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Abstract:
In this work atmospheric pressure plasma has been used for the synthesis of silver (Ag) nanoparti-
cles immersed in liquid. We study the effects of various parameters such as the electrolyte, the
process time, and the applied electric current on the synthesis of Ag nanoparticles. The products
are analyzed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Vis
spectroscopy. The results obtained show that the parameters mentioned have a major influence
on the size and number of nanoparticles produced. In this study, the absorption peak of the Ag
nanoparticles is at a wavelength of 420 nm. Moreover, the size of the particles is found between
10−20 nm. It is worth mentioning that there is an inverse relationship between the ethylene glycol
concentration and the nanoparticle size. As the ethylene glycol concentration in the electrolyte
increases, the nanoparticle size decreases. It is also expected that the morphology and size of the
nanoparticles will become more uniform as the reaction time increases.
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1. Introduction

In recent years, nanomaterials, especially metal nanoparti-
cles, have attracted much significant attention in the field
of science and technology [1–8]. Recently, silver (Ag)
nanoparticles have attracted great interest, mainly because
of their new technological applications in various fields
such as optics [9–11], sensing [12–14], catalysis surface-
enhanced Raman scattering [15], biology [16, 17] and an-
timicrobial agents [18–20].
There are several common methods for the preparation of
Ag nanoparticles, and the methods of chemical and physical
synthesis are very common and obvious. It is worth not-
ing that despite their many advantages, they also have some
disadvantages in terms of the synthesis process and nanopar-
ticle properties such as size, size distribution, cost and scal-
ability. For instance, chemically synthesized nanoparticles
are expensive, toxic and energy consuming, and therefore
not suitable for biological applications [21–23]. Moreover,
this method is laborious to control the size and shape of
nanoparticles, which determine the physical, catalytic, an-

tibacterial and other properties. Regarding physical meth-
ods, temperature adjustments, instrumentation, and vacuum
conditions are needed for nanoparticle synthesis.
The synthesis of Ag nanoparticles has already been carried
out using various methods such as laser ablation [24, 25],
gamma irradiation [26, 27], electron irradiation [28, 29],
chemical reduction [30, 31], photochemical methods [32],
microwave methods [33], biological synthesis methods
[34, 35] and electrochemical methods [36]. Among these
methods, the electrochemical method is a simple technique
to synthesize Ag nanoparticles, which makes it possible to
obtain particles with high purity using fast and simple pro-
cedures and to easily control the particle size by adjusting
the current density. However, despite the cheapness and
apparent simplicity of the method, it is very difficult to syn-
thesize nanoparticles electrochemically without stabilizer.
In the typical traditional electrochemical method, the re-
actions are caused by solid electrodes into an electrolyte
containing the ionic liquids. In the plasma- electrochemical
method, the gas discharge is coupled simultaneously with
the solution to induce reactions in the presence of a solid
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Figure 1. The schematic of Ag nanoparticles synthesis de-
vice.

electrode in the electrolytes. Recently, many studies on this
method have indicated that it can accelerate the electron
transfer rate and increase the synthesis rate of nanoparticles
accordingly [37–39].
The synthesis of nanoparticles using plasma-liquid inter-
faces has a particular advantage over the traditional electro-
chemical method due to the reducing agent. This is because
a non-thermal atmospheric pressure plasma is generated
above the electrolyte, avoiding the difficulties of isolating
nanoparticle production. In addition, toxic stabilizers and
reducing agents are not required in this method, and the syn-
thesis of nanoparticles occurs continuously during plasma
irradiation. Although there are many papers on the pro-
duction of nanoparticles with this method, many important
questions remain unanswered regarding the effects of dif-
ferent plasma parameters on nanoparticle growth. In this
work, therefore, an Ar atmospheric pressure plasma was
first used for the synthesis of Ag nanoparticles immersed in
a liquid. Subsequently the influence of various parameters
such as the electrolyte, the process time, and the electric
current applied to the electrodes has experimentally been
investigated.

2. Material and methods

2.1 Plasma reactor
For the synthesis of Ag particles, a schematic experimental
setup is used, which is shown in Fig. 1. A DC atmospheric
pressure plasma system on the surface of the liquid is cre-
ated by a capillary tube (cathode: made of stainless steel
with inner diameter: 0.5 mm; outer diameter: 0.7 mm;
length: 7 cm). It is located at 3 to 5 mm above the surface
of the solution and 4 cm from the anode (made of Pt with 1
cm2, 0.001 in thick). The high voltage applied to the tube
is the 2.1 kV and plasma is kept stable (a ballast resistor).
Both the current and the voltage are measured with a high
voltage probe (Tektronix P6015A). The Ar gas flow is cou-
pled to the system and is kept constant at 180 sccm. In
addition, the irradiation times are 10, 20 and 30 minutes.

2.2 Material
The reaction medium (inner diameter: 8 cm; length: 3 cm)
contains a solution of deionized (DI) water: ethylene glycol

Figure 2. Ag nanoparticles solution in water after irradiation
for 20 min.

with different percentages and silver nitrate (AgNO3) at
room temperature. For the synthesis of silver nanoparticles
(Ag NPs), AgNO3 is purchased from Merck.

2.3 Material characteristic
The morphology of the Ag NPs was analyzed by
TEM (TEM: Zeiss-EM10C-80 KV). The UV-Vis ab-
sorption (ultraviolet-visible light) was measured using a
(UV–Vis–NIR) spectrophotometer (Spectrophotometer: PG
Instruments model T80+). In addition, the XRD pattern was
recorded using an X’Pert MPD (Philips) X-ray diffraction
meter with Co-Kα radiation (1.79 Å).

3. Results and discussion
The image of Ag nanoparticles in DI water is shown in
Fig. 2. Due to the synthesis of Ag nanoparticles by plasma,
the color of the samples changed from colorless to brown,
which was consistent with the sources and indicated the
preparation of a colloidal suspension of silver nanoparti-
cles. The silver nanoparticles were stable in the solution
for months and no precipitation was observed. Various an-
alytical methods were used to verify the properties of the
nanoparticles. To confirm the presence of nanoparticles, the
absorption spectrum of the sample was first examined. It
is worth noting that one of the most interesting features of
metal nanoparticles is the surface plasmon resonance, which
represents their unique optical properties. The surface plas-
mon resonance depends on several factors, such as the size
and shape of the nanoparticles the distance between them
and the refractive index of the surrounding environment,
etc. Therefore, the presence of a peak in this range, which
can be detected with an ultraviolet spectrometer, therefore
indicates the existence of the silver nanoparticles. Hence,
UV-Vis spectroscopy can be a simple and reliable method
to analyze the stability of solutions containing nanoparti-
cles. Studies have shown that the nanoparticle size is an
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Figure 3. UV–Vis absorption spectra for Ag nanoparticle in
DI water during irradiation time 20 min in current 5 mA.

important factor for the red shift of the peak wavelength
and the change in its intensity and the observed colors of
the solution.
Fig. 3 indicated the absorption spectra of the Ag nanopar-
ticles synthesized in DI water at an irradiation time of 20
minutes and a current of 5 mA. As you can see, the surface
plasmon is formed at a wavelength of 415 nm, which is
associated with the silver nanoparticles. Ag nanoparticles
have a surface plasmon resonance in the range of 400 to
450 nm, depending on their size and shape. Beyond this,
there is no further visible maximum, so it can be assumed
that the nanoparticles are spherical or quasi-spherical.
The Ag nanoparticles are clearly visible in the TEM image
shown in Fig. 4. As can be seen from the TEM image,
the Ag nanoparticles are mainly spherical with a diameter
of 10−20 nm and in some areas, they are accumulated or
scattered. From the size distribution of the produced silver
nanoparticles, the average size of the particles in the sample
with Image j software is about 8 nm.
X-ray diffraction (XRD) of Ag nanoparticles is shown in
Fig. 5. It is worth mentioning that XRD was used to deter-
mine the structure and chemical composition of the prepared
nanoparticles. As can be seen in the figure, there are clear
peaks at the angles of 2θ=38.17◦, 44.31◦, 64.5◦ and 77.05◦.
due to the (1 1 1), (2 2 0), (2 0 0) and (3 1 1) planes of silver

Figure 4. TEM image of nanoparticle after 20 min irradia-
tion.

Figure 5. XRD patterns of Ag nanoparticles after 20 min
plasma irradiation.

FCC structure respectively.
In the continuation of this section, the effect of different
parameters on the shape and size of the nanoparticles is
investigated in three steps: (1) the effect of the type of elec-
trolyte used in the production of silver nanoparticles, (2)
the effect of the reaction time and (3) the current used to
produce these nanoparticles.

3.1 The effect of electrolyte (reducing agent) on particle
size and morphology

Ag nanoparticles were prepared using different concentra-
tions of ethylene glycol with a constant concentration of
silver nitrate in neutral media. 0.2 mM separately prepared
silver nitrate is dissolved in 20 mL of a solution containing
water and ethylene glycol in different volume ratios (DI
water: ethylene glycol (100:0, 75:25, 50:50)). Fig. 6 shows
the UV-Vis spectra of Ag nanoparticles using atmospheric
pressure plasma in different electrolyte concentrations after
20 minutes of irradiation at a current of 5 mA. As you seen,
the position of the peak wavelength changes and shifts to
shorter wavelengths (i.e. from 415 nm to 390 nm) with in-
creasing concentration of EG in the solution. This response
is fully consistent with May’s classical theorem i.e. absorp-

Figure 6. The UV–Vis light absorption spectra for Ag
nanoparticles 20 min plasma irradiation with different vol-
ume ratios DI water and EG.
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Figure 7. The UV–Vis light absorption spectra Ag nanopar-
ticles for different current and 20 min plasma irradiation.

tion spectra of smaller particles indicate blue shifted than
of larger particle. As a result, to increase the concentration
of EG in the solution, the particle sizes decreases. Further-
more, the peak intensity also does not change significantly
with the variation of the volume percentage of electrolyte
contents (water and EG) and just the absorption peaks be-
come narrower. It indicates that there was no change in the
amount of Ag nanoparticles in the solution.
One of the parameters determining the nanoparticle size is
concentration and type of electrolyte. Note that different
reducing agents could be varying power to decrease materi-
als. Hence according to its reducing power, nanoparticles
with various sizes and morphologies can be produced. It
has been claimed that a stronger reducer, under the same
condition of other parameters, is capable of producing finer
particles compared to a weak reducer. On the other hand,
there is an inverse relationship between the reducing agent
concentration and the nanoparticle size. When reducing
agent concentration increases in electrolyte the nanoparticle
size decreases. Moreover, the nanoparticle size distribution
and shape are less sensitive to change of the reducing agent
concentration compared with other influencing factors.

3.2 The effect of reaction time and current density on
the size of silver nanoparticles

Fig. 7 indicates the UV–Vis spectra of Ag nanoparticles
synthesized with atmospheric pressure plasma for differ-
ent currents (4, 5 and 7 mA) after 20 minutes of plasma
irradiation. The Ag nanoparticles were synthesized in 20
ml of a solution containing separately prepared DI water,
ethylene glycol (DI water: ethylene glycol (75:25)) and 0.2
mM AgNO3. As seen, the intensity of absorption peaks of
the Ag nanoparticles slowly increases as you increase the
current density from 4−7 mA. In addition to the increase
in current density, the spectrum peak shifts to shorter wave-
lengths and the spectrum becomes narrower.
One of the important parameters that determine particle
size and distribution is the reaction time. Fig. 8 shows the
absorption spectrum of Ag nanoparticles produced under
the conditions mentioned in Fig. 8 with a current of 5 mA at
different plasma irradiation times (10, 20 and 30 minutes).

Figure 8. The UV–Vis light absorption spectra for Ag
nanoparticle under different irradiation with current 5 mA.

As the irradiation time increases, the spectra show higher
absorbance values and larger peak area, indicating higher
production efficiency. Moreover, the position of the peaks
for all times is between 490 and 410 nm which indicates the
average size of the nanoparticles.
When the precursor is added to the reaction solution, nu-
cleation begins immediately and tiny nanocrystals form,
causing a marked change in the color of the solution. Over
time, the nuclei formed tend to aggregate and form larger
particles. Also, the more silver ions are reduced in the
metallic form, as more time passes from the reaction. At
some point, all the silver is reduced to silver particles, and
from then on only the size of the particles changes. There-
fore, to achieve the reaction time, it is necessary to choose
an optimal state between reaction efficiency and particle
size. In addition, the morphology and size of the particles
are expected to become more uniform as the reaction time
increases.

4. Mechanism
When the Ar plasma comes into contact with the elec-
trolyte, plasma species such as ions, radicals and energetic
electrons are transferred to the electrolyte-plasma inter-
face, causing the reduction of Ag ions (equation 2). In
electrolyte-plasma electrochemistry, the dominant reactions
are thermal-electron-collision reactions. A few minutes af-
ter the start of the process, the color of the solution near
the electrolyte-plasma interface has changed, indicating
the growth of nanoparticles. Due to Brownian motion, the
nanoparticles spread over more and more space in the so-
lution volume over time, so that the color of the solution
gradually changed from colorless to brown. However, as
the amount of AgNO3 increases, more nanoparticles are
also produced. This result is quite logical, as the Ag ions
are reduced by the electrons and eventually turn into Ag
nanoparticles.
In addition, species such as oxygen, OH and hydrogen
radicals are produced during the plasma discharge in the
electrolyte due to the water decomposition. The advan-
tage of this process is the production of non-toxic reducing
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agents in the electrolyte. The reduction equations for these
processes are as follows:

H2O → H∗+OH∗ (1)

Ag++H∗ → Ag+H+ (2)

2OH∗ → H2O2 (3)

Ag++2H2O2 → Ag+
1
2

O2 +H+ (4)

To utilize plasma according to equation 1, water molecules
are decomposed to radicals such as H∗ and OH∗. Then,
in some cases, the ions are lessened by hydrogen radicals
(equation 2). In addition, equation 4 shows the reduction re-
action of Ag ions by H2O2. In many reports of nanoparticles
prepared without the presence of a stabilizing agent, they
are highly dispersed in the environment due to electrostatic
repulsion and the mechanism is not yet fully understood.
One of the existing assumptions is that the effect of the
hydroxyl groups in the environment and their absorption
on the surface of nanoparticles. The metal ions are reduced
by hydroxyl groups as reducing agents. It is worth men-
tioning that the plasma improves the dispersion behavior of
nanoparticles by accelerating the formation of these groups.
In other words, the hydroxyl groups are absorbed on the
surfaces of the nanoparticles and enhance the electrostatic
repulsion on these surfaces. Consequently, this can reduce
the accumulation of particles.

5. Conclusion
This article deals with the synthesis of Ag nanoparticles
using atmospheric pressure microplasma. We have
investigated their physical, chemical, and optical properties
using XRD, TEM and UV–Vis spectroscopy. The TEM
image and XRD patterns confirm the formation of Ag
nanoparticles in an electrolyte consisting of ethylene glycol
as solvent and DI water. Valuable conclusions were drawn
from the results of this study. The nanoparticles produced
using this strategy initially had a uniform particle size and a
quasi-spherical shape. In addition, the morphology and size
of the particles varied with the change in plasma parameters
and irradiation time.
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