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Abstract:
The hydrophobic nature of synthetic polymers poses a substantial barrier since it limits cell-seeding
and proliferation scaffold performance. To overcome this challenge, the present research attempts
to employ in-situ UV electrospinning and plasma surface modification techniques to fabricate
a three-dimensional PAN/PVA-gelatin scaffold. The proposed scaffold holds great potential in
mitigating hydrophobicity limitations, thereby facilitating enhanced cell adhesion and proliferation.
The SEM results indicated that exposure to UV irradiation resulted in the formation of wavy shapes
in the PAN microstructures and crosslinking between fibers within the scaffold. Moreover, plasma
treatment induced the formation of pores on the PAN surface, with an average diameter of 43
µm, corresponding to the size range of mouse fibroblast cells. Furthermore, the plasma treatment
provided roughness augmentation of the scaffold surface, which played a crucial role in enhancing
cell adhesion and elongation on the modified scaffold surface. Comparatively, the plasma-modified
scaffolds exhibited a higher proportion of viable cells than the unmodified scaffolds (p < 0.05).
Moreover, the implementation of perforations in the PAN layer via plasma treatment reduced the
number of necrosis cells in comparison to the other samples. In contrast, the unmodified scaffold
showed a higher percentage of apoptosis cells (p < 0.05).
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1. Introduction

Polymer scaffolds are increasingly prevalent in tissue en-
gineering (TE) and regenerative medicine owing to their
ability to offer a three-dimensional structure that supports
cell proliferation and differentiation, and can be fabricated
to mimic the extracellular matrix of multiple tissues [1–
4]. Fabrication techniques for polymer scaffolds include
self-assembly, phase separation, and electrospinning [5–8].
Electrospinning is a highly versatile, cost-effective, and sus-
tainable method for manufacturing scaffolds using a diverse
range of polymer materials [9, 10]. The process employs
electrostatic forces to produce uniform fibers, yielding struc-
tures that demonstrate a noteworthy degree of precision and

uniformity [11]. Biodegradable polymers such as poly-
caprolactone (PCL), poly-lactic acid (PLA), poly-trimethyl
ethylene carbonate (PTMC), and poly-glycolic acid (PGA)
have gained significant attention in the TE field [12]. The
surface properties of scaffolds have a notable impact on bio-
logical properties, including but not limited to cell adhesion,
proliferation, and differentiation. Throughout the past few
decades, cold plasma treatment has emerged as an advanced
technique for surface modification [13].
The cold plasma (CP) treatment is a non-thermal, non-
chemical, and eco-friendly approach to modifying polymer
surfaces without affecting bulk characteristics [14]. It al-
lows for the modification of surface chemistry, topography,
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and morphology of polymer scaffolds. These modifications
can enhance the scaffold’s wettability, surface energy, and
surface roughness [15], which in turn facilitate cell adhe-
sion, proliferation, and differentiation. The CP treatment
has been observed to improve the biological properties of
polymer scaffolds by enhancing the attachment and growth
of mesenchymal stem cells (MSCs) and promoting their dif-
ferentiation into osteoblasts, chondrocytes, and adipocytes
[16]. Furthermore, this technique has the potential to en-
hance the biocompatibility of polymer scaffolds by mitigat-
ing of the inflammatory response of host tissues [17, 18].
In the 1990s, scientists began investigating plasma surface
treatments as a means of modifying polymer surface proper-
ties for biomedical applications. One of the earliest studies
on the effects of plasma treatment on polymer scaffolds
was conducted by Nitschke, Mirko, et al. in 2002 [19].
They examined how plasma treatment altered the surface
properties and surface-selective chemical activation of poly
(3-hydroxybutyrate) (PHB) scaffolds. Plasma treatment ef-
fectively converted the hydrophobic properties of PHB to
hydrophilic while preserving the morphology of the scaffold.
Since then, numerous studies have been conducted on the
plasma surface modification of polymer scaffolds using var-
ious polymers such as poly-lactic-co-glycolic acid (PLGA)
[20, 21], poly (ε-caprolactone) (PCL) [22, 23], polyethy-
lene glycol (PEG) [24], and polyurethane (PU) [25, 26].
These studies collectively highlight the potential of plasma
treatment to modify the surface properties of polymer scaf-
folds for tissue engineering purposes.
The objective of this investigation is to assess the influ-
ence of plasma treatment on the attachment and survival
of fibroblast cells. The study focuses on the impact of sur-
face modification and variation on the polymer surface. A
three-dimensional scaffold was fabricated using the electro-
spinning technique, employing polyacrylonitrile (PAN) and
polyvinyl alcohol-gelatin (PVAG) polymers. Ultraviolet
light exposure was applied simultaneously to enhance the
structural stability of the scaffold. To evaluate the viability
and proliferation of fibroblast cells, a comprehensive inves-
tigation employing flow cytometry and scanning electron
microscopy (SEM) imaging was performed. Furthermore,
the examination of surface topography was conducted using
both SEM and atomic force microscopy (AFM), allowing
for a comprehensive analysis of the cellular structure.

2. Materials and methods

2.1 Materials
The polymeric materials employed in this research were
carefully selected for their unique properties. The PVA
(Mw = 120 kg/mol), PAN (Mw = 80 kg/mol), gelatin, and
dimethyl-formamide (DMF), which was utilized as a sol-
vent for the polymeric solution, were purchased from Merck
Chemical Co. (USA). Malonic acid (MA) and glacial acetic
acid were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Fetal bovine serum (FBS), high-glucose Dulbecco’s
modified Eagle medium (DMEM), antibiotics (penicillin
and streptomycin), trypsin, and phosphate-buffered saline
(PBS, pH = 7.4) were acquired from Thermo-Fisher Scien-
tific under the Gibco brand. The selection of materials and

reagents was based on their quality and reliability to ensure
precise and consistent outcomes.

2.2 Preparation of polymer solutions
The polymer scaffold was reinforced by applying a PAN
polymer and DMF solvent as the first layer. The PAN
powder concentration of 15% w/v was dissolved in DMF
and stirred on a magnetic stirrer at room temperature for
two hours to ensure uniformity. The outer layer comprises
PVA and gelatin polymers with MA and acetic acid solvents
as chemical binding agents. A mixture of PVA (15% w/v)
and gelatin (10% w/v) was prepared, with the addition of
malonic acid (20% w/v of the total weight of PVA and
gelatin), to produce the PVAG solution. The mixture was
stirred on a magnetic stirrer at 50 ◦C for two hours, using
acetic acid (80% v/v) as the solvent. The spinning solutions
were subjected to ultrasonication for 30 minutes, loaded
into a 3-mL syringe, and placed in a syringe pump after
24 hours of spinning. This step was taken to ensure the
removal of any remaining bubbles.

2.3 Fabrication of nanofibrous scaffolds
The electrospinning process involved the utilization of an
electrospinning machine at a voltage of 23 kV to transform
the polymer solution into fibers. The polymer solution feed-
ing rate was 1.2 mL/hour. The distance between the spinner
head and the collector was 10 cm, while the drum rotation
speed was set to 600 revolutions per minute (rpm). The
fibers were woven, and to facilitate the in-situ cross-linking
process with the electrospinning process, two Philips UV
lamps with a power output of 10 watts each were positioned
on the drum. The objective of this configuration served
a dual purpose: to enhance the strength of the PAN layer
and activate malonic acid as a cross-linker, while also facil-
itating gelatin molecules bonding within the PVAG layer.
Fig. 1 depicts the schematic of the electrospinning setup.

2.4 Plasma surface treatment
There are two configurations of the dielectric barrier dis-
charge (DBD) that are employed for direct and indirect
plasma treatment of polymer surfaces. The DBD probes
consist of a copper rod with a diameter of 10 mm, which

Figure 1. Schematic of electrospinning process.
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serves as the high voltage (HV) electrode. The rod is in-
sulated by a Teflon tube. To complete the probe assem-
bly, a dielectric quartz plate with a thickness of 1 mm is
added, along with a grounded aluminum mesh electrode.
The primary distinction between direct and indirect plasma
treatment lies in the presence or absence of the grounded
aluminum mesh. In the direct configuration, this mesh is not
present, whereas in the indirect configuration, it is included.
The HV electrode is connected to a pulsed power supply
that operates at a frequency of 6 kHz with a peak-to-peak
voltage of 11.77 kV. The current and voltage applied to the
HV electrode were recorded using a digital oscilloscope
(TDS2024B Tektronix 200MHz), with a current probe (Tek-
tronix TCP202) and a high-voltage probe (SEW PD-20S
1:1000). The detection of metastable plasma species was ac-
complished using the optical emission spectrometer (OES)
model AvaSpec-ULS2048CL-EVO. Spectroscopy measure-
ments were taken radially at 1 cm from the plasma. Fig. 2
illustrates the laboratory configuration of the DBD plasma
in both direct and indirect modes, as well as the experimen-
tal setup utilized for acquiring the plasma diagnostic. The
polymer fibers with dimensions of 1×1 cm dimensions are
positioned 2 mm below the DBD probe and subjected to
plasma treatment. To stabilize the cells on the scaffold, the
PAN layer was treated with direct plasma for 10, 20, 35,
45, and 60 seconds. In contrast, the PVAG layer underwent
indirect plasma for 3 minutes.

2.5 Fibroblast cell implantation
The mFib-2 cells, classified as ”Normal” fibroblast-like
cells, were isolated using the methodology outlined in prior
research [27]. Then, they were cultured in a medium con-
taining 78.5% DMEM high glucose, 10% FBS, and 1.5%
antibiotics (penicillin and streptomycin) at 37 ◦C and 5%
CO2. Prior to placement in 12-well plates, the fibers un-

Figure 2. (a) Direct mode, (b) indirect mode of DBD plasma,
and (c) diagnostic setup configuration.

derwent synthesis and plasma surface modification. The
fibers were sterilized with 70% alcohol for 3 minutes, and
then fibroblast cells were cultured on them. To evaluate
cell viability and apoptosis, the cells were detached from
the fiber surface and the plate after 48 hours of culture.
This was achieved by treating the cells with trypsin enzyme
for 5 minutes, gently tapping the plate multiple times, and
transferring the cells to another culture medium. Subse-
quently, the cells were centrifuged for one minute, labeled,
and prepared for Annexin-V-FITC flow cytometry analy-
sis. The detached cells were centrifuged briefly and labeled
with Annexin-V-FITC, a fluorescent dye that binds to phos-
phatidylserine exposed on the outer membrane of apoptotic
cells. Additionally, propidium iodide (PI) was used as a
counterstain to differentiate between early apoptotic and
late apoptotic/necrotic cells. The labeled cells were then
suspended in a buffer solution and analyzed using a flow
cytometer. A biocompatibility assessment was performed
on the upper surface of the scaffold. The selection of this
specific region for evaluation was motivated by its regular
and direct engagement with fibroblast cells. To assess the
effectiveness of the fibers, a set of cellular experiments was
conducted, encompassing three distinct conditions. These
conditions consisted of a scaffold without plasma surface
modification (UMS), as well as two plasma-modified scaf-
folds, one with and one without PAN layer treatment (PMSP
and PMS, respectively). In order to assess the statistical
significance of the observed disparities, a one-way analysis
of variance (ANOVA) was conducted, followed by post-hoc
analysis using Tukey’s method to discern pairwise distinc-
tions among the scaffolds.

2.6 Characterization

The SEM (Hitachi SU3500) was employed to investigate
the surface morphology of fibers, both unmodified and
plasma-modified. The fiber topography was investigated
using AFM (NanoInk DPN500). The sessile drop tech-
nique was employed to conduct wettability evaluations, in
which the apparent contact angle of distilled water droplets
was determined. To ensure the precision and dependability
of the data, three distinct samples were utilized for each
condition during the measurement process. In order to con-
duct the experiment, a 10 mL volume of distilled water
was carefully dispensed onto the surface of each individual
sample. Then, a computer-linked camera was employed to
capture and document images. The acquired images were
subsequently analyzed using ImageJ software in order to
ascertain the contact angles. Attenuated total reflectance
Fourier transform infrared spectroscopy (ATR-FTIR) was
utilized to analyze the surface chemical structure of the
samples. The ATR-FTIR spectra were obtained with an
ATR-FTIR-NEXUS 470 instrument from THERMO NICO-
LET CO, USA, in the wavenumber range of 4000 to 500
cm−1, with 60 scans and a resolution of 4 cm−1. flow cytom-
etry technique was employed to assess the characteristics of
the immune microenvironment of the scaffold. Following
48 hours of incubation of fibroblast cells cultured on the
chip, the samples were stained with the Annexin-V-FITC
kit.
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3. Results and discussion

3.1 Discharge diagnosis

The current and voltage applied to the HV electrode is
shown in Fig. 3 a. The average electrical power applied
to the DBD probe is 5.58 W [28]. The plasma spectrum
was obtained from DBD plasma that had been exposed
to the surface of the scaffold, as shown in Fig. 3 b. This
spectrum encompasses distinct spectral lines attributed to
oxygen, nitrogen, and OH species [29]. The interaction
between oxygen species and the polymer surface has the po-
tential to initiate the formation of oxygen-based functional
groups, leading to enhanced surface energy and improved
hydrophilicity characteristics [30]. In addition, the presence
of nitrogen species can facilitate the formation of nitrogen-
containing functional groups, eventually enhancing polymer
adhesion and promoting cell attachment [30, 31]. Further-
more, the dissociation of water vapor in plasma generates
highly reactive OH radicals, which can readily react with the
surface of polymer, leading to the introduction of hydroxyl

Figure 3. (a) The applied voltage and current waveform to
HV electrode, (b) the OES spectrum acquired from DBD
plasma.

groups. This process effectively heightens surface energy
and improves wettability [30]. Prior studies have demon-
strated that surface hydrophilicity and functional groups
significantly impact cell adhesion and proliferation [31, 32].

3.2 Surface chemistry composition

The fibers were subjected to ATR-FTIR analysis, revealing
the existence of diverse vibrational modes, as depicted in
Fig. 4. The results exhibit distinct peaks, including O-H
stretching vibration peak in the range of 3000–3500 cm−1,
C-H and CH2 bending vibrations at 1326 and 1420 cm−1,
C-H stretching vibration peaks at 2932 and 2872 cm−1,
C≡N stretching vibration peak at 2242 cm−1, double C=O
stretching vibration peaks within the range of 1650–1750
cm−1, and C-O stretching vibrations at 1233 and 1093 cm−1

[33–36]. The obtained results suggest that plasma treatment
induced modifications to the prominent peaks in the ATR-
FTIR data. These changes were attributed to the appearance
of oxygen- and nitrogen-containing functional groups on
the polymer surface [37].
The vibrational modes of C-H bonds can be influenced by
the formation of hydrogen bonds with oxygen-containing
functional groups, such as hydroxyl, and carbonyl, through
air-plasma treatment. This effect has a substantial impact on
the C-O and O-H stretching vibrations, resulting in notice-
able alterations in the ATR-FTIR spectrum [35]. Moreover,
these functional groups can interact with the ester bond (-
COO-) through hydrogen bonds or condensation reactions
involving the carbonyl group of the ester bond [38]. As a
result, the ester bonds from the PAN polymer are integrated
into the PVAG layer. This interaction modifies the vibra-
tion of the ester bonds, subsequently causing a discernible
alteration in either the peak intensity or position observed
within the ATR-FTIR spectrum [39–41].

Figure 4. The ATR-FTIR spectra of scaffold fibers.
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Figure 5. The contact angle of the scaffold surface (a) UMS, (b) PMS, (c) PMSP.

3.3 Contact angle measurement

The hydrophilicity of PAN/PVAG fibers was evaluated un-
der various conditions of plasma surface modification using
the drop contact angle method (Fig. 5). The respective con-
tact angles were determined to be 69 degrees for UMS, 58
degrees for PMS, and 55 degrees for PMSP. The plasma
treatment applied to the fibers has been demonstrated to
enhance the bonding of oxygen molecules to the surfaces of
the polymer. This evidence is substantiated by the analysis
performed using ATR-FTIR and OES. The results obviously
indicate that plasma modification is a viable and effective
method for enhancing the surface energy and hydrophilic-
ity of fibers [30, 42]. The dissimilarity in contact angles
observed between the PMS and PMSP conditions may be
explained by the surface porosity and three-dimensional
structure created by the direct plasma treatment applied to
the PAN layer under the PMSP condition. The presence of
pores enhances the surface area available for water adhe-
sion, which results in reduced contact angles and improved
wettability properties [43]. Furthermore, the cross-linked
porosity could potentially facilitate capillary action, helping
water infiltration into the scaffold material [44].

3.4 Morphology of polymers surface

Fig. 6 presents the SEM images of the scaffold fibers pro-
duced through electrospinning before being undergoing
plasma treatment. In Fig. 6 a, the electrospun PAN mi-
crostructures are shown, highlighting their average thick-
ness and undulating morphology. The PAN fibers exhibit
an average thickness of 1.95 µm. The observed wave-like
pattern in PAN fibers can be ascribed to the influence of the
UV radiation during the electrospinning procedure. When
exposed to UV irradiation, the PAN polymer chains undergo
simultaneous crosslinking reactions and photodegradation.
The crosslinking of the PAN fibers takes place through UV
energy absorption, resulting in the formation of covalent
bonds between the polymer chains [45]. In addition, pho-
todegradation occurs as a consequence of the cleavage of
chemical bonds within the PAN polymer structure, leading
to chain fragmentation and molecular weight reduction [46].
These processes are responsible for the wave-like morphol-
ogy observed in the PAN fibers. The morphology of PVAG
fibers is depicted in Fig. 6 b, accompanied by the average

thickness measurement. The PVAG fibers during electro-
spinning can also be affected by UV radiation. The UV
energy has the capability to initiate both crosslinking and
degradation reactions within the polymer blend, specifically
affecting the PVA and gelatin components [46, 47]. This
crosslinking enhances the mechanical strength and stability
of the electrospun fibers [48].
The application of direct plasma treatment to the PAN fiber
layer is a highly effective method for creating surface perfo-
rations. The morphology of the PAN fibers that underwent
plasma treatment and mean diameter of the generated pores
for various treatment durations, ranging from 10 to 60 sec-
onds, are presented in Fig. 7. When the plasma comes into
contact with the PAN surface, plasma species bombard it,
triggering both chemical reactions and physical sputtering
[43, 49]. The plasma reactive species can break chemical
bonds within the PAN, while the sputtering effect physi-
cally eliminates PAN chains. This combination results in
the formation of pores on the PAN surface [50, 51]. More-
over, the resultant etching outcomes, such as the dimensions,
configuration, and depth of the perforations, are subject to
variation depending on the species generated during the
treatment [43]. In addition, the accompanying data offers

Figure 6. The morphology and the average thicknesses of
(a) PAN fibers and (b) PVAG fibers obtained using SEM.
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Figure 7. The morphology of PAN fibers after plasma treat-
ment at a scale of (a) 2 mm and (b) 50 µm, as well as the
mean diameter of the generated holes at (c) various treated
times and (d) 35 seconds.

insights into the average diameter of the pores generated
during each specific treatment period. The outcomes reveal
that a duration of 35 seconds is the optimal time period for
creating pores and channels in the initial layer, resulting in
pores with an average diameter of 43 µm. This diameter is
suitable for accommodating mouse fibroblast cells, which
typically have an average size of 18 µm.
Plasma treatment has the potential to induce crosslinking
among PVAG chains, as demonstrated in Fig. 8 a and b. The
radicals produced on the surface exhibit the ability to inter-
act with either the polymer chains or the crosslinking agents
present in the plasma environment [52]. This facilitates the
formation of new covalent bonds [53]. The crosslinking
effect results in augmented mechanical strength, enhanced
chemical resistance, and improved stability of the PVAG
layer [52]. Furthermore, the enhanced stability resulting
from crosslinking ensures that the polymer substance main-
tains its intended characteristics for an extended duration
[54, 55]. Fig. 8 c presents the AFM image of the unmodi-

Figure 8. The SEM images of morphology of scaffold sur-
face, (a) unmodified scaffold and (b) plasma modified scaf-
fold, as well as AFM images of PAN/PVAG scaffold surface
(c) unmodified and (d) plasma modified.

fied scaffold, while Fig. 8 d displays the modified scaffold
following a 3-minute exposure to air plasma. These images
clearly demonstrate that the surface roughness of the scaf-
fold increased as a result of the air plasma treatment.
The analysis of the AFM data yielded significant findings
regarding the surface roughness of the fibers. The average
surface roughness (Sa) of the unmodified fibers measured
228.9 nm, whereas it increased to 297.9 nm after the plasma
modification. Furthermore, the root mean square rough-
ness (Sq) of the unmodified and modified plasma fibers was
measured to be 289.8 nm and 362.4 nm, respectively. This
data clearly indicates that the plasma treatment alters the
scaffold surface morphology, leading to an enhancement in
roughness [50, 56]. An increased roughness on the surface
of the scaffold provides additional sites for cell attachment,
thereby potentially improving cell adhesion and facilitating
better integration of the scaffold with the surrounding tis-
sues [30, 43].
Fibroblast cells cultured on fiber surfaces are shown in
Fig. 9. The results indicate that plasma-treated fiber scaf-
folds exhibited cellular attachment and division. In contrast,
the non-plasma-treated sample did not exhibit fibroblast cell
polarity. Moreover, the observation of cells being drawn
into the formed cavities indicates that the scaffold was ap-
propriately designed to accomplish surface modification
and three-dimensional cell entrapment [17, 29].

3.5 Fibroblast cells viability and proliferation
The flow cytometry analysis revealed discernible cellular
responses within the three scaffold conditions, as demon-
strated in Fig. 10. The investigation unveiled noteworthy
findings regarding the effects of plasma modification on cell
behavior within the scaffold. Without PAN treatment, the
necrosis cell proportion on the plasma-modified scaffold in-
creased notably to 21.7%, compared to the plasma-modified
scaffold with PAN treatment and the unmodified scaffold (p
< 0.05).
The direct plasma treatment of the PAN layer results in the

Figure 9. The SEM images of fibroblast cells cultured
on scaffold surface, (a) unmodified scaffold, and plasma-
modified scaffold at the scale of (b) 100 µm, (c) 30 µm, and
(d) 10 µm.
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Figure 10. The flow cytometry results of scaffold samples, for which statistical significance was determined as p < 0.05.

formation of a porous structure, which offers enhanced capa-
bilities for cell infiltration, nutrient diffusion, and waste re-
moval. The inclusion of plasma-perforated PAN in the scaf-
fold results in enhanced cell viability and reduced necrosis
cell formation, as compared to the scaffold lacking this com-
ponent [57, 58]. The unmodified scaffold displayed a higher
percentage of apoptosis cells, with 19.2% in the early-stage
and 37.7% in the late stage of apoptosis, compared to the
plasma-modified scaffold (p < 0.05). In contrast, the pro-
portion of viable cells on the unmodified scaffold (27.5%)
decreased significantly compared to both the plasma-treated
scaffold (p < 0.05). The application of plasma treatment
resulted in modifications to the surface charge, hydrophobic
characteristics, and surface energy of the polymer scaffolds.
Moreover, this treatment method demonstrates the capabil-
ity to modify the surface chemistry of the polymer scaffold,
thereby introducing functional groups such as carbonyl and
hydroxyl groups [59]. These functional groups have demon-
strated effective interactions with growth factors, ultimately
promoting cell adhesion. These factors have been observed
to effectively modulate apoptosis pathways and mitigate
stress [60, 61].

4. Conclusion
The present research was designed to examine the impact
of subjecting PAN/PVA-gelatin polymer scaffolds to
DBD plasma in ambient air to mitigate its hydrophobicity
limitations and understand the effects of plasma treatment
on scaffold synthesis for tissue engineering and cell growth.
Furthermore, in order to enhance the properties of the

scaffold, an in-situ UV treatment was implemented during
the electrospinning process, leading to the formation of
a cured layer. The results demonstrated that the plasma
treatment had a significant impact on the physiochemical
properties of the scaffold surface. The ATR-FTIR analysis
indicated the presence of ester bonds of PAN polymer in the
PVAG layer as a result of plasma treatment. Furthermore,
the application of plasma to modify the PVAG layer
facilitated the formation of hydroxyl bonds, consequently
enhancing the hydrophilic properties of the scaffold
surface. Evaluation of droplet contact angle images
demonstrated significantly elevated hydrophilicity on the
plasma-modified surface. The SEM analysis revealed
the presence of etched pores on the PAN surface, which
were attributed to the direct plasma treatment, creating a
three-dimensional microenvironment within the scaffold
where cells could attach to these cavities. Moreover,
when exposed to UV energy, the polymer chains of PAN
undergo photodegradation and chain scission, leading to
the disruption of the fiber structure and the formation
of wave-like patterns. Furthermore, the presence of UV
radiation can initiate crosslinking reactions through the
generation of free radicals. This process enhances stability
of both PAN and PVAG layers and induces structural modi-
fications. This improvement in stability can be attributed
to crosslinking, as indicated by the retention of the fibrous
architecture following cultivation. The flow cytometry
data revealed enhanced biocompatibility of the scaffold,
as a substantial proportion of fibroblast cells cultivated
on the plasma-treated scaffold exhibited increased cell
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viability in comparison to the unmodified control. In
conclusion, the results of the present research demonstrate
that the plasma modification of PAN/PVA-gelatin scaffold
enhances its physio-chemical properties and promotes
cellular integration and communication within the scaffold.
The aforementioned results make a valuable contribution to
the progress of scaffold synthesis in the tissue engineering
applications.
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