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Abstract:
In this paper, the applicability of the Machine Learning (ML) technique in predicting the structural
characteristics of water exposed by the plasma discharge is studied. For this purpose, the structural
characteristics of water including pH, Electrical Conductivity (EC), Oxidation Reduction Potential
(ORP), Total Dissolved Solution (TDS), and salt is experimentally measured before and after
exposing the plasma. The plasma discharge medium consists of air and water. The applied voltage
and the time duration of plasma application are considered as operational variables. Also, Support
Vector Regression (SVR), as a strong algorithm of Machine Learning (ML), is applied on the data
to train a model for accurately predicting the water characteristics as the new data. It is shown that
pH value is reduced at higher applied voltages and time of plasma treatment while EC, ORP, TDS,
and salt are increased. It was also found that the SVR model can predict the main characteristics
of water with a high R2 score of 0.998. The results obtained by SVR in the prediction of water
characteristics are compared with the performance of Artificial Neural Network (ANN) as another
interesting ML algorithm, showing the better performance of the SVR algorithm than ANN one.

Keywords: Plasma discharge; Water characteristics; Machine Learning (ML); Support Vector Regression (SVR); Artificial
Neural Network (ANN)

1. Introduction

Recently, one of the attractive points in the field of plasma
science and technology is plasma-liquid interactions [1–3].
The application areas of the interactions of non-equilibrium
plasmas with liquids are extended from environmental re-
mediation and material science to sterilization and medicine
[4–7].
Generally, when a non-equilibrium plasma interacts with a
liquid, the changes in the creation of reactive oxygen and
nitrogen species (RONS) and hence in the electrical con-
ductivity and redox potential are occurred because of the
acidification of the environment. So, this plasma activated
water (PAW) contains various chemical compositions than
the pure water and is able to use as an alternative technique

for microbial decontamination [7–14].
Not only does PAW seem to have a synergetic impact on
decontamination, but it could also improve the growth of
seeds. The improvement of plant growth is because of in-
creasing the nitrite and nitrate ions in PAW. So, soaking
seeds in PAW elevates seed germination and plant growth
while being anti-bacterial. Moreover, it is able to be applied
for enhancing product efficiency and for fighting against
dryness-stress in the environment [8].
Bruggeman et al. presented the electrical and optical fea-
tures of a plasma made between a liquid cathode and a metal
anode. They found that the plasma has gathered contigu-
ity points at the liquid cathode and obviously filamentary
close to the water surface. On the other hand, the voltage
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decline of cathode relates to the electrical conductivity than
pH value and was remarkably various for distilled water
and electrolyte solutions [13]. ML, as a subset of artifi-
cial intelligence, is a powerful tool to analyze data samples
and build some patterns and rules to evolve a simulation
scheme, resulting in predicting future data. ML does not
need human interventions while accomplishing predictive
processes with high accuracy [15]. There is a wide variety
of algorithms contributed to ML modeling to train the rules
and then predict the new data. Two of the advanced algo-
rithms of ML are the SVR and ANN because it has a strong
training structure and accurate prediction abilities [16].
In this paper, the characteristics of water are investigated
when it is a part of plasma discharge medium at atmospheric
pressure. The plasma discharge is included the air and water,
between a pin placed on above the water surface and a ring
put on the bottom of water. First, the main characteristics of
water including pH, EC, ORP, TDS, and salt are measured
by applying the voltage and during the treatment time. Next,
the physical reasons behind the variations of these factors
are discussed in detail. Then, the SVR and ANN algorithms
are used to analyze the data and implement a structure for
predicting the new data. Finally, the performance of the
SVR algorithm is compared to ANN model.

2. Experimental details

2.1 Experimental setup
To provide the power needed for triggering an electric dis-
charge plasma, a Tesla coil system with a voltage from
30 to 40 kV at 60 kHz fixed frequency was designed and
manufactured. A schematic diagram of the experimental
setup has been shown in Figure 1. An aluminum needle
(powered) electrode with 2 mm diameter was placed at the
distance of 1 cm above a water surface the other aluminum
ring electrode (grounded) in water, respectively. The spatial
distance between two electrodes was constant. In fact, the
changeability of the applied voltages and time allows us to
study the changes in the structural parameters of water.
It must be noted that, first the structural characteristics of
water including pH, ORP, EC, TDS, and salt of water are
measured using a pH spear, ORP tester HI98201, EC meter
model 8200, respectively. The measured pH values before
the effect of plasma at 25 C are equal to 7.

Figure 1. Schematic of the experimental setup; 1) High volt-
age source (Tesla coil device), 2) High voltage resistance, 3)
Water chamber, 4) Optical fiber, 5) Spectrometer, 6) Com-
puter, 7) EC meter device.

In this work, the operational conditions such as the applied
voltage and the time duration of plasma application are var-
ied and their effects on the structural characteristics of water
are examined. In order to analyze the data and to predict the
new data, SVR is used as an accurate and strong algorithm
of ML and the obtained results are compared to ANN.

2.2 Support vector regression (SVR) algorithm
Given a training dataset T = {(x1, y1),. . . , (xN , yN)}, which
consists of N ordered pairs of (xi, yi) for i = 1, 2, ..., N,
where xi and yi represent the features and their correspond-
ing target values, respectively, the main purpose of imple-
menting SVR is to find a smooth regression profile f (x)
with the minimum deviation ε value between the predicted
and target values for all the data in the training set. The
estimation function of the SVR algorithm, f (x), can be
expressed as follows [15]:

f (x) = wT
ϕ(x)+b (1)

where w refers to the weight vector, ϕ(x) denotes the feature
function of input x, and b being a constant. To find optimal
regression function, we must solve the convex optimization
problem given by [15]:

min
1
2
∥w∥2

s, t,

{
yi −wT ϕ(xi)−b ≤ ε

wT ϕ(xi)+b− yi ≤ ε

(2)

Maybe, the function, f (x), that satisfies these constraints at
all points could not be acquired. We can present ξi and ξ ∗

i ,
positive and negative slack parameters at each point, to ad-
dress infeasible constraints while still meeting the necessary
requirements [16]:

min
1
2
∥w∥2 +C Σ

N
i=1(ξi +ξ

∗
i )

s, t,

{
yi −wT ϕ(xi)−b ≤ ε +ξi

wT ϕ(xi)+b− yi ≤ ε +ξ ∗
i

(3)

With C being a penalty factor that is carefully chosen to
balance the complexity of the model and the error of the
training set, thus avoiding overfitting. Additionally, ξi and
ξ ∗

i must be greater than or equal to 0 for all i. In order
to solve this optimization problem, it can be transformed
into dual problem after applying the Karush-Kuhn-Tucker
(KKT) condition as [17]:

max −1
2

Σ
N
i, j=1(βi −β

∗
i )(β j −β

∗
j )ϕ(xi)

T
ϕ(x j)−

εΣ
N
i=1(βi +β

∗
i )+Σ

N
i=1yi(βi −β

∗
i )

s, t,{Σ
N
i=1(βi −β

∗
i ) = 0

(4)

With βi and β ∗
i ∈ [0, C] being the Lagrange multipliers. So,

the SVR function is given by [16]:

f (x) = Σ
N
i=1(βi −β

∗
i )k(xi, x j)+b (5)

with k(xi, x j) = ϕ(xi)
T ϕ(x j) being the kernel function al-

lowing us to linearly solve the non-linear problems [17].

2251-7227[https://dx.doi.org/10.57647/j.jtap.2024.1804.48]

https://dx.doi.org/10.57647/j.jtap.2024.1804.48


Karimian et al. JTAP18 (2024) -182448 3/12

Different kernel functions are available to use such as linear,
polynomial, sigmoid, and Radial Basis Function (RBF) [15–
17]. This work has chosen Radial Basis Function (RBF) as
its kernel function due to its fewer factors and numerical
simplicity. Therefore, it is defined as [16, 17]:

k(xi, x j) = exp(−γ∥xi − x j∥2) (6)

with γ being the kernel width. The SVR model is designed
in three steps. The first step in designing an SVR model is
determining the hyperparameters that form the model (see
Table 1). The next step in designing an SVR model is to
analyze and evaluate its training and prediction performance.
Finally, the validated model has yielded the anticipated
prediction data.

2.3 Artificial neural network (ANN) model
Artificial Neural Networks (ANNs) inspired from the hu-
man’s brain. They use different mathematical layers to
process the information it’s fed. ANNs typically have a
large number of artificial neurons, called units, arranged in
a series of layers [18]. The input layer receives data that the
network learns. From the input layer, data comes from one
or more hidden layers. A hidden layer transforms the input
into something that the output layer can use by utilizing dif-
ferent mathematical processes [18]. Most neural networks
are fully connected from one layer to another. Data can
learn more as it passes through each network layer. At the
output layer, the network responds with the data it receives.
The ANN training process consists of two parts. First, in
the feed-forward stage, data moves from the input layer to
the output layer through all hidden layers. In this stage,
the neurons process the input and return the output using
an activation function. The activation function helps the
network to learn the complex patterns of the data by chang-
ing the output to a nonlinear form [19]. After that, the
reverse process is performed. This stage which is called
back-propagation adjusts the weights and biases of all nodes
by minimizing the loss between the actual and predicted
values by the network.
The forward and backward processes are repeated until the
network trains completely and the optimized values of pa-
rameters obtains. The trained network can predict the output
accurately. For each node per layer, the output function can

Table 1. Error and accuracy functions in SVR-based
predictions.

Variables (Parameters)
Voltage Time

MAE R2 MAE R2

EC 3.77 0.94 3.54 0.99

ORP 6.72 0.93 3.50 0.96

pH 0.06 0.79 0.07 0.97

Salt 1.37 0.97 1.36 0.99

TDS 1.60 0.96 1.98 0.99

be expressed as described by [18, 19];

yi = Σ
n
i=1 f (wi ∗ xi +b) (7)

where xi is the node’s input vector, b is the bias value,
wi represents the weight vector of the node, and f is the
activation function. Rectified Linear Unit (ReLU), Leaky
ReLU, tanh, softmax, and sigmoid are the most important
activation functions that can be used [18, 19].

2.4 Error and accuracy functions
It is essential to conduct a thorough analysis of the pre-
dictive capabilities of the SVR model once the design is
complete. By calculating performance factors and then an-
alyzing them, we can gain insight into the accuracy of our
predictions. The accuracy of the SVR model employed
in this work is evaluated using two metrics: mean abso-
lute error (MAE) and determination coefficient (R). These
parameters are defined as follows [20, 21]:

MAE =
1
N
|Xexp(i)−Xpred(i)| (8)

R2 Score = 1−
ΣN

i=1(Xpred(i)−Xexp(i))
2

ΣN
i=1(X̄exp(i)−Xexp(i))

2 (9)

where Xpred is the prediction value by the model, Xexp is
the experimental value (actual value), and X̄exp is the aver-
age value of the experimental data. The obtained values of
MAE and R2 score as a result of predicting each parameter
of water in terms of applied voltages and treatment time
of plasma by the SVR algorithm is presented in Table 1.
Both MAE and R2 functions for the water parameters have
good values implying that the SVR model is an accurate
and reliable algorithm for predicting the water parameters.
The smallest and largest values of the voltage-dependent
MAE function are 0.06 for pH and 6.72 for ORP, respec-
tively. These values correspond to 0.07 for pH and 3.54 for
conductivity when the MAE function depends on the treat-
ment time of the plasma. Moreover, the error and accuracy
functions of ANN algorithm in the prediction of the water
parameters in terms of applied voltages and treatment time
of plasma are introduced in Table 2. Similar to the previous
case, the MAE and R2 functions in the ANN-based predic-
tions of water parameters show that the ANN algorithm only

Table 2. Error and accuracy functions in ANN-based
predictions.

Variables (Parameters)
Voltage Time

MAE R2 MAE R2

EC 3.06 0.99 4.58 0.99

ORP 6.72 0.93 5.13 0.91

pH 0.04 0.93 0.04 0.91

Salt 3.66 0.81 3.33 0.99

TDS 2.43 0.96 2.12 0.99
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predicts the voltage-dependent conductivity better than the
SVR model, and it shows the higher values of MAE func-
tions in the prediction of other water parameters compared
to the SVR algorithm.

2.5 Hyperparameters setting

Hyperparameter setting of SVR and ANN methods for volt-
age and time variables are respectively represented in Ta-
bles 3 and 4.
C, gamma, and kernel are essential hyperparameters in SVR.
The C parameter controls the trade-off between fitting the
training data closely and preventing overfitting. A smaller
C value encourages simpler models with more regulariza-
tion, while a larger C value reduces regularization, leading
to a closer fit to the training data. The gamma parameter
determines the influence of individual training samples on
the decision boundary.
A smaller gamma value results in a wider decision boundary
with a more generalized model, while a larger gamma value
creates a narrower decision boundary that focuses on nearby

data points. The kernel parameter defines the type of kernel
function used, enabling the model to capture complex rela-
tionships in the data.
In this table, the hidden layer sizes parameter determines the
architecture of the model, specifying the number of neurons
in each hidden layer. By adjusting the size and number of
hidden layers, the complexity and capacity of the model
can be controlled. The activation function applied to the
hidden layers, enabling the model to capture nonlinear rela-
tionships within the data. Additionally, the solver parameter
determines the optimization algorithm used during training,
impacting convergence speed and performance. Also, the
learning rate determines the step size used to update the
model’s weights during the optimization process.
Figure 2 illustrates the variations of R2 score function as
a function of the hyperparameters used in the SVR ML
algorithm, i.e., C and γ , when the water parameters are
voltage-dependent. As seen, the R2 score function for the
prediction of all the water parameters is maximized by in-
creasing the γ value when the value of C is from 10−1 to

Figure 2. Changes of the R2 score versus the hyperparameters (C & γ) in the SVR model for the voltage-dependent (a) pH,
(b) EC, (c) TDS, (d) salt, and (e) ORP.
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10. The changes of R2 score function depending on the
hyperparameters applied for implementing the SVR ML
model are represented in Figure 3. The water parameters
are in terms of treatment time of plasma in this figure. It is
obvious that the value of R2 score is reduced by growing
both C and γ up in the prediction of all the water parameters.

Table 3. Hyperparameter setting of SVR algorithm.

Variables Kernel C Gamma

Voltage Gaussian 1 10 e2

Time Gaussian 10 e-1 10 e-2

3. Results and discussion
If a high voltage is applied on the electrodes, time is one
of the most important factors changing the water character-
istics, i.e., pH, EC, TDS, salt, and ORP. In order to carry

out the experiment, the water volume of 250 cc, the 6 cm
distance between electrodes, and 12 kV applied voltage
have been considered. It should be mentioned that the dis-
tance of the pin from the surface of water was equal to 2
cm. Additionally, the variations of water properties were
measured at an interval of [0-27] minutes by the 5-second
step. It must be noted that the initial values of pH, EC, TDS,
salt, and ORP were 7, 35 µs, 19 ppm, 11 ppm, and 21 mV,
respectively. After applying the voltage on the electrodes,
the plasma discharge is triggered in the air gap and into the
water that causes the interactions between the gas phase and

Table 4. Hyperparameter setting of ANN model.

Variables Hidden layer Activation Solver Learning

sizes function Solver rate

Voltage 100 tanh lbfgs 1 e-3

Time 100 tanh lbfgs 1 e-3

Figure 3. Variations of the R2 score as a function of the hyperparameters (C & γ) in the SVR algorithm for the time-
dependent (a) pH, (b) EC, (c) TDS, (d) salt, and (e) ORP.
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liquid phase (water) with a volume of 250 cc. The RONS
are created in the plasma region and therefore, these charged
particles cause to increase the EC and ORP of the water
from 35 µs and 21 mV to 446 µs and 262 mV, respectively
(see Figure 4 (b) and 4 (e)). On the other hand, some of the
RONS such as H3O+, NO−

2 , and NO−
3 molecular species

produced in the plasma region give rise to acidification of
water, resulting in decreasing the pH value of water [22, 23].
As can be seen in Figure 4 (a), the pH value was equal to

3.46 after 27 min. Moreover, the TDS and salt are also in-
creased by growing the interactions up in the plasma region
during the treatment time whose value is equal to 291 ppm
and 220 ppm after 27 min, respectively (see Figure 4 (c)
and 4 (d)).
As known, the electric field is becoming stronger in the
plasma medium by increasing the voltage applied on the
electrodes. The charged particles get more accelerated in
this stronger field, and as a result, the ionizing collisions in-

Figure 4. Variations of (a) pH, (b) EC, (c) TDS, (d) salt, and (e) ORP as a function of time in the water volume of 250 cc at
the applied voltage of 12 kV.
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crease between charged and neutral particles [24, 25]. The
RONS in the plasma medium are becoming more and more
by growing applied voltage up. So, the interactions between
the RONS and water molecules are raised and the water
characteristics change. The experiments were repeated by
changing the voltage applied on the electrodes from 50 V
to 12 kV at the electrode distance at 6 cm with the volume
of water 250 cc and the water characteristics have been

measured after 27 min. It is observable that the pH value is
decreased by raising the applied voltage while other factors,
i.e., ORP, EC, TDS, salt, grown up as shown in Figure 5. It
is clear that the pH value is approximately constant after the
applied voltage of 1 kV and the time of 13 minute. In many
cases, rate coefficients are frequently reported for buffered
solutions, maintaining a constant pH level, such as in nitric
acid buffered solutions where there is an assumption of an

Figure 5. Variations of (a) pH, (b) EC, (c) TDS, (d) salt, and (e) ORP versus of applied voltage in the water volume of 250
cc after 27 min.
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abundant reservoir of H3O+ and NO−
3 . It is worth noting

that, in the context of electrochemistry literature, H3O+ is
commonly denoted as H+ with the understanding that it is
hydrated (though the notation H3O+ is employed in this
paper). The pH of a solution is commonly expressed as
pH = log10[H3O+], with [H3O+] indicating the molar con-
centration (mol/L). Hence, a pH-sensitive rate coefficient
represents a multi-body rate coefficient where the consis-
tently present H3O+ density is not explicitly mentioned.
Considering that plasma treatment of liquids can alter the
pH by generating H3O+, reaction rate coefficients affected
by pH should be articulated as a function of hydronium
[H3O+], thereby linking these coefficients implicitly to the
prevailing conditions. Numerous reaction rates are exclu-
sively given for particular pH values. On the other hand, the
increase of the charged particles, i.e., electrons, positive and
negative ions, in the water results in raising the electrical

conductivity and oxidation-reduction potential. Moreover,
the reactions in the water lead to decomposing chemical
species, increasing the reactive species. So, the total dis-
solved solution and salt will be raised in the water. Similar
results have been reported in the literature [26–35].
On the other hand, the actual values of pH, EC, TDS, salt,
and ORP are compared by their corresponding predicted
values with the SVR and ANN algorithms in Figures 6
and 7. The x- and y-axis correspond to the experimental
and predicted data. For a better understanding of the pre-
diction accuracy, it needs to be estimated the locations of
data points, and to this purpose, the zero-error line has been
drawn in Figures 6 and 7. The comparison of the data points
of the SVR and ANN models to the zero-error line reveals
that the SVR model is more accurate in predicting the water
characteristics in terms of the applied voltage (see Figure 6)
and time (see Figure 7) than the ANN model.

Figure 6. The predictive values by the SVR and ANN algorithms for (a) pH, (b) EC, (c) TDS, (d) salt, and (e) ORP factors.
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4. Conclusion

In this work, the usability of ML method to predict the
structural properties of drinking water treated by the
plasma discharge was investigated. Before and after plasma
treatment, the structural features of water such as pH,
EC, TDS, salt, and ORP were experimentally measured
according to operating conditions such as: treatment
time and voltage applied on the needle electrode. The
experimental setup and the measurements were expressed
in section 2. In addition, the SVR algorithm of ML method
and the determination procedure of hyperparameters used
in this work was described in details. To confirm the
accuracy and reliability of the SVR model, the MAE and
R2 functions were calculated and the results were compared
by those obtained by the ANN algorithm. It was found that
MAE values in the prediction of the SVR model are lower
than those of the ANN algorithm, and hence the prediction

performance of the SVR algorithm is better than that of the
ANN model. From Physical point of view, the change in
liquid water characteristics is a result of the influence of
reactive species and the physical conditions created at the
air-water interface and into the water. Besides, the need
for different experimental plasma treatments to find the
best influencing on the structural properties of water were
investigated. Changes in the structural characteristics of
water depend on parameters such as the applied voltage
and time of plasma exposure. It was seen that with the
increase of applied voltage due to raise the electric field,
the ionization process will be stronger and thus the EC,
TDS, salt, and ORP is grown up while the values of pH
are reduced. The parameter of time was also shown the
same behavior, i.e. decreasing of pH and increasing of EC,
TDS, salt, and ORP with the increase of the treatment time
of plasma. By increasing the reactive species in the water

Figure 7. The predictive values by the SVR and ANN algorithms for (a) pH, (b) EC, (c) TDS, (d) salt, and (e) ORP factors.
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after plasma treatment, the charge transfer mechanisms
are facilitated and therefore the EC is raised. Moreover,
the increase of the TDS and salt in the water is a result of
growing the reactions up, originating from the increment of
RONS in the medium. The decrease in pH values of the
water is due to the increment of the concentration of H3O+,
NO−

2 , and NO−
3 molecular species, as well as hydrogen

ions, resulting in acidification of the water. At last, it is
clear that the SVR algorithm is an accurate and reliable
technique for predicting the structural characteristics of
water exposed by plasma.
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