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The impact of higher order modes on transverse
mode instability in bent optical fiber amplifiers
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Abstract
We present a new theoretical model for analyzing the impact of higher order modes on transverse mode instability
in bent Yb-doped fiber amplifiers. The model indicates a comparative analysis of mode instability using the
normalized propagation constant in both straight and bent fibers amplifiers. The impact of different bending radii,
on bent fibers is investigated in the normalized propagation constant. The results are then compared with the
straight fibers. Simulation analysis showed that the interference between the fundamental mode (LP01) and
the first higher order mode (LP11) has the greatest effect on the mode instability, comparing the other modes.
Considering all the existed modes, the behavior of mode instability in the fibers with different V-numbers are
simulated and explained physically.
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1. Introduction

The continuous wave fiber lasers and amplifiers are the most
important high-power lasers. High power Yb-doped fiber
laser has been used in many different applications as material
processing, defense systems, scientific research, etc. due to
the advantages including high efficiency, beam quality, and
flexible operation [1, 2].
The fiber amplifiers have some limitations in achieving higher
powers. These limitations are due to the transverse mode
instability (TMI) effect and reduces the output beam qual-
ity. Based on some theoretical and experimental studies in
this field, it is widely believed that instabilities are caused
by the interaction between thermal effects and interference
of spatial modes [3–5]. Andermahr et al. in 2010 for the
first time explained the concept of “an optically induced long-
period fiber grating”, and found that these gratings transfer
the fundamental mode (FM) to higher order mode (HOM) [6].
Then, a numerical model was presented in which these inter-
actions between the thermal effects and the interference of
modes create gratings along the fiber. The induced grating
can transfer energy between the modes and reduces the beam
quality [7, 8]. The traveling refractive index grating is created
by the optical field of two interfering modes with a slight fre-
quency difference between them [8]. The experimental results
of TMI indicates that just the fundamental mode (LP01) and
the first higher order mode (LP11) are involved in large mode
areas fibers, except for fibers with large V-numbers (V) [9],
however; it hasn’t been investigated theoretically yet. We cal-

culated the interference between the fundamental mode and
the first higher-order mode in mode instability simulations, in
recent report [10].
Using Kramers-Kroning and thermal effects, the beam prop-
agation model has been presented for interacting modes [8].
Solving thermal equation and using thermo-optic effect, an-
other model was offered in which the multi-mode behavior
caused the limitation of maximum output power of fiber ampli-
fier [9]. This limitation or TMI effect was observed in Large-
Mode-Area active fibers in a high-power operation [11].
Nonlinear processes such as stimulated Brillouin scattering
(SBS), stimulated Raman scattering (SRS), and stimulated
thermal Rayleigh scattering (STRS) are also the problems in
achieving a high power in Yb-doped fiber amplifiers [12–14].
Ward et al. presented a model based on STRS in 2012 [15].
In fiber input, FM has the largest share, but due to TMI along
the fiber, it becomes HOM and, the output is largely in HOM.
This TMI is caused by a STRS process. In 2013, Liang Dong
presented a model using quasi-closed-form solution for TMI
of STRS in optical fibers. This model was extremely success-
ful in explaining TMI. Dong considered that the source of
heat inside the straight fiber is due to the interfering modes
through quantum defect heating, and with solving the heat
equation, he obtained the nonlinear coupling coefficient [16].
Fibers with symmetric bend compensated claddings are a
means to reducing TMI effect in high-power amplifiers and
lasers. Using fibers with low numerical aperture (NA) or bend-
ing fiber with radius about 10 cm are also reported as tech-
niques for controlling TMI [17–20]. There is another method
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Figure 1. Schematic setup of a simple Yb-doped fiber
amplifier.

to control TMI based on bi-directional pumping, which is pre-
sented by Chen Shi, Friedrich Moller etc. [21, 22]. Although
this method optimally increases TMI threshold, due to the
configuration of the opposite direction pumps in this arrange-
ment, the possibility of optical damage to the pumping diodes
increases. Rumao Tao et al. presented a semi-analytical model
of STRS in which the behavior of TMI threshold power and
the coupling maximum frequency was investigated as a func-
tion of the power [23].
In this work, we have been able to extend the previous models
to obtain a new model simply analyzing TMI in higher order
modes of bent fibers. Using the developed model here, we
investigated the dependence of the bent radius on TMI param-
eters such as nonlinear coupling coefficient and TMI threshold
power and compared the results to the straight fibers. Due to
numerous applications of fiber bending, results of this work
can be applicable in other fields in addition to fiber amplifiers
as well.

2. Formulation and calculations
In this work, we use Yb-doped fiber amplifier as shown in
Figure 1. The core and cladding radii (a, b) of the fiber used
are 15 and 200 µm, respectively. We consider the fiber length
to be one meter to simplify the calculations. The signal and
pump wavelengths of the amplifier (λs, λp) are 1060 and
976 nm, respectively. In Yb- doped fiber amplifiers, with
increasing optical power, TMI occurs and the beam quality
decreases. Due to the interference of modes inside the fiber,
TMI begins.
According to Hansen [9], Dong [16] and many other papers,
the interference pattern is formed along the fiber due to the
interference of transverse modes. This pattern which acts as a
longitudinal grating causes energy to be coupled from LP01
mode to the higher order mode (LPmn). The V-number of
fiber used in this paper is 5.3348, in which LP01, LP11, LP21,
LP02 and LP31 are the modes propagated. Coupled nonlinear
equation is obtained through solving the heat transportation
equation for heat deposited by the interfering modes through
quantum defect heat:
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According to Eq. (1), the main parameter of the coupled non-
linear equation is χmn, which is called the nonlinear coupling
coefficient. χmn along the fiber is a fraction which converts
g01 to gmn. It depends on the quantum defect heat and the
electric fields of modes, the physical parameters of the fiber.
By reducing the quantum defect heat, the value of the non-
linear coupling coefficient decreases, and the modes field has
got significant effect on χmn value. The higher the value of
the nonlinear coupling coefficient, the higher the probability
of coupling the modes, therefore; TMI increases. Eq. (1)
consists of three parts, the first part is the physical parameters
of fiber and the second part indicates the quantum defect heat,
and in the third part the temperature distribution due to the
interference of transverse modes is described.
Where, fmn(r) is the electric field in LPmn mode, m and n
represent azimuthal and radial modes order respectively and
f01(r) reveals the electic field in LP01 mode. The spatial tem-
perature mode number of the heat transportation equation is l.
Tml(r) shows the spatial temperature mode, which is obtained
from Tml(r) ≈ Jm[(π/4b)(4l − 1+ 2m)r]. Jm is Bessel func-
tion of the first kind. The parameter g= 9.7 represents gain
and g01=7.6 stands for the gain coefficient corresponding to
FM. Nmn and N01 are normalization factors in HOM and FM
respectively, which is obtained from Nmn = π

∫
∞ f 2

mn(r)rdr.
The parameters k0 and 2d are the wavenumber in the vacuum
and doped-area diameters. Ω/2π represents frequency sepa-
ration between LP01 and LPmn modes. Physical constants
of fiber are Thermo- optics coefficient (KT = 1.1 × 10−5

K−1), Density (ρ=2.2×103 kg/m3), Specific heat (C= 741
J/kg/K) and Thermal conductivity (k= 1.38 w/m/K). Γml de-
notes the heat damping factor, which is obtained from Γml=
(2k/ρC)[q2 +(π2/16b2)(4l −1+2m)2] .
Where χmnl is the Nonlinear coupling coefficient amplitude
and χr

mn and χ i
mn are real, and imaginary of χmn.

When the fiber is bent, the normalized propagation constant
(b) decreases comparing with the straight fiber and conse-
quently the effective refractive index (ne f f ) and propagation
constant decrease as well. The parameter b, in different trans-
verse modes includes all the parameters related to the fiber
geometry (Core diameter (2a), Cladding diameter (2b), bend
radius and etc.) and material (core refractive index (nco),
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Figure 2. The real part of nonlinear coupling coefficient for LPmn modes versus the frequency separation between modes of
straight Yb-doped fibers in comparison with the bent Yb-doped fibers for R=0.1, 0.2, 0.3 and 0.5 m.a) LP01-LP11.b)
LP01-LP21.c) LP01-LP02.d) LP01-LP31.

cladding refractive index (ncl) and etc.). Therefore, in this
paper, to investigate TMI in bent fibers, we used the normal-
ized propagation constant as the base of calculations, which
is completely different from the methods used in previous
studies [24–27].
The normalized propagation constant is defined according to
Equation bmn = [n2

e f f −n2
cl ]/[n

2
co −n2

cl ] which varies between
0 and 1. If the effective refractive index tends toward ncl ,
bmn value is 0, and if it tends toward nco, bmn value is 1. The
normalized propagation constant of bent glass fibers can be
obtained by the following equation [24]:

bbmn ∼= bmn −1.575
a∗n2

cl
R∗NA2 (2)

Where, R is the bend radius, bmn and bbmn are the normalized
propagation constant at the straight and bent fibers conse-
quently. On the other hand, the relationship between the

normalized propagation constant of the straight fiber in the
fundamental mode and the first- order mode, with the normal-
ized frequency (V ) is obtained as follows [28]:

V =
1√

1−bmn
[
mπ

2
+ tan−1

√
bmn

1−bmn
] (3)

Where, bmn is the normalized propagation constants in LPmn.
The numerical aperture (NA) and the core refractive index are
obtained:

NA =
V

ak0
(4)

nco =
√

n2
cl +NA2 (5)

The refractive index cladding (ncl) is taken as 1.4488. There-
fore, according to Eq. (6), the effective refractive index in the
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Figure 3. Comparing the threshold powers of straight and
bent(R=0.1, 0.2, 0.3 and 0.5 m) Yb-doped fibers at x= 1%,
L=1m and P01(0)/P11(0) = 1030.

state of straight and bent is obtained:

ne f f mn = [bmnNA2 +n2
cl ]

1
2 (6)

ne f f bmn = [bbmnNA2 +n2
cl ]

1
2

Variations of the modes propagation constant due to bending
affected the modes field distribution in both cladding and
core of fiber. In the bent fibers, fluctuations in the modes
field change the nonlinear coupling coefficient. The effective
refractive index of each mode is obtained using the normalized
propagation constant of the modes according to Eq. (6). The
modes field for straight fiber can be found from Eq. (7):
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0(n
2
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Jm(a2k2
0(n

2
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2
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cl)r)

Km(a2k2
0(n

2
e f f mn −n2

cl))
,r > a (7)

The modes field for bent fiber can be calculated by using
bending parameters into Eq. (7) as well. Where, Jm represents
Bessel functions of the first kind and Km denotes the modified
Bessel function of the second kind.

3. Straight and bend Yb-doped fiber
amplifiers

3.1 Transverse Mode instability (TMI)
In previous models developed by others, TMI in straight fibers
have been studied [8, 9 and 16]. In order to investigate the
modal instability in bent fibers, changes must be made in these
models to be able to consider the effect of fiber bending. Usu-
ally, to achieve the appropriate beam quality in fiber lasers,
low values are selected for the V-number, in which the number
of transverse modes that can be propagated in the fiber will

Figure 4. Comparing the threshold powers of straight and
bent(R=0.1, 0.2, 0.3 and 0.5 m) Yb-doped fibers with
calculating all higher-order modes at L=1m.

Figure 5. Influence of fiber bending radius on effective
refractive index of transverse modes.

be low too. In literature, a combination of heat equation and
wave propagation equation are used to investigate TMI in a
manner that the thermal effects on the refractive index are
considered in the wave propagation equation. The thermal
effects are the result of quantum defect heat and the modes
field intensity. The quantum defect heat depends on the wave-
lengths of the signal and the pump. Making physical changes
to the fiber can change the mode field. Changing in the modes
electric field causes a change in the modes propagation con-
stant, followed by a change in the heat sources of the heat
equation. We have generalized TMI to bent fibers by using
the propagation constant of bent fiber in equations. Using the
formulation of the section 2, TMI in higher order modes of the
bent fibers can be analyzed. The propagation constant of the
bent fiber should be calculated; then the nonlinear coupling
coefficient of the bent fiber can be obtained.

First, the real part of nonlinear coupling coefficient (χr
mn)
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Figure 6. TMI threshold power and nonlinear coupling
coefficient with respect to V-number under two conditions. a)
Considering only two transverse modes LP01 and LP11. b)
Considering all transverse modes in calculations.

plotted according to the frequency separation (Ω/2π) between
modes, then the peak of χr

mn is obtained in both straight and
bent states used in calculations. In this model, Yb-doped fiber
is bent at the radius of 0.1 m to 0.5 m and the results are com-
pared with the straight fiber. In Figure 2(a), the real part of
χ11 is plotted according to the frequency separation between
LP01 and LP11 modes in V = 5.3348 and NA = 0.06.Ω/2π at
the peak of χr

11 in Yb straight fiber is 3400 Hz. It decreases
towards a higher frequency as a Lorentzian function. The
real part of nonlinear coupling coefficient (χr

11) demonstrates
gain for LP11 mode at the Stoke frequency. When bending
radius are 0.1, 0.2, 0.3 and 0.5 m, the Ω/2π values at the
peak of χr

11= 6000, 4500, 4000 and 3750 Hz are obtained,
respectively. As a result of bending the fiber, the frequency
separation between LP01 and LP11 modes increases compar-
ing to the straight fiber. while the bending radius increases,
the frequency separation between modes decreases toward the
amount of the straight fiber. Therefore; As the peak of χr

mn
increases, the probability of mode coupling decreases and the

result is TMI decreasing as well.
Figure 2(b). shows χr

21 versus Ω/2π between LP01 and LP21
modes. The normalized propagation constant of LP21 mode
(b21) is about 0.372. The value of χr

21 and Ω/2π in straight
fiber are obtained about 0.048 and 8200 Hz, respectively.
When bending radius are 0.1, 0.2, 0.3 and 0.5 m, the values
of the peak of χr

21= 14500, 10500, 9750 and 9000 Hz are
obtained, respectively. According to Figure 2(c). with fiber
bending, the behavior of LP02 mode is different from other
the higher order modes. As the bending radius decreases, the
value of χr

02 increases. When bending radius are 0.1, 0.2,
0.3 and 0.5 m, the values of the peak of χr

02= 6250, 7000,
7250 and 7900 Hz are obtained, respectively. The azimuthal
mode number (m) of LP01 and LP02 modes are the same and
according to Eq. (7) have the same Bessel function. In Figure
2(d), the χr

31 diagram versus Ω/2π between LP01 and LP31
modes is plotted. Due to the low normalized propagation
constant value of LP31 mode in bent state, the value of χr

31
with radius of 10 cm, tends to zero and can be ignored. When
bending radius are 0.1, 0.2, 0.3 and 0.5 m, the values of the
peak of χr

31= 20500, 17500, 16000 and 15000 Hz are obtained,
respectively.
According to Eq. (8), the TMI threshold power decreases
when Pmn(0)/P01(0) and the gain increase. The TMI thresh-
old power is plotted to gain in Figure 3.

Pth
L ≈ Σmn

1
χr

mn
ln(χ

P01(0)
Pmn(0)

)exp(
1.25
eg01L ) (8)

Based on the above equation, the threshold is defined when
the power in the LPmn mode reaches a certain fraction of the
LP01 mode at the output, i.e., x = Pmn(L)/P01(L). As shown
in Figure. 3, the power threshold of TMI is increased in the
bent fiber and as the bending radius increases, the value of
Pth

01 declines and TMI occurs in the fiber amplifier earlier.
For simplicity, we consider the fiber length equals to 1 m
(L=1). The power of each mode along the fiber (Z=0, Z=L)
is obtained double integrating the field intensity of the mode
(
∫ ∫

Imn(Z,r,θ)).
Figure 4, shows the power of the mode instability threshold
considering all higher-order modes. TMI threshold begins
at ∼ 480 w, in straight fibers and reaches ∼ 700 w due to
bending the fiber with radius of 10 cm.

4. Results and Discussion
In this work we have presented a new model for analyzing
TMI in all higher order modes of straight and bent optical
fibers amplifiers. Our model has the advantage of Analysis
simplicity and efficiency, and also TMI in Yb-doped ampli-
fier has been investigated using the normalized propagation
constant.
As aforementioned in first section, quantum defect heating is
source of heat generation inside the fiber. This heat generates
temperature gratings, and eventually leads to the traveling

2251-7227/2022/16(2)/162215 [http://dx.doi.org/10.30495/jtap.162215]



Vazeerpour et al. JTAP16(2022) -162215 6/7

temperature wave along the fiber. On the other hand, accord-
ing to the thermo-optical properties, the refractive index is a
function of temperature. Therefore, this generated tempera-
ture pattern forms the refractive index grating along the fiber.
Temperature gratings increase the effective refractive index
of the modes and thus, increase the normalized propagation
constant of the modes. Using the equations and simulations
presented in this model, the effective refractive index and
the normalized propagation constant of higher order modes
increases more than LP01 mode, and as a result, the difference
of the normalized propagation constant between the modes
decreases. The probability of coupling between the modes
increases by reducing the normalized propagation constant
difference between LP01 mode and the higher order modes.
As the normalized propagation constant increases, LPmn and
LP01 modes are drawn to the core.
As can be concluded from Figure 2, by decreasing the bend-
ing radius of the fiber, the frequency separation (Ω/2π at
the peak of χr

mn) between the fundamental and higher order
modes increases and the nonlinear coupling coefficient de-
creases. However, the behavior of LP02 mode is different,
and as the bending radius decreases, the separation frequency
between LP01 and LP02 modes decreases and χr

mn increases.
The separation frequency between the fundamental mode and
the modes LP11, LP21, LP02 and LP31 in the straight fiber
are 3400, 8200, 6500 and 14500 Hz, respectively. Through
bending the fiber with radius of 10 cm, the separation fre-
quency of the modes are obtained 6000, 14500, 6250, 20500
Hz, respectively. Considering the modes separation frequency
values, the probability of LP11 mode coupling is the highest,
and LP31 is the least.
As the frequency separation of modes increases, the coupling
of modes decreases and as a result, according to Figures 3, 4,
the threshold power of TMI increases. Figure 5, shows the
changes of the effective refractive index of the modes with
respect to the different radii of bending of the fiber at V =
5.3348. By reducing the bending radius of the fiber, the ef-
fective refractive index of the modes decreases and according
to Eq. (6), the normalized propagation constant of the modes
also decreases. Then, by reducing the effective refractive in-
dex, the modes are drawn towards the cladding and the higher
order modes exits from the fiber. In bent fiber, the displace-
ment of the intensity field of the higher order modes is higher
than the fundamental mode in the direction of the horizontal
diameter of the fiber core. Fiber bending works inversely
to the heat behavior inside the fiber. The heat increases the
normalized propagation constant of the modes and the modes
move away from the cladding, but the bending of the fiber
reduces the normalized propagation constant of the modes
and the modes are drawn towards the cladding. Therefore, in
any method proposed to control TMI, the normalized propa-
gation constant of higher order modes should be reduced, or
the difference between the normalized propagation constant
of modes should be increased.
One of the issues related to calculation of TMI is the number

of assumed transverse modes in the model. For example Dong
and Hansen, have stated in their articles that they have con-
sidered only two modes, LP01 and LP11, in their calculations
[9, 16]. In the following, we will examine this issue. First
we assume that there are only two modes LP01 and LP11 in
the fiber core, and therefore only the interference of these two
modes is considered in calculations. In Figure 6(a), the power
threshold of TMI and the nonlinear coupling coefficient are
plotted in terms of the V-number. To analyze Figure. 6a, the
region of change of the V-number is divided into three parts.
The first part is up to V = 3. As can be seen in the Figure.
8a, the power instability threshold and the nonlinear coupling
coefficient in the first part decrease and increase with a steep
slope, respectively. The fiber with V = 2.4 is a single-mode
fiber, therefore this behavior is reasonable. In this way, with
increasing V-number and thereafter increasing the core diam-
eter, the probability of the presence of LP11 mode increases
and therefore the power of the instability threshold decreases
and the nonlinear coupling coefficient increases as well. In
the second part, it is 3 <V< 6. In this section, with increasing
V-number, the radius of the fiber core continues to increase
and therefore the possibility of the presence of modes higher
than LP11 increases, but since the normalized propagation
constant of the modes higher than LP11 is small, in practice
the possibility of interference these modes with fundamental
mode is low. Therefore, the assumption of calculations with
only two modes is still valid, and as can be seen in the Figure
6(a), up to V = 6 (exactly V = 5.8) the behavior of the curves
is still reasonable, and Pth and χr

mn are slightly decreasing and
increasing, respectively. The third part of the graph is for V
≥6 region. As can be seen in the Figure 6(a), if we continue to
consider only two modes for calculating TMI, we will reach
an unreasonable result. As shown in Figure 6(a), in the region
V>6, Pth increases and χr

mn decreases, which physically can
not be correct. The reason is that in this region, with further
increase of the radius of the fiber core, modes higher than
LP11 are present and have a large normalized propagation
constant that needs to be considered in the calculations, but in
the calculations only LP01 and LP11 are considered.
For better investigation, a more accurate simulation is also
conducted. Modal instability power threshold and nonlinear
coupling coefficient with respect to different V-numbers is
presented in Figure 6(b). This time we have considered all
the transverse modes in the fiber in different V-numbers in
the calculations. For the sake of simplicity, the interference
of different polarizations and the interference of higher order
modes with each other are eliminated. The diagram obtained
in Figure 6(b) is different from Figure 6(a). Although the
first part of Figure. 6b is similar to Figure. 6a, since there is
no higher order modes except LP11. In the second part the
threshold power decreases with a gentle slope. This is because
the normalized propagation constant of the higher modes in
the second part is small compared to the fundamental mode.
Dong and Hansen’s approximation [9, 16] in considering two
modes in calculations at V < 6 is almost correct, and higher-
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order modes have little contribution to TMI. In the previous
sections of this paper also we have used this approximation
to simplify the equations. In this paper, we have obtained the
threshold power considering the mentioned approximation
for straight fiber ∼ 520 w, but without the approximation,
threshold power is ∼ 490 w. The third part of Figure 6(b) is
completely different from Figure 6(a). The threshold power
of TMI is decreasing with a steep slope and the nonlinear cou-
pling coefficient is increasing. In this region, the normalized
propagation constant of higher order modes increases and it is
necessary to consider presence of higher order modes and the
possibility of their interference with the fundamental mode.
As can be seen, the third region of Figure 6(b), unlike Figure
6(a), is quite reasonable.

5. Conclusion
In this paper, we presented a new model for investigating TMI
in bent fibers. The results revealed that by decreasing the
bending radius, the normalized propagation constant of the
mode diminished causing reduced propagation constant and
effective refractive index of the fiber whereby the laser modes
tended to the cladding fiber. As the bending radius shrank, the
frequency separation between two modes increased, result-
ing in lowered coupling nonlinear coefficient and enhanced
threshold power of TMI.
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