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Abstract:
The study of lead-free glasses for radiation shielding applications has drawn global attention. This
work aimed to theoretically investigate the impact of Bi2O3 on X-ray shielding characteristics of
telluro-borate-bismuth glass samples, in the 15−300 keV energy region. Sample S5 (55Bi2O3 -
5TeO2 - 20SrO - 5ZnO - 15Bi2O3) yielded highest LAC, MAC, and Ze f f (1.066−252.061 cm−1,
0.249−58.893 cm2/g, and 67.81−30.16), alongside the lowest HV L, TV L, and MFP (0.003−
0.650 cm, 0.009− 2.160 cm, and 0.004− 0.938 cm). Hence, S5 emerged as the most effective
X-ray shielding glass among the samples studied.
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1. Introduction

X-rays, falling within the energy range of a few eV to hun-
dreds of keV, are ionizing electromagnetic waves that can be
generated as bremsstrahlung radiation or characteristic X-
rays. Their diverse industrial applications encompass com-
puted tomography scans, dental X-rays, screening freight
trains and luggage, power plant fluid supply pipe main-
tenance, and detecting foreign objects in food. However,
without proper shielding, the hazardous nature of X-rays
poses health risks to individuals working in these industries.
There are various materials suitable for X-ray shield-
ing, with lead-based options being one of the traditional
choices. However, the toxicity of lead diminishes its user-
friendliness, despite its effectiveness owing to high electron
density and linear attenuation coefficient for photons [1].
Consequently, global research interest is focused on find-
ing non-toxic lead-free glass materials for X-ray and γ-ray
shielding [2–11]. For instance, a recent comprehensive
study [12] highlighted the superior X-ray shielding proper-
ties of Sm3+-doped bismuth-borate glass compared to those
doped with Nd3+ and Ce3+. Similarly, a computational
investigation by Ref. [13] explored the X-ray shielding
characteristics of Bi2O3 - B2O3 - TeO2 - TiO2 glass in the

dental diagnostic energy range (30 to 80 keV), suggest-
ing its potential use in protective masks during oral cavity
diagnostic irradiation. Additionally, Ref. [14] examined
the photon shielding properties of Li2O - B2O3 - MgO -
Er2O3 glass, demonstrating improvement with increased
Sm2O3 content. In a parallel study [15], the X-ray shielding
capacity of La2O3 - CaO - B2O3 - SiO3 glass was investi-
gated, revealing enhanced effectiveness with higher La2O3
content. In a similar vein, Refs. [16–22] recently scruti-
nized the radiation shielding properties of various borate
glass systems. Their findings revealed that incorporating
Cr2O3, TeO2, Gd2O3, WO3, TeO2/MoO3, and CeO2 im-
proved the X-ray and γ-ray shielding capabilities of Cr2O3-
doped borosilicate, TeO2-doped borosilicate, Gd2O3-doped
alumina borate, B2O3 - PbO - TeO2 - CeO2 - WO3, TeO2 -
B2O3 - Li2O - MoO3 - CuO, and CeO2/sand reinforced
borate glasses, respectively. Additionally, the 34TeO2 -
35B2O3 - 30PbO - 1V2O5 glass exhibited the best photon
shielding characteristics among the studied TeO2 - BaO -
B2O3 - PbO - V2O5 samples.
In a recent synthesis effort detailed by Ref. [23], a unique

set of telluro-borate-bismuth glass samples was manufac-
tured using the melt-quenching technique. However, the
examination of their radiation shielding properties has been
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limited to the photon energy of 511 keV. This study ad-
dresses this gap by investigating their X-ray shielding char-
acteristics in the X-ray energy region below 300 keV, partic-
ularly significant for applications such as dental diagnoses,
and computed tomography scans. In particular, the current
work provides a detailed study of the impact of Bi2O3 con-
centration on the X-ray shielding properties of (70-x)B2O3 -
5TeO2 - 20SrO - 5ZnO - (x)Bi2O3, where x = 0, 1, 5, 10,
and 15 mol%, across the 15 keV to 300 keV photon en-
ergy range using the Phy-X/PSD and XCOM simulation
software.

2. Methods
The X-ray attenuation characteristics of the 70B2O3 +
5TeO2 + 20SrO + 5ZnO, 69B2O3 + 5TeO2 + 20SrO + 5ZnO
+ Bi2O3, 65B2O3 + 5TeO2 + 20SrO + 5ZnO + 5Bi2O3,
60B2O3 + 5TeO2 + 20SrO + 5ZnO + 10Bi2O3, and 55B2O3
+ 5TeO2 + 20SrO + 5ZnO + 15Bi2O3 glass samples were
computationally investigated using the Phy-X/PSD sim-
ulation software. Phy-X/PSD, a simulation package de-
signed for user-friendly operation, is utilized remotely on
the Ubuntu operating system [24, 25]. It specializes in com-
puting radiation shielding properties, namely MAC, LAC,
HV T , TV T , MFP, and Ze f f , within the photon energy
range of 1 keV to 100 GeV. In contrast, the XCOM soft-
ware, used for validation of Phy-X/PSD results, focuses
solely on MAC calculations within the same photon energy
range [26], but this MAC was converted to LAC using the
densities of the samples. These simulation packages are
based on the principles discussed below and have been rig-
orously tested in the literature.
The mass attenuation coefficient (MAC) and linear attenu-
ation coefficient (µ) characterize the probability of inter-
action between X-rays and a material used for radiation
shielding. The linear attenuation coefficient is linked to
photon intensity and the absorber’s thickness, denoted as x,
according to [25]

I f = Ii exp(−µx) (1)

where Ii and I f are initial and attenuated photon intensities,
respectively. High values of µ indicate superior radiation
shielding capability. All other radiation shielding proper-
ties are derived from µ . Specifically, the mass attenuation
coefficient (MAC) is calculated from the linear attenuation
coefficient (µ) and the density (ρ) of the absorber using
[25]

MAC =
µ

ρ
(2)

In the same vein, the effective atomic number of a material
is calculated from the mass attenuation coefficients of the
constituents using the following expression [25].

Ze f f =
∑ j f jA j(

µ

ρ
) j

∑ j
f jA j
Z j

( µ

ρ
) j

(3)

where f j, A j, and Z j are used to denote the mole fraction,
atomic weight, and atomic number of each element in the
sample, respectively.
Moreover, the half-value thickness (HV T ) and tenth-value
thickness (TV T ), indicating the thicknesses needed to at-
tenuate photons by 50% and 90%, are expressed as [25]:

HV T =
ln2
µ

(4)

and
TV T =

ln10
µ

(5)

Smaller HV T and TV T values signify better radiation
shielding material for X-rays. Furthermore, the mean free
path (MFP) defines the average distance between two con-
secutive interactions of a photon with the absorber material
and is correlated with the linear attenuation coefficient (µ)
through the subsequent expression [25].

MFP =
1
µ

(6)

A material demonstrates higher efficiency in shielding elec-
tromagnetic radiation when its mean-free path (MFP) is
lower.
Tables 1 and 2 show the summary of input data used in the
Phy-X/PSD and XCOM calculations for our glass samples
S1, S2, S3, S4, and S5.

3. Results and discussions
In this section, we delve into the discussion of our find-
ings concerning the linear attenuation coefficient (LAC),
mass attenuation coefficient (MAC), effective atomic num-
ber (Ze f f ), half-value thickness (HV T ), tenth-value thick-
ness (TV T ), and mean-free path (MFP) for the glass sam-
ples S1, S2, S3, S4, and S5. Figure 1 shows the linear
attenuation coefficient of the samples S1, S2, S3, S4, and
S5 in the 15 keV to 300 keV photon energy range. The
results demonstrate a rapid decrease in the linear attenua-
tion coefficient (LAC) as X-ray energy increases for all five
glass materials, a trend consistent with existing literature
[3, 27, 28]. This phenomenon is attributed to the dominance

Table 1. Molecular composition (mol%) of glass samples for Phy-X/PSD calculations [23].

Code B2O3 TeO2 SrO ZnO Bi2O3 Density (g/cm3)
S1 70 5 20 5 - 2.9
S2 69 5 20 5 1 3
S3 65 5 20 5 5 3.41
S4 60 5 20 5 10 3.92
S5 55 5 20 5 15 4.28
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Table 2. Chemical composition (wt%) of glass samples for XCOM calculations.

Code B2O3 TeO2 SrO ZnO Bi2O3 Density (g/cm3)
S1 0.6 0.1 0.25 0.05 - 2.9
S2 0.56 0.09 0.24 0.05 0.06 3
S3 0.45 0.08 0.21 0.04 0.23 3.41
S4 0.35 0.07 0.17 0.03 0.39 3.92
S5 0.27 0.06 0.15 0.03 0.5 4.28

of the photoelectric absorption component in this energy
range, which sharply decreases with an increase in photon
energy. Among the five glasses, S5 which has the highest
Bi2O3 content exhibits the highest LAC at all energies, while
S1 which has the lowest Bi2O3 content has the lowest LAC.
Specifically, the LAC ranges from 1.066 to 252.061 cm−1

for S5 and 0.331 to 50.827 cm−1 for S1. Notably, there
is a sudden surge in the LAC at 100 keV for samples S2,
S3, S4, and S5, attributed to the K-absorption edge which
is due to the presence of Bi2O3 in systems and intensify-
ing the photoelectric absorption. A similar enhancement is
observed at 20 keV in samples S1 and S2. It corresponds
to the K-absorption edge that does not originate from the
presence of Bi2O3, as it is observed even in S1 which does
not contain Bi2O3.

To validate the Phy-X/PSD calculation, we compared
the Phy-X/PSD and XCOM results. The comparison of
LAC values, computed using Phy-X/PSD and XCOM, is
presented in Figure 2. Remarkably, both simulation tools
exhibit excellent agreement, instilling confidence in the ac-
curacy of the calculated LAC values across all five glass
samples. Numerous other research endeavors have also
conducted comprehensive assessments of these simulation
programs in the literature, specifically within the realm of
various heavy-metal oxide glasses, including those featuring
bismuth. Noteworthy is their validation through extensive

Figure 1. Linear attenuation coefficient of S1, S2, S3, S4,
and S5.

comparisons with experimental data and Monte Carlo sim-
ulations conducted using numerical codes such as MCNP
[20, 29–31]. Thus, the reliability of the outcomes derived
from Phy-X/PSD and XCOM is further affirmed. For the
remaining radiation shielding parameters, our focus is on
results derived using Phy-X/PSD only, as they build upon
the validated LAC, and there is no need to further validate
them.
The mass attenuation coefficient of all five samples is de-
picted in Figure 3. It has the same shape as the LAC. This is
consistent with the relation of the two quantities provided in
Equation (2). There is an enhancement in the MAC with an
increase in the Bi2O3 content. In detail, It is in the ranges
of 0.114 to 17.527 cm2/g, 0.129 to 17.755 cm2/g, 0.177 to
34.106 cm2/g, 0.219 to 48.527 cm2/g, and 0.249 to 58.893
cm2/g for samples S1, S2, S3, S4, and S5, respectively.
Hence, sample S1 has the lowest MAC in the whole X-ray
energy region, while S5 which has the highest content of
Bi2O3 has the highest MAC. Results similar to these have
been reported on different glass materials in the literature

Figure 2. Comparison of the Phy-X/PSD and XCOM linear
attenuation coefficients.
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Figure 3. Mass attenuation coefficient of S1, S2, S3, S4, and
S5.

[16, 32]. For instance, Ref. [16] showed theoretically and
experimentally that increasing the content of Cr2O3 in a
borosilicate glass system results in the enhancement in the
mass attenuation coefficient of the borosilicate glass, and
the sample with the highest concentration of Cr2O3 has the
highest MAC.
The distribution of the effective atomic number (Ze f f ) for all
five glass materials within the 15−300 keV photon energy
range is presented in Figure 4. The Ze f f ranges between
35.34 and 10.20, 39.17 and 11.87, 53.82 and 17.97, 63.00
and 24.54, and 67.82 and 30.16 for S1, S2, S3, S4 and S5
glasses, respectively. Clearly, Ze f f improves with an in-

crease in the Bi2O3 concentration, and sample S5, which
has the highest Bi2O3 content, has the highest Ze f f in the

Figure 4. Effective atomic number of S1, S2, S3, S4, and
S5.

Figure 5. Half-value thickness of S1, S2, S3, S4, and S5.

whole 15 to 300 keV energy range. A trend similar to
this one has been seen in other studies [21, 22]. In this
study, it corresponds to the high atomic number (Z) of
Bi, which leads to the rapid rise of the photo-absorption
cross-section with an increase in the Bi2O3 concentration,
and thus increases the effective atomic number of the glass.
Furthermore, Ze f f of S1 shows a sudden increase at 20 keV
and 40 keV, beyond which it decreases fast as the X-ray
energy increases towards 150 keV, and declines relatively
slowly as the photon energy increases from 150 keV to 300
keV. A similar trend is observed in the Ze f f of S2 except
that it has another rise and fall at 100 keV. On the other
hand, the effective atomic number of S3, S4, and S5 de-
creases fast as the X-ray energy increases from 15 keV to
80 keV, and it suddenly increases at 100 keV after which it

Figure 6. Tenth-value thickness of S1, S2, S3, S4, and S5.
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Figure 7. Mean-free path of S1, S2, S3, S4, and S5.

continues to decrease rapidly as the photon energy increases
towards 300 keV. The enhancements of Ze f f at 20, 40, and
100 keV are due to the K-absorption edges, as discussed
above. These structures are expected on the effective atomic
number because they are observed in the mass attenuation
coefficient, as well, which is the input data for the calcula-
tion of Ze f f (see Equation (3)). The reduction of Ze f f with
photon energy is attributed to the reduction in the photoelec-
tric cross-sections that occurs as the energy increases.
The computed HV T and TV T for S1, S2, S3, S4, and S5
are illustrated in Figures 5 and 6. We observe that these
quantities show the same trend. This is consistent with the
fact that they both depend on the same parameter, the linear
attenuation coefficient (see Equations (4) and (5)). There is
also an increase in HV T and TV T with a corresponding rise
in photon energy, and S5, which has the highest mol% of
Bi2O3 remains the lowest in the entire X-ray energy range;
This observation is consistent with other findings in the lit-
erature [32–34]. In detail, the HV T of samples S1, S2, S3,
S4, and S5 is in the range of 0.014 to 2.091 cm, 0.011 to
1.790 cm, 0.006 to 1.150 cm, 0.004 to 0.808 cm, and 0.003
to 0.650 cm, respectively. The TV T ranges from 0.045 to
6.947 cm, 0.036 to 5.945 cm, 0.020 to 3.820 cm, 0.012 to
2.684 cm, and 0.009 to 2.160 cm for S1, S2, S3, S4, and S5,
respectively. Furthermore, we observe a sharp reduction in
HV T and TV T of S1 and S2 at 20 keV above which they,
on average, rise fast with an increase in the X-ray energy
as it approaches 150 keV, beyond which they rise gradually
as the photon energy increases towards 300 keV. On the
other hand, the HV T and TV T of S3, S4, and S5 increase
rapidly as the photon energy increases from 15 keV to 80
keV. At 100 keV they abruptly decline and continue rising
as the X-ray energy approaches 300 keV. The sharp reduc-
tions in HV T and TV T at 20 keV and 100 keV are due to
the K-edge electrons, which enhance the photo-absorption
component of the linear attenuation coefficient (LAC), and
thus, decrease the HV T and TV T which are inversely pro-

portional to LAC (see Equations (4) and (5)).
Figure 7 depicts the variation of the mean free path (MFP)
for our five glass samples with X-ray energy. The trend
is evident: the MFP increases as photon energy rises, and
S5 consistently maintains the lowest MFP across the entire
X-ray energy range, while S1 remains the highest. In partic-
ular, the MFP of S1, S2, S3, S4, and S5 is between 0.020
and 3.017 cm, 0.016 and 2.582 cm, 0.009 and 1.659 cm,
0.005 and 1.166 cm, and 0.004 and 0.938 cm, respectively.
The increase in MFP with photon energy aligns with obser-
vations in the literature [35, 36]. The reduction in the MFP
with an increase in Bi2O3 concentration is attributed to the
corresponding rise in the density of additional electrons,
which are mostly contributed by high Z bismuth atoms.
Furthermore, the significant contribution of the K-edge elec-
trons in the reduction of the MFP is observed in samples
S3, S4, and S5 at 100 keV.

4. Conclusion
The X-ray shielding properties of (70-x)B2O3 - 5TeO2 -
20SrO - 5ZnO - (x)Bi2O3, where x = 0, 1, 5, 10, and 15
mol%, glass system were investigated using the Phy-X/PSD
simulation software, and validated using XCOM. The
findings revealed that sample 55B2O3 - 5TeO2 - 20SrO -
5ZnO - 15Bi2O3 exhibited the highest values for LAC,
MAC, and Ze f f , ranging respectively from 1.066 to
252.061 cm−1, 0.249 to 58.893 cm2/g, and 67.81 to 30.16.
Additionally, it demonstrated the lowest HV L, TV L, and
MFP, spanning from 0.003 to 0.650 cm, 0.009 to 2.160
cm, and 0.004 to 0.938 cm, respectively. Consequently, S5
emerged as the most efficient X-ray shielding glass among
the samples studied. Thus, S5 has the potential to be used
as an X-ray shielding glass in medical applications.
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