spanning
the previous 50 years. Despite notable progress in numerical
techniques and experimental research, several challenges
still exist. Problems such as exaggerated temperature in-
creases and unsteady pressure loads continue to be areas

of concern. Although the author is optimistic about future
advancements, constraints like time, cost, and the com-
plexity of aerial missions highlight the need for a detailed
understanding of the underlying physics and highly accurate
simulation outcomes.
In a 2008 PhD thesis, Kun [2] proposed a new lattice Boltz-
mann (LB) model along with corresponding equilibrium
distribution functions tailored for simulating compressible
flows. Instead of using the complex Maxwell equations, the
study simplifies the process by introducing an equilibrium
function that satisfies the necessary conditions to recover the
Navier-Stokes (NS) equations. This function is distributed
across lattice sites in velocity space through Lagrangian
interpolation. Using this framework, several models were
developed for both compressible and incompressible, as
well as viscous and inviscid flows. The discrete Boltzmann
equation was solved via the finite volume method, which
effectively captures shock waves and other discontinuities
at high Mach numbers. The study also considers various
boundary conditions, such as slip and no-slip walls. The
validity of these models and the solution approach was con-
firmed through comparisons with existing literature, and
numerical results showed that the method can successfully
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simulate flows at Mach numbers as high as 10.
In 2012, Xu et al. [3] reviewed their group’s work on
compressible lattice Boltzmann methods. They categorized
their research into three main areas: single relaxation time
LBM with an added viscosity term, multiple relaxation time
models, and studies of hydrodynamic instabilities. These
instabilities, which occur in many natural and industrial pro-
cesses, are primarily classified into Rayleigh-Taylor (RT),
Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH)
types.
Then, in 2014, Li and Zhang [4] investigated compressible
flows using the lattice Boltzmann method. Their approach,
based on a multispeed lattice, introduced an extra distribu-
tion function to incorporate potential energy and enable the
recovery of Navier-Stokes equations. They used Chapman-
Enskog expansion to derive the equilibrium density distri-
bution function in 2D with 17 discrete velocities. Equations
were discretized with a third-order upwind scheme, and a
von Albada limiter was applied to suppress unwanted nu-
merical oscillations. Validation was carried out through
simulations of the Riemann problem, Couette flow, and a
NACA0012 airfoil, with detailed initial conditions and pa-
rameters.
In 2007, Li et al. [5] introduced a well-known double distri-
bution function (DDF) model that uses a circular function to
derive the equilibrium distribution. They selected this DDF
approach to simulate shock and boundary layer interactions
at the entrance of a diffuser in supersonic flows. After ini-
tial validation against the standard shock tube problem, the
model was applied to two-dimensional scenarios to assess
its ability to handle compressible viscous flows, particularly
those involving shock waves and boundary layers with com-
plex features.
Then, in 2017, Qiu et al. [6] employed the DDF-based
LB model developed by Li et al. [5] to simulate various
compressible viscous flows. They successfully validated
their approach by solving the Riemann problem and Cou-
ette flow. Following this, they modeled three specific cases:
A compressible boundary layer, a shock wave, and shock
wave/boundary layer interaction. They also examined lam-
inar supersonic flow over an insulated flat plate at Mach
numbers 2, 4, and 6 to analyze the numerical results across
different flow regimes.
Jammalamadka et al. [7] studied the classic shock wave-
boundary layer interaction (SWBLI) using an LBM-based
Large Eddy Simulation (VLES). Their 3D unsteady simula-
tions focused on Mach 1.7, performed with the commercial
PowerFLOW software, which employed variable refinement
regions to improve grid resolution. Turbulence was initiated
using a zig-zag strip. They observed an anti-correlation be-
tween temperature and velocity fields-when one increased,
the other decreased. Vortical structures were visualized in
3D, and results from 2D and 3D simulations showed strong
agreement. The study also captured low-frequency oscilla-
tions in the shock system, highlighting complex unsteady
behavior.
In another study, Qiu et al. [8] examined non-equilibrium
effects in a shock tube using a mesoscopic kinetic approach
that detailed molecular velocity distributions. They ana-

lyzed the hydrodynamic and thermodynamic impacts of
shock waves, contact discontinuities, and rarefaction waves.
Their findings indicated that non-equilibrium effects are
more significant in shock waves than in contact discontinu-
ities or rarefaction waves. Although these effects are strong
in shock waves, they are inherently unstable-the interaction
with contact discontinuities alters their direction, and in-
teractions with rarefaction waves produce sharp peaks or
crests in the non-equilibrium kinetic moments, revealing
complex physical behaviors.
Another application of a double distribution function lat-
tice Boltzmann method is proposed by Bhadauria et al. [9]
where the fluid-solid interaction is investigated for a com-
pressible flow. A body-fitted spatial discretization scheme
is exploited in a Lagrangian-Eulerian framework along with
polynomial functions to account for local deformation of
the mesh domain. Problems such as vorticity-induced vibra-
tions on cylinders are studied to analyze dynamic behavior.
This study aims to assess the capability of a double-
distribution-function-based lattice Boltzmann method
(DDF-LBM) in accurately capturing the complex physics of
shock wave turbulent boundary layer interactions (SWBLI).
Validation results are presented in a previous paper by au-
thors in Hosseini & Goshtasbi Rad [10]. The method is
applied to a 2D nozzle flow scenario to evaluate its effective-
ness in predicting shock-boundary layer interactions near
nozzle walls. Additionally, the study explores the impact of
different discretization schemes and varying entrance Mach
numbers on simulation accuracy and robustness.

2. Methodology

Double distribution function methods evolved upon the fact
that energy needs a separate distribution function to be cou-
pled with the density distribution function via the equation
of state and acts as a serious alternative for conventional
CFD methods in solving Navier-Stokes equations. Accord-
ingly, there will be another equilibrium distribution function
for energy. The method by Li et al. [5] along with corre-
sponding WENO and WNND discretization schemes are
outlined in Hosseini & GoshtasbiRad [10] and we do not
repeat the equations here for limitation purposes.
In order to correct the viscosity in turbulent flows, the
well-known one-equation Spalart-Allmaras (SA) model was
exploited which gives satisfying results in near-wall and
boundary layer flows which have adverse pressure gradient.
The original SA model calculates viscosity according to the
following equation:

Dṽ
Dt

=Cb1(1− ft2)S̃ṽ+
1
σ

[
∇∇∇·

(
(vl + ṽ)∇∇∇ṽ

)
+Cb2 |∇∇∇ṽ|2

]
−

(Cw1 fw −
Cb1

κ2 ft2)(
ṽ
d
)2

(1)

In which vl is the laminar flow kinematic viscosity. The
eddy viscosity vt is defined as:

vt = ṽ fv1 , fv1 =
χ3

χ3 +C3
vv

, χ =
ṽ
vt

(2)
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Then, the dynamic viscosity of the turbulent flow is calcu-
lated according to µt = ρvt . Parameters in the equations
above are summarized in the following.

ft2 =Ct3 exp(−Ct4 χ
2)

S̃ =
√

2Ωi jΩi j fv3 +
ṽ

κ2d2 fv2

Ωi j =
1
2

(
∂ui

∂x j
−

∂u j

∂xi

)
fv2 = 1− χ

1+χ fv1

fv3 = 1

fw = g
(

1+C6
w3

g6 +C6
w3

) 1
6

g = r+Cw2(r
6 − r)

r =
ṽ

Sκ2d2

(3)

Constants are defined as:

Cb1 = 0.1355, Cb2 = 0.622, σ = 2/3,

κ = 0.41, Cw1 =
Cb1

κ2 +
1+Cb1

σ
, Cw2 = 0.3, (4)

Cw3 = 2, Cv1 = 7.1, Ct3 = 1.1,
Ct4 = 2

An improvement is suggested for better convergence which
is:

S̃ =
√

2Ωi jΩi j fv3 +
ṽ

κ2d2 fv2 , fv2 = (1+
χ

Cv2

)−3 (5)

fv3 =
(1+χ fv1)(1− fv2)

χ
, χ = max{χ ·10−4}

To adopt the model to compressible flows, equation (1) is
rewritten as follows:

∂ ṽ
∂ t

+
∂

∂x j
(ṽu j) =

Dṽ
Dt

+ ṽ∇∇∇ ·u

=Cb1(1− ft2)S̃ṽ

+
1
σ

[
∇∇∇·

(
(vl + ṽ)∇∇∇ṽ

)
+Cb2 |∇∇∇ṽ|2

]
− (Cw1 fw −

Cb1

κ2 ft2)(
ṽ
d
)2

(6)

Finally, the improved SA model is expressed as:

Dṽ
Dt

= [Cb1(1− ft2)S̃−∇∇∇ ·u]ṽ

+
1
σ

[
∇∇∇·

(
(vl + ṽ)∇∇∇ṽ

)
+Cb2 |∇∇∇ṽ|2

]
− [(Cw1 fw −

Cb1

κ2 ft2)](
ṽ
d
)2

(7)

And variables related to dynamic viscosity are:

µ = µl +µt ,
µ

Pr
=

µl

Prl
+

µt

Prt
(8)

In which subscripts l and t are used for laminar and turbulent
flows respectively and Pr is the Prandtl number. According

to the modifications above, the relaxation times for density
and total energy will be as follows:

τ f =
µl +µt

p
, τh =

1
p
(

µl

Prl
+

µt

Prt
) (9)

3. Results and discussion
As the main concentration of this study, a typical 2D ge-
ometry of a nozzle is constructed to be studied by the DDF
LBM. The corresponding geometry is illustrated in figure 1.
It consists of a straight expansion ramp with a ramp angle
of 25° and an expansion area ratio of 2.896. A uniform
rectangular grid is used in this study and other settings for
the simulation are as: γ = 1.4, Pr = 0.71, R = 1, µ = 1/Re.

Figure 1. Geometry of the nozzle.

A C++ program was developed to carry out the computa-
tions. Different parts of the problem from the equilibrium
to the discretization schemes are all written in separate func-
tions to be called in their appropriate sequence.
Two different grid sizes were selected to be tested in the
simulations, namely, a 200 × 200 and a 300 × 300 grid
using the WENO discretization scheme.
Since there is no considerable discrepancy between two
grids (figure 2), the smaller one with 40000 elements was
chosen. An internal flow is considered for this study with
the right boundary as outflow and the upper one as an open
boundary condition while the surface wall (bottom bound-
ary) is set to be bounce-back type for which a special func-
tion is provided in the flux calculation step. In this function,
wall nodes are firstly identified by calling another function
and then the no slip bounce back method is applied. Regard-
ing the computational domain, it should be mentioned that a
chord length of 1 is considered in our computational code to
care for length units, and the computational domain is three
chord lengths for both horizontal and vertical directions.
Also, the grid is uniform with equal spatial increments in
both directions. Three ghost layers are considered at each
boundary. For the WENO scheme, solutions diverge for
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Figure 2. Density distribution on the wall for two different mesh sizes (40000 and 90000 elements).

CFL numbers more than 0.5 while for the WNND scheme
gives acceptable results at CFL numbers smaller than 0.7 so
a CFL number of 0.5 is selected to get acceptable results by
both discretization schemes. For a flow entering the nozzle
at M = 0.5, inlet temperature and pressure of 300 K and
93243.6648 Pa, respectively and exit temperature and pres-
sure of 300 K and 31073.02 Pa, respectively; contours of
density gradients are extracted for both WENO and WNND

schemes and results are compared to other references.
Figures 3 and 4 show the distributions of density gradient for
a single ramp expansion nozzle using WENO and WNND
schemes, respectively. Results of the WENO scheme are
closer to the results of Mousavi et al. [11] with respect to
the lambda shock location and magnitude.
For the case of turbulent flow, two values of entrance Mach
numbers namely 0.5 and 0.8 (with corresponding Reynolds

(a) (b)

Figure 3. Density gradient (a: WENO, b: Mousavi et al. [11])

(a) (b)

Figure 4. Density gradient (a: WNND, b: Mousavi et al. [11]).
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numbers of 650000 and 1040000 respectively) are consid-
ered to compare the applicability of WENO and WNND
discretization schemes. Density gradients are plotted in the
following figures.
Based on figures 5 and 6, at 0.5 seconds, the flow has not
yet experienced significant growth, and flow patterns are be-
ginning to appear near the nozzle inlet, indicating the initial

formation of vortices or early instabilities in the flow. By
1.5 seconds, multiple instabilities and vortices are observed
in the flow, especially in the midsection of the nozzle, signi-
fying the development and spreading of waves and vortex
structures. At 2 and 2.5 seconds, these vortices and flow
structures become more evident and complex.
Figures 7 and 8, presented below, illustrate the evolution

t = 0.5 s t = 1 s

t = 1.5 s t = 2 s

t = 2.5 s t = 3 s

Figure 5. Flow evolution in the nozzle for M = 0.5 and WNND scheme.
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t = 0.5 s t = 1 s

t = 1.5 s t = 2 s

t = 2.5 s t = 3 s

Figure 6. Flow evolution in the nozzle for M = 0.5 and WENO scheme.

of the flow inside the nozzle for a case with an inlet Mach
number of 0.8. Here, it is also evident that at 0.5 seconds,
initial flow instabilities begin to appear, with small vor-
tex structures forming near shocks and the boundary layer
inside the nozzle. This situation indicates that intense inter-
action between the shock and the boundary layer leads to
the development of complex instabilities and density fluc-
tuations. At 1.5 and 2 seconds, larger and more complex

vortex structures emerge along the flow path, a direct re-
sult of repeated shockwave and boundary-layer interactions.
These interactions induce strong dynamic responses in the
density gradients, causing larger instabilities in different
parts of the flow. By 2.5 seconds, these unstable structures
have developed significantly, with shock waves appearing in
intricate, intertwined shapes, reflecting intense interactions
between shocks and the boundary layer under high-speed
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t = 0.5 s t = 1 s

t = 1.5 s t = 2 s

t = 2.5 s t = 3 s

Figure 7. Flow evolution in the nozzle for M = 0.8 and WNND scheme.

and unsteady flow conditions.
Figures 9 and 10 show distributions of density and Mach
number for both laminar and turbulent flows. Results of
WNND and WENO discretization schemes are presented
for comparison purposes. It is worth mentioning that the
entrance Mach number is 0.5.
In the laminar flow, density contours and Mach number are
observed to be relatively organized and stable, indicating

that the flow is in a relatively equilibrium and calm state.
The interactions between shock waves and the boundary
layer are minimal, and there are no significant dynamic in-
stabilities. This condition mainly reflects a stable flow state
where shocks and boundary layers have gentle, low-energy
interactions, and modeling this situation is close to reality.
However, in turbulent flow, more unstable and complex
structures are observed, indicating stronger interactions be-
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t = 0.5 s t = 1 s

t = 1.5 s t = 2 s

t = 2.5 s t = 3 s

Figure 8. Flow evolution in the nozzle for M = 0.8 and WENO scheme.

tween shock waves, the boundary layer, and dynamic insta-
bilities. In this state, the shock waves interacting with the
boundary layer, reflected waves, and continuous interfer-
ence lead to the formation of intricate and unstable patterns.
Modeling such turbulent flows is challenging and requires
turbulence and instability models that are not yet sufficiently
close to physical reality. Nevertheless, high-order discretiza-

tion methods like WENO and turbulent flow models have
been somewhat successful in simulating flow structures with
acceptable accuracy.
Modeling turbulent flows is very complex because of dy-
namic instabilities, wave interactions, and the formation
of intricate structures at multiple scales hinder close ap-
proximation to actual conditions. Numerical discretization
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Laminar Turbulent

Laminar Turbulent

Figure 9. Comparison of density distribution for laminar and turbulent flows at t = 3 s (upper row: WNND, lower row: WENO).

techniques such as WNND and WENO have been able
to simulate unstable structures with acceptable accuracy
but still fall short of representing all details and physical
realities fully. Turbulent models cannot reproduce every
detail completely; however, with appropriate adjustments
and parameters, it is possible to achieve reliable results for
engineering analyses.
In the following, density distribution on the bottom wall
and horizontal velocity on line y = 1.25 are presented for
both laminar and turbulent flows. Figures 11 and 12 are for
WNND and figures 13 and 14 are for WENO scheme.
In these comparison charts, both the laminar and turbu-
lent models similarly predict the increasing and decreasing
trends of density and horizontal velocity. However, notable
differences in the results of modeling laminar and turbulent
flows inside the nozzle are observed in certain regions when
using the WNND and WENO methods. Specifically, for
the density distribution in laminar and turbulent flows, dis-
crepancies are seen near the throat with the WNND method,
but regarding the horizontal velocity distribution around
x = 1.5, the difference between laminar and turbulent mod-

els is more pronounced. In the remaining points, there is
good agreement between the results of laminar and turbu-
lent flow models.
In the WENO method, the differences between laminar and
turbulent model results for density and horizontal veloc-
ity near x = 1.5 are noticeable, while at other points, the
results show relatively good agreement. Therefore, it can
be concluded that the WNND method performs weaker be-
cause it does not similarly predict the flow differences in
the density and velocity charts. Conversely, the WENO
method correctly captures these differences around x = 1.5,
and where discrepancies exist, the maximal and minimal
regions are similar, although their values differ. Essentially,
the WENO approach has been able to depict more complex,
unstable, and accurate flow structures in the velocity distri-
bution, whereas the WNND method has less capability in
predicting finer details.
The effects of discretization schemes are studied for two
entrance Mach numbers (0.5 and 0.8) and depicted in fig-
ures 15 and 16.
Based on figures 15 and 16, both discretization methods
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Laminar Turbulent

Laminar Turbulent

Figure 10. Comparison of Mach number distribution for laminar and turbulent flows at t = 3 s (upper row: WNND, lower row: WENO).

are capable of reconstructing the overall density and hor-
izontal velocity structures, including rising and falling re-
gions along the wall. Under specific conditions such as
low-amplitude, steady flows, they can operate similarly and
produce acceptable results. However, the WENO method,
due to its superior ability to model complex phenomena,
small-scale structures, and dynamic instabilities, exhibits
more fluctuations and intricate features in the density and
velocity distributions. Conversely, the WNND method pro-
duces simpler, smoother results, indicating its limitations in
capturing unstable details and small structures within the
flow.
These differences are also evident in figures 17 and 18. No-
tably, the WNND method does not accurately predict the
increase in flow speed after the throat, and the density distri-
bution remains nearly constant across a significant portion
of the nozzle length. Overall, the WENO method, thanks
to its high capability to simulate small-scale and unstable
dynamic structures, provides results that are closer to the
physical realities in complex scenarios. Meanwhile, the
WNND approach, while effective in low-amplitude, steady

flows due to its simplicity, diverges from actual flow behav-
ior in unsteady, dynamic conditions.
Ultimately, the effects of the inlet Mach number on the den-
sity distribution along the wall and the horizontal velocity
distribution along the line has been examined, with the re-
sults presented in figures 19 and 20 for the WNND method,
and in figures 21 and 22 for the WENO method.
It is expected that as the inlet Mach number increases, the
flow velocity will also increase up to just before the flow
reaches the shock, resulting in higher velocity values.
However, the WNND method fails to reliably capture this
behavior and is not trustworthy in this regard. Overall, the
wall density decreases as the Mach number rises, a trend
that is evident in both methods.
Based on figures above, when the inlet Mach number in-
creases, the horizontal velocity shows a significant rise,
which suddenly drops with the formation of a shock wave.
This behavior is well predicted by the WENO method, but
the WNND method fails to capture this trend accurately and
even underestimates the abrupt density increase caused by
the shock.
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Figure 11. Density distribution on the nozzle bottom wall for laminar and
turbulent flows at t = 3 s, WNND scheme.

Figure 12. Horizontal velocity distribution on line y = 1.25 for laminar
and turbulent flows at t = 3 s, WNND scheme.

Figure 13. Density distribution on the nozzle bottom wall for laminar and
turbulent flows at t = 3 s, WENO scheme.

Figure 14. Horizontal velocity distribution on line y = 1.25 for laminar
and turbulent flows at t = 3 s, WENO scheme.

Figure 15. Comparison of WNND and WENO discretization schemes on
bottom wall density distribution for M = 0.5.

Figure 16. Comparison of WNND and WENO discretization schemes on
line y = 1.25 horizontal velocity distribution for M = 0.5.

2251-7227[https://doi.org/10.57647/j.jtap.2025.1905.49]

https://doi.org/10.57647/j.jtap.2025.1905.49


12/15 JTAP19 (2025) -192549 Hosseini & Goshtasbi Rad

Figure 17. Comparison of WNND and WENO discretization schemes on
bottom wall density distribution for M = 0.8.

Figure 18. Comparison of WNND and WENO discretization schemes on
line y = 1.25 horizontal velocity distribution for M = 0.8.

Figure 19. Effects of Mach number on density distribution for WNND
scheme.

Figure 20. Effects of Mach number on horizontal velocity distribution for
WNND scheme.

Figure 21. Effects of Mach number on density distribution for WENO
scheme.

Figure 22. Effects of Mach number on horizontal velocity distribution for
WNND scheme.
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4. Conclusion

In this study, two different spatial discretization schemes
are employed to evaluate the effectiveness of a double
distribution function lattice Boltzmann method (LBM)
for analyzing shock wave-boundary layer interaction in
a nozzle. Specifically, the fifth-order WENO (Weighted
Essentially Non-Oscillatory) scheme and the third-order
WNND (Weighted Non-Negativity-Preserving Discretiza-
tion) scheme are compared based on density and velocity
distribution. Temporal discretization is accomplished via
the third-order Runge-Kutta method.
The overall conclusion is that in regions where the results
of both methods are close, the flow is in a steady state
without significant instabilities. The interaction between
the shock and boundary layer is weak, meaning the shock
wave is strong or dynamic complexities are inactive in these
zones. In such cases, static and steady structures dominate,
and the flow modeling in these regions is relatively simple
and linear—indicating laminar flow conditions without
signs of turbulence or instability.
However, looking at the horizontal velocity plots, there are
areas where the differences between the two discretization
methods are highly significant, indicating that the WENO
method can reveal more complex structures, instabilities,
and higher fluctuations in the shock-boundary layer inter-
action. Conversely, the WNND method shows smoother,
less detailed behavior, suggesting it cannot accurately
reproduce the unstable phenomena and active interactions
occurring in the interaction zone. The notable disparities
in some regions highlight the presence of strong dynamic
interactions, reflective waves, and active instabilities,
signifying the existence of small-scale structures and
considerable dynamic complexity within the flow.
In regions where significant differences are observed be-
tween the results of the two discretization methods, WNND
and WENO, it can be concluded that the shock-boundary
layer interaction is active and unstable in those areas. Shock
waves, reflections, and dynamic instabilities lead to the
formation of small-scale structures and intense fluctuations
within the flow. Conversely, in zones where the results
of both methods are nearly aligned, the interaction is in
a low-amplitude or steady state, with the overall flow
structures remaining relatively stable and predictable.
Overall, the density distribution along the wall and the
horizontal velocity profiles along constant y-lines indicate
that active and complex interactions occur between shock
waves and the boundary layer in parts of the flow, where
dynamic instabilities, wave reflections, and small-scale
structures play significant roles. High-order and detail-
sensitive discretization approaches like WENO are better at
capturing these active interactions, providing results closer
to the actual flow dynamics. In stable regions, simpler
interactions and relatively fixed structures dominate, and
both methods produce similar results.
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Appendix A
Double distribution function methods are evolved upon the
fact that energy needs a separate distribution function to
be coupled with the density distribution function via the
equation of state and acts as a serious alternative for con-
ventional CFD methods in solving Navier-Stokes equations.
Accordingly, there will be another equilibrium distribution
function for energy. The method by Li et al. [5] is intro-
duced as follows:
The following equations should be solved for density and
energy distribution functions:

∂ fi

∂ t
+ ei ·∇ fi =− 1

τ f
( fi − f eq

i ) (A 1)

∂hi

∂ t
+ ei ·∇hi =− 1

τh
(hi −heq

i )+
ei ·u
τh f

( fi − f eq
i ) (A 2)

where fi and hi are density and energy distribution functions,
respectively with their corresponding equilibrium distribu-
tion functions f eq

i and heq
i . ei is discrete velocity and τ f and

τh are relaxation times for density and energy, respectively.
In which τh f = τhτ f /(τ f − τh).
The velocity set is defined as:

ei√
RTc

=


(0,0) i = 0
cyc : (±1,0) i = 1,2,3,4
cyc :

√
2(±1,±1) i = 5,6,7,8

cyc : 2(±1,0) i = 9,10,11,12

(A 3)

By use of the Chapman-Enskog expansion, Navier-Stokes
equations are derived as:

∂ρ

∂ t
+

∂ρuα

∂xα

= 0 (A 4)

∂ρuα

∂ t
+

∂ρuα uβ

∂xβ

+
∂ρ

∂xα

=
∂ Ṕαβ

∂xαβ

(A 5)

∂ρE
∂ t

+
∂ (ρE +ρ)uα

∂xα

=
∂

∂xβ

(λ
∂T
∂xβ

+ Ṕαβ uα) (A 6)

where p = ρRT and

Ṕαβ = µ

(
∂uα

∂xβ

+
∂uβ

∂xα

− 2
D

∂uχ

∂xχ

δαβ

)
+µB

∂uχ

∂xχ

δαβ .

Parameters in equation (A 6) are defined as follows:

µ = τ f ρ, µB =

(
2
D
+

2
b

)
τp f , λ = τhcp p (A 7)

Macroscopic variables are obtained by the following rela-
tions:

ρ = ∑
i

fi, u = ∑
i

fi
ei

ρ
, T = 2

∑i hi/ρ −|u|2/2
bR

(A 8)

More details regarding the equilibrium distribution func-
tions as well as the second-order Implicit Explicit (IMEX)
Runge-Kutta method are outlined in [5]. Two different
schemes are considered for spatial discretization. The fifth-
order WENO scheme with a 7-point stencil and the third-
order WNND scheme with a 5-point stencil. In the WENO
scheme, the convective term is defined as follows:

∂eαx fα,I,J

∂x
=

1
∆x

(F̂α,I+1/2,J − F̂α,I−1/2,J) (A 9)

where eαx is the x component of eα , F̂α,I+1/2,J is the nu-
merical flux at the interface of xI +∆x/2 which is defined
as:

F̂α,I+1/2,J = w1F̂1
α,I+1/2,J +w2F̂2

α,I+1/2,J +w3F̂3
α,I+1/2,J

(A 10)
Under condition eαx ≥ 0, these three fluxes are given by:

F̂1
0,α,I+1/2,J =

1
3

Fα,I−2,J −
7
6

Fα,I−1,J +
11
6

Fα,I,J (A 11)

F̂2
0,α,I+1/2,J =−1

6
Fα,I−1,J −

5
6

Fα,I,J +
1
3

Fα,I+1,J (A 12)

F̂3
0,α,I+1/2,J =

1
3

Fα,I,J +
5
6

Fα,I+1,J −
1
6

Fα,I+2,J (A 13)

where Fα,I,J = eαx fα,I,J .
The weighting factors are given by:

wq =
w̃q

w̃1 + w̃2 + w̃3
(A 14)

wq =
δq

(10−6 +σq)2 (A 15)

with δ1 = 1/10, δ2 = 3/5, δ3 = 3/10. Coefficients σqs are
smoothness indicators defined by:

σ1 =
13
12

(Fα,I−2,J −2Fα,I−1,J +Fα,I,J)
2+

1
4
(Fα,I−2,J −4Fα,I−1,J +3Fα,I,J)

2
(A 16)

σ2 =
13
12

(Fα,I−1,J −2Fα,I,J +Fα,I+1,J)
2+

1
4
(Fα,I−1,J −Fα,I+1,J)

2
(A 17)

σ3 =
13
12

(Fα,I,J −2Fα,I+1,J +Fα,I+2,J)
2+

1
4
(3Fα,I,J −4Fα,I+1,J +Fα,I+2,J)

2
(A 18)

For the WNND scheme:

∂eαx fα,I,J

∂x
=

1
∆x

(F̂α,I+1/2,J − F̂α,I−1/2,J) (A 19)

where F̂α,I+1/2,J is the numerical flux at the interface of
xI +∆x/2, and given by:

F̂α,I+1/2,J = F̂+
α,I+1/2,J + F̂−

α,I+1/2,J (A 20)

In which F̂+
α,I+1/2,J and F̂−

α,I+1/2,J are the positive and neg-
ative numerical fluxes, respectively. We go through the
following just for the positive part since the negative one
should be extracted symmetrically.

F̂+
α,I+1/2,J =

1

∑
k=0

wkF̂+
k,α,I+1/2,J (A 21)
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where:

F̂+
0,α,I+1/2,J =−1

2
F̂+

α,I−1,J +
3
2

F̂+
α,I,J ,

F̂+
1,α,I+1/2,J =

1
2

F̂+
α,I,J +

3
2

F̂+
α,I+1,J

(A 22)

F̂+
α,I,J and F̂−

α,I,J are defined as:

F̂+
α,I,J =

1
2
(eαx + |eαx|) fα,I,J (A 23)

F̂−
α,I,J =

1
2
(eαx −|eαx|) fα,I,J (A 24)

Weights are calculated as:

wk =
αk

∑
1
l=0 αl

, k = 0,1 (A 25)

In which coefficients αk are as follows for the WNND-Z
scheme:

αk = dk(1.0+
βk

ISk + ε
, k = 0,1 (A 26)

where dk are the ideal weights with the values d0 = 1/3 and
d1 = 2/3, and the value of ε is 10−6. The expression of ISk
and βk are:

IS0 = (F+
α,I,J −F+

α,I−1,J)
2 (A 27)

IS1 = (F+
α,I+1,J −F+

α,I,J)
2 (A 28)

βz =

∣∣∣∣ISGZ −
IS0 + IS1

2

∣∣∣∣,
ISGZ =

1
4
(F+

α,I+1,J −F+
α,I−1,J)

2
(A 29)
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