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1. Introduction

The natural world manifests diverse particle interactions,
including mechanical, electromagnetic, and gravitational
waves [1, 2]. According to known theoretical rules and
speed limits, these waves transfer information within their
respective mediums. These phenomena propagate within
our four-dimensional (4D) spacetime, or at least within the
4D realm accessible to our observation. However, entangle-
ment, a peculiar means of transferring information, cannot
be explained through 4D spacetime as a medium. While en-
tanglement is limited in its capacity to transmit data between
entangled particles, it enables us to determine a distant par-
ticle’s state instantly. This breaks the light speed limit [3].

This observation implies the existence of an information
transfer mechanism that does not conform to our current
spacetime understanding. The collapse of the wave function
in entanglement due to our measurement of one-half of a
mixed state instantaneously affects the other half without
transferring any information [4]. The relationship between
the maximum information of particle collections and the
state of each particle at the time of measurement raises the
question of whether there is an information transfer mecha-

nism beyond spacetime.

To address this problem, we propose an approach that ex-
plores the possibility of a different type of medium: in this
framework, we posit the necessity of at least one additional
dimension beyond the familiar four, with the fifth dimension
serving as a foundational starting point for the exploration
of our hypothesis. This stance is not to suggest that the fifth
dimension represents the upper limit of dimensional space,
but rather to articulate that our current theoretical model
requires this additional dimension to proceed, and it lays the
groundwork for the potential integration and consideration
of even more dimensions. While this approach may offer
some insights into entanglement, we wonder whether it is
sufficient to fully understand this peculiar way of transfer-
ring information. Further research and innovative theoreti-
cal frameworks may be necessary to fully comprehend the
fundamental principles governing the natural world, includ-
ing the mechanisms underlying entanglement.

Observing the similarities between wormhole characteris-
tics and entanglement [5—7] raises the question of whether
there is a fundamental correlation between these two top-
ics. Quantum mechanics and general relativity challenge
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locality through entanglement and wormholes. However,
both of these topics need to be revised when questioning the
concept of locality, which significantly affects their observ-
ability and investigation. In quantum entanglement, there
is no possibility of direct information transfer at a speed
faster than light [3]. At the same time, in Einstein-Rosen
bridges (wormholes), we face Lorentzian wormholes that
pose a challenge to cross them [7]. According to existing
theories, when two black holes are entangled, they create a
connection through a wormhole. This leads to the destruc-
tion of the black hole’s internal smoothness [7]. The internal
modes of the black hole become indefinable, which is the
same as what happens in the phenomenon of entanglement
(of course, at much smaller scales): the tiniest information
about the subsystem and the highest knowledge about the
system [4]. Thus, this study investigates the hypothesis of
whether the wormhole connection between two black holes,
which have a macroscopic form, can be considered an accu-
mulation of microscopic entanglement connections in their
microstates or not. Is the wormhole a specific macroscopic
shape of entanglement or not?

The concept of entangled black holes, and the potential for
their connection via a wormhole in higher dimensions, has
long captured physicists’ imaginations [5—-8]. In a recent
exploration of this idea, researchers considered the entan-
glement of pairs of particles within a black hole [7]. They
proposed a scenario in which a quantum supercomputer out-
side the black hole could collect Hawking radiation emitted
from the black hole without disturbing it. This would result
in two equally sized black holes, all of whose particles are
entangled one-to-one, leading to a wormhole connection
between them [7]. The proposed mechanism offers an in-
triguing possibility for understanding black holes’ nature
and their interconnectedness.

The inner regions of two black holes in a Schwarzschild
black hole scenario are connected by a wormhole. However,
their outer areas remain disconnected from each other [7].
Observers near the event horizons of black holes experience
two types of distance from each other: the first being the
four-dimensional spacetime distance that separates them in-
finitely far apart, and the second being the five-dimensional
communication bridge inside the black hole that brings
them closer together. However, due to cosmic censorship
conjecture and the absence of naked singularities [9], the
close distance between the observers remains hidden due to
the presence of the event horizon. This concept of hidden
distances can be extended to quantum entanglement, where
particles can appear to be separated by a considerable dis-
tance in four-dimensional spacetime but are closer together
in the context of quantum entanglement. This can be in-
terpreted as information censorship, analogous to quantum
entanglement’s hidden information. Therefore, invisible dis-
tances can offer insights into the interface between physical
reality and the quantum world. It can also provide insights
into how this boundary can be obscured or delineated. This
provides a fascinating avenue for exploring the fundamental
nature of reality and the limitations of our ability to perceive
it.

In Dirac’s view, entanglement cannot be detected by ap-

Mahdavi et al.

plying an operator to all functions since an entangled state
cannot be written as a linear combination of non-entangled
systems. Instead, each specific entanglement has a dedi-
cated operator and detection method [10].

Interestingly, the analogy between entanglement and worm-
holes suggests that different entanglements must correspond
to various wormholes [7]. The Wheeler-DeWitt equation,
which relates general relativity and quantum mechanics,
identifies conditions under which other states have various
communication channels [11].

When two black holes are entangled, an inaccessible worm-
hole is situated within the event horizon region of two black
holes [7]. The inaccessibility of the wormhole to the out-
side of the event horizon is equivalent to the inability to
transmit information through entanglement. Upon entering
their respective black holes, Alice and Bob witness the con-
traction of the wormhole entrance sphere as they approach
the singularity [7]. Consequently, stretching the bridge at
high speed and increasing the time needed to traverse it
results in conditions under which sending signals through
it is no longer feasible [7]. Hence, a dilated horizon exists
on either side. As we see in both cases (wormholes and
entanglement), information transmission is impossible, at
least in a form familiar to us.

Therefore, the ER = EPR correspondence is based on simi-
larities between these two which are:

1. Both challenge information localization.

2. However, neither allows signal propagation from outside
of their connection.

3. In the case of entanglement, no local operator can have a
non-local effect on another subsystem. In the case of worm-
holes, according to the Penrose diagram of a two-sided
black hole, no signal can be transmitted from the outside
region on the right to the outside area on the left.

The presence of such a phenomenon raises the possibility
that information existing in our spacetime may actually rep-
resent events occurring in higher dimensional space. Due
to the limitations of our four-dimensional spacetime struc-
ture, displaying all of this information may not be possible.
In critical situations, such as the very close interaction of
two particles in the phenomenon of entanglement, or the
extreme gravitational pressure on particles in a black hole,
a significant portion of information appears to be emitted
from four-dimensional spacetime. At the same time, the
result remains in our observable universe.

As a result, a similarity can be observed between uncer-
tainty (at the macroscopic scale) and the hiding of some
information in a place beyond the event horizon of a black
hole (at the microscopic scale). Can it be inferred that the
effect observed in the form of a black hole is a consequence
of a highly dense inherent lack of information present in
small portions in each particle, which is beyond the reach of
observers (even for each particle)? What emerges as values
in four-dimensional spacetime is a projection of information
in higher dimensional space, and this higher dimensional
space only reveals its unique properties in specific situations.
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Figure 1. This picture shows the path integral approach from
point ¢; (x) to point ¢ (x). In quantum mechanics and sta-
tistical physics, the path integral approach calculates the
probability of transitioning from one point to another. The
path integral process considers all possible trajectories from
¢1(x) to @2(x) rather than focusing on a specific direction.
Each trajectory is assigned a weight based on the action,
representing the energy difference between the initial and
final states. The path integral summarizes these weighted
trajectories to determine the overall probability of transi-
tioning from @; (x) to @ (x).

2. Foundations of quantum mechanics and
action principle

This section will examine the fundamentals of quantum
mechanics and their relationship to spacetime. We explore
critical topics, including the meaning and significance of
actions and path integrals, the representation and analysis
of quantum states using the density matrix and its trace,
the relationship between quantum mechanics and spacetime
within the context of Rindler spacetime, and the role of
the density matrix in describing entangled states and the
purification of mixed conditions. By investigating these fun-
damental concepts, we gain a deeper understanding of the
mathematical foundations and physical implications that un-
derlie the intricate connection between quantum mechanics
and spacetime.

2.1 Actions and path integral

Actions serve as fundamental mathematical constructs in
quantum mechanics, concisely describing the underlying
principles governing quantum phenomena [12]. In this sub-
section, we explore the meaning and significance of actions
in quantum theory.

We use path integrals as a powerful tool to calculate quan-
tum probabilities and amplitudes. This is done by summing
all possible paths of a particle or system [11].

Examining actions and path integrals establishes a solid
foundation for understanding the interplay between math-
ematical representations and physical phenomena in the
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quantum realm.
When the time evolution operator (¢ ~*T) acts on state x;,
it generates state x»:

(x2le T |xy) (1

The time evolution operator encompasses all possible paths
from the initial state to the final state. Another approach
to achieve this is by utilizing the concept of path integrals,
which consider the contributions of all paths:

<)C2‘€_IHT|)C]> _ Z e‘_IST[ (2)
All paths

In this formulation, S is the action associated with state x at
time ¢; the system is transferred to the last moment through
the time evolution operator or considering all interactions
from the initial to the final point [11].

In quantum field theory, the initial and final states, instead
of being a single point in spacetime, are the sums of fields
at that point:

(@2(x) ™" |1 (x)) 3

Again, one can employ the path integral instead of the time
evolution operator in a similar manner [12] (Fig. 1):

| Pu=T)=
e o) = 77

P(t=0)=¢,

D9 (4)

In this formulation, we are situated in Lorentzian spacetime.
The integral boundaries span from the initial to the final
spacetime. A transition can be made to Euclidean space
without a time component by employing the Wick rotation
in complex space. In this transformation, the imaginary unit
“” is converted to “—i” or “i/i” [12]. As a consequence, the
Euclidean expression of the same concept will be as follows

(Fig. 2):
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Figure 2. Using a path integral approach to transition from
@1 to @, which are no longer points but fields.
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Figure 3. The picture depicts using path integral to construct
a state function. In this process, we create a path integral for
the transition between two fields. However, introducing a
cut in their path will only be close to the initial field. From
there, the paths are propagated towards the space under
consideration. This approach provides a comprehensive
understanding of the state function through path integrals
and facilitates analysis in a specific field of interest.

In this formulation, 7 is no longer a temporal component
but rather represents a spatial separation between two points
in Euclidean space.

2.2 Quantum states and density matrix

In this subsection, we explore quantum states and the den-
sity matrix. We provide detailed explanations of quantum
states and their representations, enabling a deeper under-
standing of their properties and behavior.

Additionally, we explore the density matrix, a powerful tool
for characterizing mixed states and capturing essential in-
formation about quantum systems.

Furthermore, we examine the significance of the trace of a
density matrix. We offer insights into system purity, mixed-
ness, and observables derived from the density matrix. We
also explore analytical techniques for computing the density
matrix in quantum mechanics. By doing so, we can analyze
statistical properties and characterizations of quantum sys-
tems with precision and accuracy.

According to the provided definition of the path integral and
the time evolution operator, if the initial point is specified,
but we do not define a specific value for the final point, we
form the state function associated with the initial point [13]:

?
o) = [ Dp.e I y(e)  ©)
?(0)=¢1

To visualize in this context, imagine cutting or slicing
through the picture depicted in the previous scenario, where
we traveled from the initial point to the final point. By
doing so, we gain insight into the evolution of the state func-
tion associated with the initial point over 7. In interpreting
the path integral, we no longer confine paths to secondary
points; instead, we unravel the propagation pattern of all
possible pathways (Fig. 3).

In a similar manner and following the analogy observed
in the thermofield double, a slice in the manifold can be
interpreted in two ways:
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1) In the form of a state function (S' x S') encompassing
both sides of the slice. In this approach, one of the two sides
of the piece transforms into the ground state while the other
continues its extension.

2) A localized operator on both sides of a slice that extends
to a specific length. This operator establishes a connection
between the values on the two sides of the piece [13].

In this formalism, we start with the fields at the initial point
and construct the state function by considering all interac-
tions in Euclidean space. Subsequently, utilizing this state
function, we employ the Lorentz transformation by consid-
ering the fields and all interactions (in complex spacetime).
By integrating these interactions, we find the time evolution
of the initial state function.
D@,e | De,e5E (7
91 1

Do,

In the definition of the state function, the farther the slice
extends into the distant region, the broader the extent of
Euclidean transformation. As the cut extends sufficiently
far, it covers the entire Euclidean space, leading to the
ground state. In other words, the time evolution reduces the
excited state, ultimately reaching the ground state.

T — 0= |0)

Utilizing the established definitions, it is evident that the
density matrix, functioning as an operator, covers the in-
terval between two slices. As these slices come closer to
each other and merge into one, the resulting density matrix
represents entangled states formed by the combination of
the two states in bracket form. Thus, the density matrix
encompasses all possible paths between the two slices in
the manifold (Fig. 4).

Therefore, when the two created slices are combined, all
possible paths find specific values. In other words, we sum
over all states between the two regions, each associated

?7?7?(cut)

+——>

222(cut)

Figure 4. The representation of the density matrix of a
thermal state is depicted, where the modes between the two
slices are spaced apart by . As the temperature increases,
the value of 8 decreases. Consequently, when the two slices
merge, we reach the maximum entanglement between the
modes, the highest temperature, and a maximally mixed

state. In this scenario, the density matrix is given by p =
,ﬁH
e P,
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Figure 5. The summation of all existing fields within the
distance of 3 is denoted as Z(f3).

with its unique energy level [14]. This definition is equiva-
lent to the concept of the partition function. Consequently,
when the trace operator is applied to the density matrix, it
effectively merges the two created slices, resulting in the
partition function corresponding to the distance between
them. Therefore, the trace of a density matrix in a thermal
state can be represented as follows (Fig. 5):

(@ilpler) =Tr(p) =Z(B)
Tr(p) = Zg, (@1]e P |gy)

This concept can be represented cylindrically, with a cross-
sectional surface area equal to 8 (the same surface where the
two intersecting parts are glued together due to the overlap).
As aresult, Z(B) is equal to Fig. 6 and Fig. 7.

As a result, part (d) in the figure indicates the effect of
the reduced density matrix. This can be viewed in two
ways. The reduced density matrix operator connects the
cut’s field values on both sides. Suppose the transformation
due to the boost is considered along the theta direction. In
that case, when we move from the upper part of the cut
to the lower part, the transformation is equivalent to the
effect of the reduced density matrix [15]. Therefore, the
boost-induced transformation corresponds to the effect of
the reduced density matrix. In fact,

®)

27
(02 |palof) = (@h]e 10" 210 oty = (9 |e > 2 gf') (9)

Upon applying the Wick rotation, which transforms the Eu-
clidean space into the complex Lorentzian space, the equiv-
alent reduced density matrix is obtained in the Lorentzian
spacetime (Fig. 8):

pa= e—27rkA (10)
Now, considering that the obtained value for the density ma-
trix in the previous state is for a time slice of space, we can
calculate the corresponding value in Lorentzian spacetime
[13, 16] (Fig. 9).
Thus, the accelerating observer perceives a thermal tem-
perature due to the boost present in Rindler space. This
temperature increases as they approach the Rindler horizon.
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In essence, the number of modes that exhibit entanglement
with one another increases significantly near the boundary
created between the two regions on the left and right of
space. This resulting temperature, known as Unruh radia-
tion, directly correlates with the magnitude of the observer’s
acceleration (which, in turn, corresponds inversely to the
distance from the Rindler horizon) [15, 17].

2.3 Unraveling spacetime: Rindler vs. Minkowski and
entanglement

In the depicted scenario, we observe the temperature and
spatial separation into two regions due to the defined type of
acceleration and its relation to the inverse of the distance to
the event horizon of the black hole. A similar phenomenon
occurs when a black hole is present in Minkowski space-
time. A correspondence exists between the event horizon
of the black hole and the Rindler horizon. In Rindler space-
time, acceleration in space creates entanglement between
two regions, manifesting itself through the density matrix
and the observed temperature at the horizon. However, in
Minkowski spacetime, the presence of a black hole encom-
passes all the associated conditions.

Moving observers in Rindler spacetime observe something
similar to a black hole and a thermal state (Hawking radia-
tion). Simultaneously, an observer at rest in this spacetime
(who requires energy to maintain their position) perceives
other regions of the universe being accelerated by a force
similar to a rocket, resulting in the emission of radiation
towards the Rindler horizon.

Within quantum entanglement lies the enigmatic concept of
the thermofield double, a bridge between different space-
time realms. Imagine two quantum systems, mirrored yet
intertwined, dancing in joint Hilbert space [14, 15]. In
Rindler space, where acceleration shapes the stage, this con-
cept unveils a fascinating phenomenon: the entanglement
between left and right Rindler wedges births thermal prop-
erties, revealing the Unruh effect—a vacuum perceived as a
simmering thermal bath by accelerated observers.

The thermofield double threads extend beyond Rindler
space, reaching black holes’ cores in Minkowski space.
Here, entanglement entropy mirrors black hole entropy.
This connection sheds light on the interplay between entan-
glement and horizon thermodynamics, hinting at cosmic
holographic resonance. The thermofield double becomes a
key, unlocking spacetime’s symphony and weaving together

Figure 6. Using cylindrical representations constrained by
the distance between two fields in a planar representation.
The cylinder’s circumference in this representation is equal
to the distance between the fields from a planar view so that
it can be equivalent to the system partition function.
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Figure 7. We create a similar manifold to calculate the re-
duced density matrix in Rindler spacetime. Initially, we
consider a flat manifold (a) and then we create a cut within
it (b). Next, we form two regions, left and right (c). The re-
duced density matrix involves the transfer operator between
the upper and lower parts of the manifold. Now, with the
definition of the reduced density matrix, we can connect
half of the cut (d) using the trace operation. Consequently,
the resulting reduced density matrix links the field values in
the upper and lower sides of the right part of the manifold.

quantum threads and gravitational forces.

Within entanglement, particles engage in hidden interplay.
When one particle is influenced, its partner responds instan-
taneously, defying distance and revealing entanglement’s
non-local nature. This phenomenon also offers insight into
superluminal interaction—an illusion of faster-than-light
communication that abides by cosmic limitations.

In this entangled interplay, chaos, and information express
through entropy. As particles navigate their quantum realm,
their shared enigmas materialize as entanglement entropy.
This intricate quantification of their connection captures
the delicate balance between order and disorder, echoing
thermodynamics’ second law principles. Through this en-
tropic rhythm, we observe the quantum stage mirroring the
cosmic theater—a profound interweaving of information,
entanglement, and spacetime symphony.

It is also noteworthy to mention that in our exploration of the
cosmos and its intricate tapestry, it is illuminating to revisit
the visionary insights of historical figures like Pythagoras
and Johannes Kepler. Pythagoras’ notion of *'music of the
spheres’ and Kepler’s "musical geometry’ represent pioneer-
ing attempts to understand the universe as a symphony of
mathematical relationships. Pythagoras perceived celestial
motions as harmonious musical intervals, revealing an early
intuition of the cosmos as an entity governed by mathemati-
cal principles. Similarly, Kepler’s exploration of planetary
motions through harmonic ratios foresaw a universe where
physical phenomena resonated through mathematical har-
mony. Their perspectives, while rooted in the science of

Mahdavi et al.

their times, remarkably echo today’s view of the universe
as a complex yet harmonious construct where space, time,
and matter dance to the rhythm of fundamental laws. Such
historical insights not only enrich our scientific narrative but
also underscore the timeless quest to decipher the cosmos
through mathematics.

3. A Dance of dualities: AdS/CFT and
spacetime emergence

This subsection delves into the intricate relationship be-
tween operators and states in the AdS/CFT correspondence.
We analyze how operators are mapped between the gravita-
tional theory in AdS and the corresponding CFT, unveiling
the profound implications of this operator-state correspon-
dence. By exploring this connection, we understand the
physics underlying both sides of the correspondence. This
illuminates the interplay between gravitational theory and
the corresponding CFT operators and states [18].

The CFT is characterized by a particular symmetry property
known as conformal symmetry. These properties give rise
to various remarkable features which have proved crucial
for analyzing physical phenomena [19].

CFT in space is defined by the following elements [18, 19]:
1. Firstly, scaling dimensions are the scaling exponents that
arise from dilatational symmetry. These parameters indicate
how system behavior changes with scale.

2. Operator Product Expansion (OPE) Coefficients: OPE
coefficients constitute a pivotal aspect of CFT, character-
izing operator product expansion. The OPE embodies a
diverse set of powers representing the variations of fields
and their effects in the CFT space.

3. Spin Constants: Spin constants emerge due to rotational
symmetry in the system. They provide insight into the spa-
tial properties of the fields under rotational transformations.
The holistic portrayal of CFT in space thus encompasses
these fundamental features. Each contributes significantly
to the understanding of intricate physical processes in con-
formal symmetry. This profound mathematical framework
lays the groundwork for investigating diverse phenomena
and advances modern theoretical physics.

A holistic depiction of CFT in space is essential to under-
stand intricate physical processes in conformal symmetry.
This mathematical framework allows diverse phenomena to
be studied and advanced in theoretical physics.

In Quantum Field Theory (QFT), Operator Product Expan-

Figure 8. Illustration of two different methods of connecting
fields on the two created slices in the manifold.
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Figure 9. The density matrix created in Euclidean space is
applicable in Lorentzian spacetime. As illustrated, a density
matrix is formed in a slice of time.

sion (OPE) coefficients serve as numerical constants that
emerge from expanding the product of two operators into
the sum of a series of other operators. OPE provides a math-
ematical tool for analyzing correlation functions in quantum
field theories. These coefficients represent the product of
two operators at slight separations as the sum of operators
at significant breaks [20].

Through OPE, valuable information about the theory under
investigation becomes accessible. This includes insights
into the interplay between operators and their contributions
to correlation functions.

The significance of OPE lies in its ability to provide valuable
quantitative details about the interaction strengths between
various operators and the extent of involvement of different
operators in correlation functions. It is an indispensable
mathematical instrument for probing the intricate properties
of quantum field theories. It enhances our understanding of
the underlying physics.

3.1 Weyl mapping to cylinder and state-operator corre-
spondence in CFT:

In the context of the Weyl mapping from the plane to the
cylinder, the Dilaton operator transforms into the Hamil-
tonian of the system, leading to the creation of a gapped
system with a non-zero ground state energy, which is depen-
dent on the constant spacetime background (c/12). Conse-
quently, through appropriate changes in variables, we can
establish a connection between operators on the plane and
operators on the cylinder [20]:

(1)

The Weyl transformation interconnected two distinct theo-

ries of the plane and the cylinder. With these definitions, we
can express the path integral over the region on the plane
and the cylinder where the operator is defined as follows
Fig. 10.

Ocyi(t,n) = emﬁpl (x=¢e",n)
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In both theories, spacetime is flat. With this correspondence,
we can obtain the path integral in Minkowski spacetime us-
ing the cylinder operator or consider the cylinder spacetime
operators as Minkowski vacuum states on the plane.

We can define a state using an operator in all quantum field
theories. To achieve this, we consider the operator at the
center and take a path integral over a neighborhood around
it. The outcome is a quantum state that can be utilized in
any quantum field theory [20, 21] (Fig. 11).

Conformal Field Theory (CFT) allows us to use an operator
instead of a state. In this definition, if we have a state, we
can employ the dilatation transformation to shrink the state
to a tiny point. After performing this transformation, we
can use it as an operator in the path integral (Fig. 12).

3.2 Action in the presence of gravity and effects of stress-
tensor

This subsection investigates the modifications to the action
in the Ads/CFT context when gravity is present. We explore
how the activity is altered to account for the gravitational
effects within this framework. Additionally, we examine the
impact of the stress tensor on the operators, shedding light
on the implications of this interaction. By unraveling these
aspects, we gain insights into the interplay between gravity,
the modified action, and the behavior of the operators in the
Ads/CFT correspondence.

3.2.1 Polyakov action

The Polyakov action represents the dynamics of an n-
dimensional membrane in a (n + 1)-dimensional spacetime.
Thus, the curvature of the universe’s spacetime can be con-
sidered based on this model. One can compute the partition
function of this spacetime by utilizing the Polyakov action
to describe a spacetime with curvature. Due to its nature
being related to curved spaces, the Polyakov action can

<0

X

<...>p| =

<...>qyl =

Figure 10. By utilizing the path integral approach, it is pos-
sible to investigate the effects of operators in two different
theories that are related to each other via the Weyl transfor-
mation.
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Figure 11. This visual depiction captures defining a quan-
tum state using a central operator and surrounding neigh-
borhood. By performing a path integral, the operator’s
attributes merge to create an individual quantum state.

generate correlation functions of the stress-energy tensor
[22, 23]. Moreover, it enables the connection between the
partition function of a flat space and the partition function
of a curved space:

2[g] = z[8]e~5r®)

Sy(g) =% [d*ov/—hhg,, (X)d.XH(0)d,X" (0)

12)
The Polyakov action incorporates all Conformal Field The-
ory (CFT) dependencies in the form of metrics, enabling it
to provide correlation functions on the desired gravitational
background. The action describes the dynamics of a string
as it moves through spacetime and how it interacts with
spacetime geometry. These dependencies are all related to
the central charge of the space in question. Consequently,
the central charge can be considered the stress-energy ten-
sor coefficient. In essence, ¢’ can serve as a measure of
particles’ degrees of freedom. The Polyakov action acts as
a generator of the stress-energy tensor correlation functions
[23].

3.2.2 Stress-tensor effects on operators of spacetime

The stress-energy tensor interaction with the vicinity of
a primary operator (fields that transform nicely under the
symmetries of the CFT space) causes the emergence of
at least two types of singularities: one singularity occurs
due to dilatation transformations, which are proportional
to the inverse square of the difference between the flat and
cylindrical space in the cylindrical space operators. Another
singularity arises from translations, which are proportional
to the inverse of the difference between flat and cylindrical
space in the derivative of the cylindrical space operators
[24]:

h

T(2)0(w,w) ~ ———5O(w,w) + E—— +...

= (13)

Therefore, when investigating the impact of the stress-
energy tensor on cylindrical space operators, we will en-
counter singularities for each operator. It is worth noting
that, due to the scale-invariant nature of conformal field
theory (CFT), only singularities appear [24]:

h(wy —wy)?

<T(z2)0(w1)O(wy) >= (z—w1)2(z—w)2

(14)
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3.3 The role of action and stress-energy tensor

Understanding how the stress-energy tensor influences the
action offers us a glimpse into the heart of spacetime emer-
gence. We uncover the hidden connections between gravity
and quantum reality by grasping these intricacies. These
insights serve as guiding stars, illuminating the pathways
through which gravity weaves itself into the structure of
spacetime. As we unravel these threads, we inch closer to
comprehending the complex interplay that shapes the cos-
mos, inching closer to deciphering the enigmatic symphony
that binds the universe together.

As we ponder the modifications in action and the dance
of operators, a compelling question arises: could these
elements hold the key to the enigmatic Einstein-Rosen
bridge? While the precise role may elude our grasp, the
mere contemplation of this connection enriches our explo-
ration. Acknowledging this potential link enhances the
grand theme that binds our narrative—an intricate web of
quantum threads and gravitational forces woven into the
very essence of spacetime’s fabric.

As observed, due to a boost in Rindler space, this spacetime
divides into two distinct regions: the left and right halves.
Consequently, some spacetime information becomes inac-
cessible, causing entropy [15]. The density matrix corre-
sponding to this partition of Rindler space is expressed as
follows:

pa= e

Where 8 = 1/T and H is the Hamiltonian of the system.
The operational form of the density matrix is expressed as
follows:

5)

pa= 2 ¥ e PI0)10) (16)
1
When focusing on half of the space, the quantum system’s
state may become entangled with its unobserved comple-
ment, leading to a mixed-state representation. This en-
tanglement with external degrees of freedom results in a
probabilistic description of the system’s quantum properties.
On the other hand, when considering the entire space and
having no entanglement with external factors, the system

Figure 12. This visual representation elucidates the con-
cept of operators in Conformal Field Theory (CFT). The
process begins by considering a quantum state, which is
then subjected to a dilatation transformation, symbolized
by contraction to a minuscule point. This transformed state
now functions as an operator in the path integral, emphasiz-
ing CFT’s unique approach to bridging quantum states and
operators.
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Singularity

Singularity

Figure 13. On the left side, we see the Penrose diagram of
Rindler spacetime, while on the right side, a temporal slice
of this spacetime is depicted. It should be noted that the
event horizon and the Einstein-Rosen bridge in the image
are represented in a manner that may not precisely capture
their proper form. Whether the Einstein-Rosen bridge must
permanently reside inside the event horizon or exhibit two
distinct natures remains controversial.

can be accurately represented as a pure state containing de-
tailed quantum information. This distinction between pure
and mixed states is pivotal in understanding quantum corre-
lations and entanglement phenomena in complex physical
systems (Fig. 13).

The minimal surface that separates region A from its com-
plement, denoted as Ac, is considered the event horizon (or
Einstein-Rosen bridge). The area law, S(A) = kA/(412),.4)»
governs the entropy of this spacetime, where S(A) repre-
sents the entropy, k is a constant, A is the area of the horizon,
and lElamk is the Planck length. It relies on the study’s spe-
cific context of whether to use the event horizon or Einstein-
Rosen bridge as the separating surface. We, therefore, refer
to it as the bifurcate surface [7].

Based on the holographic entanglement entropy laws, when
we examine the entropy of region A, we can look at its ho-
mologous region. As depicted in the figure, the bifurcated
surface has homology with region A, indicated by the pro-
portionality between the sizes of the areas (m(A) ~ A). This
homologous region allows us to study region A’s entropy
through the holographic entanglement entropy framework.

4. Quantum information and black hole
dynamics

This section explores the fascinating interplay between
quantum information and black hole dynamics. Quantum
information theory enables us to understand the behavior
and properties of information in quantum systems. In con-
trast, black holes pose intriguing challenges and mysteries
regarding the preservation and retrieval of information. By
investigating the relationship between these two domains,
we aim to uncover their profound connections and impli-
cations for our understanding of spacetime’s fundamental
nature. This section delves into crucial topics such as quan-
tum entropy, fine-grained and coarse-grained entropies, the
dynamics of black holes and Hawking radiation, and the
intricate processes of information in the creation and evap-
oration of black holes. Furthermore, we explore the role
of entangled modes in near and far regions, shedding light
on their influence on information propagation and entan-
glement entropy within black hole systems. Through this
exploration, we strive to deepen our understanding of the in-
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tricate relationship between quantum information and black
holes’ enigmatic nature.

4.1 Quantum entropy

In this subsection, we delve into quantum entropy as a
fundamental measure of information in quantum systems.
We explore the intricate landscape of quantum entropy, un-
veiling its role in quantifying hidden information within
quantum states. Additionally, we discuss various informa-
tion measures, including fine-grained and coarse-grained
entropies, shedding light on their applications in character-
izing quantum correlations and information storage.

We employ the von Neumann entropy to calculate the en-
coded entropy in a density matrix. This entropy is equal
to zero for a pure-density matrix, and its upper bound is
the entropy of a maximally mixed state. This entropy is
given by the identity matrix in the inverse dimensions of the
Hilbert space and Quantum Field Theory (QFT). This value
diverges to infinity. To prevent divergence, a UV cutoff is
utilized. The von Neumann entropy for the thermal state is
as follows [3]:

1
Pthermal = 79_131-1 an
Z
1 _BH
S Ee = Sthermal(B) (18)

There is a connection between this von Neumann entropy
and the thermodynamic temperature present within space-
time. By contrast, the density matrix corresponds to the
partition function, representing a statistical ensemble asso-
ciated with the system’s energy [3].

Quantum entropy is a fine-grained entropy; if we know a
quantum system’s density matrix, we can calculate the cor-
responding entropy. However, thermodynamic entropy is
coarse-grained.

4.1.1 Relative entropy

By introducing the von Neumann entropy, the possibility of
establishing a relationship between two distinct entropies
emerges [25]. To achieve this, we define relative entropy,

Figure 14. illustrates fine-grained entropy and coarse-
grained entropy; fine-grained entropy cannot extend beyond
a specific limit, but coarse-grained entropy can gradually
move further apart from each other over time.
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Singularity

Singularity

Figure 15. This visual representation illustrates the intrigu-
ing effect of a black hole with the thermofield double state.
The emergence of a state like the thermofield dual state due
to a black hole’s presence disrupts the conventional causal
connection between the right and left regions.

which is calculated as follows:

S(p||6) = —trplogo +trplogp 19)

By comparing the disparity between two density matrices,
we can determine how much their differences are and how
many measurements are required to characterize those dif-
ferences [25]. By comparing the density matrix with the
Hilbert space dimensions, we can determine the amount of
information in the system:

L= S(pll 1) = logdim A —Sip)  (20)
In the scenario where I, equals logdim %, the system’s
entropy is effectively zero, indicating the maximal possible
information within it. Conversely, when /. equals zero, it
implies a maximally mixed system where no independent
data can be extracted [3, 25].

4.1.2 Mutual information

With the help of the definition of relative entropy, we can
redefine the meaning of mutual information:

1(ADIB) = S(A) +S(B) — S(AB) =S(pas||0a) =

S(paslp(A) @ p(B))
21

In this manner, the level of entanglement, both classical and
quantum, between subsystems A and B is determined. The
minimum amount of mutual information is zero. In most
pure states, which include a complete chain of particles,
if we focus on a tiny fraction compared to the rest of the
system, this fraction is in the maximally mixed state [25].
Therefore, in the vacuum situation, the entropy of portion A
of the whole system is equal to:

c l
S(A) = zlog|— 22
)= 5 oe 1] )
Where [ is the length of region A and € is associated with
the UV-Cut off. And when the system is in a thermal state:

S(A) = ¢ log [fg sin M}

3 B (23)
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In this case, for I” 3, the system does not exhibit any sig-
nificant thermal effects and behaves entirely similar to a
vacuum state; everything is considered empty at short dis-
tances. On the other hand, when [ “f, the entropy grows
linearly and proportionally with the system’s temperature
[25].

In this regard, the Von Neumann entropy in Quantum Field
Theory (QFT) encompasses two types of entanglement,
one associated with short-range entanglement related to
the vacuum state and the other related to entanglement of
fundamental particles on a larger scale. The fine-grained
component occurs at short distances, and its contribution to
the total entropy of region A is only present when one end
of this short-range entanglement lies outside of area A and
the other end lies inside it. The coarse-grained component
involves fundamental particles, and entangled particle pairs
can exist at significant distances from each other [26]. In
essence, one part is associated with particle entanglement.
The other characterizes statistical connections between dif-
ferent points in spacetime, which can carry spacetime’s
intrinsic meaning. Therefore, spacetime is an emerging

HR
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.
.".ocu—ﬂ"..
[e]
=1
g
5
@

'0.. L]
.+ Event .
.+ Horizon .

Figure 16. The intricate black hole creation and evaporation
process through a Penrose diagram is presented. As the
black hole evaporates, its event horizon radius diminishes,
leading to the liberation of previously entangled particle
pairs beyond the event horizon. With these particles ex-
isting outside the event horizon, lost information becomes
accessible again, gradually reducing entropy. The diagram
visualizes the distinct phases and information dynamics
underlying the intricate relationship between black hole
evaporation and Hawking radiation.
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property of particle entanglement, and entangled particles
can be used to probe spacetime at its elementary level. This
is an essential tool for scientists seeking to understand the
nature of spacetime better. This could provide insights into
fundamental physical laws, such as quantum gravity, which
could revolutionize our understanding of the universe. It
could also lead to the development of new technologies,
such as faster-than-light communications (Fig. 14).

Thus, the Von Neumann entropy of region A effectively rep-
resents all entanglements that have a portion inside area A
and another portion outside of region A. It quantifies all the
information reduced from the entire system due to removing
region A from the system.

4.2 Black hole dynamics and information distribution
process

This subsection delves into black hole dynamics and their
profound implications for information distribution. We ex-
plore the intricate processes involved in the creation and
evaporation of black holes. This sheds light on the complex
interplay between information preservation and retrieval.
By unraveling the mysteries of information flow in black
hole systems, we gain insights into the fundamental nature
of these astrophysical objects and their impact on the distri-
bution of information within the vast reaches of spacetime.
The presence of a black hole produces a state similar
to the thermofield double state [27]. Consequently, in
Schwarzschild’s spacetime, we have a world where the
causal connection between right and left has been lost (Fig.
15).

In Hartle-Hawking coordinates, the spacetime is a cigar-
shaped structure, entirely analogous to the Minkowski vac-
uum in far regions. However, traversing from area A to B
and vice versa is impossible, as any path connecting these
two regions terminates at the black hole. Consequently, in
the vicinity of » = 2m, spacetime becomes curved. By em-
ploying the concepts of path integral, one can compute the
density matrix associated with this spacetime. The result
indicates that the Hartle-Hawking state is the thermal state
with a temperature of Ty = 1/(87M). If we take the trace
of this state and focus solely on its half, we obtain a thermal
state as expected:

|HH) = |TFDOP = 8nM) (24)
pA'™ = trp|HH) (HH]| (25)
pr — e—SﬂM,H (26)

This density matrix corresponds to a thermal state with the
Hawking radiation temperature.

As aresult, the Euclidean path integral in a Schwarzschild
spacetime yields a Hartle-Hawking state, which indepen-
dently becomes a thermal state on either side. This ther-
mal effect corresponds precisely to Hawking radiation. The
Hartle-Hawking state describes a black hole in thermal equi-
librium with its radiation. This state is analogous to placing
a black hole inside a box that emits and absorbs radiation
[15, 27].

The intriguing point is that, according to the concepts pre-
sented, space appears empty at the event horizon for an
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observer in free fall toward the black hole. This observer
encounters no firewalls. Similarly, in Hartle-Hawking space-
time, an observer in free fall towards a black hole perceives
space as empty in the same way that it is for an observer in
Minkowski spacetime.

4.2.1 Mode entanglement: near and far regions

In regions near the event horizon, the correlation of modes
manifests as an exponential summation of all energy contri-
butions associated with each mode. As we move away from
the event horizon while remaining gravitationally close to
the black hole, the angular momentum becomes more de-
pendent on the radial distance. This results in an increased
magnitude. Additionally, at the event horizon, the rotation
of the exterior and interior regions becomes identical, lead-
ing to the maximal possible degree of mode correlation
[28]:

Y e ln)n) : {nearhorizon ~ |n)|n) 1

fargravitationalregion ~ 70 |nY|n).

27)
Where f(r) is a function of the distance from the event
horizon and takes values greater than 1, the effect of entan-
glement diminishes and vanishes at far reaches, accompa-
nying the transition to the redshift regime. Most entangled
pairs are concentrated nearby, while the entanglement effect
gradually fades away with increasing separation from the
event horizon.

4.2.2 Black hole and hawking radiation time evolution

Considering quantum entanglement effects, a black hole
gradually evaporates through interconnected pairs. In space-
time containing only one black hole, and where radiation
does not interact significantly with the environment, the
emitted radiation can be collected at a distant location. As
long as the black hole has not entirely evaporated, some
information remains in the entangled pairs which cannot be
accessed. As a result of this phenomenon, the universe’s
entropy outside of the black hole also increases.

As the black hole evaporates, the radius of the event horizon
diminishes. This causes some previously entangled pairs
inside the event horizon to escape beyond it. With both
particles existing simultaneously outside the event horizon,
once lost, information becomes accessible again. This leads
to a gradual reduction in entropy due to the black hole’s
presence.

Ultimately, when the black hole fully evaporates, spacetime
returns to an empty state, accompanied by Hawking radia-
tion. This description shows the entanglement between the
radiation and the black hole increases until Page time. After
that, it gradually diminishes until complete evaporation has
taken place.

Due to the presence of Hawking radiation and the evapora-
tion of black holes, the Penrose diagram corresponding to
a black hole undergoes a distinct phase. In this phase, all
emitted radiation is accessible and available. As a result,
the entropy evolution of the universe due to a black hole can
be divided into two distinct periods: the first corresponds
to the time before radiation occurs to the point when the
energy of the emitted radiation is less than the remaining
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energy inside the black hole. During this period, the total
entropy of the external system gradually increases with the
increasing amount of Hawking radiation [29].

At this time, all the Hawking radiation is associated with
half of the entangled pairs; hence, no additional information
is added to the system. After passing the “Page time,” the
other half of the entangled pairs leave the black hole hori-
zon in the second period. Consequently, as the entangled
pairs are simultaneous on one side of the event horizon, the
system’s information gradually increases, and the entropy
induced by the black hole decreases until the black hole
completely evaporates. At that point, the system will have
no additional entropy due to the black hole (Fig. 16).

One can conceptualize a black hole and Hawking radiation
as a quantum mechanical model of qubits. This model repre-
sents the black hole as a collection of qubits. During specific
time intervals, a certain number of qubits are separated from
the black hole with a defined probability distribution. These
separated qubits then form Hawking radiation.

To elaborate further, let’s consider the black hole as an en-
semble of qubits with distinct properties. Due to quantum
effects near the black hole horizon, entangled pairs of qubits
are continuously generated during the evaporation process.
One qubit of the entangled pair falls into the black hole,
while the other escapes and becomes part of the Hawking
radiation. The evaporation process can be visualized as a
continuous production of these entangled qubit pairs.

At each time step, several qubits are released as Hawking
radiation. The black hole’s quantum properties determine
the probability distribution of this emission. As more and
more qubits escape, Hawking radiation accumulates, carry-
ing away information from the black hole’s quantum state.
During this period, as the black hole loses its energy through
radiation, its mass decreases.

The entire system, comprising the black hole and the escap-
ing qubits as Hawking radiation, undergoes complex quan-
tum entanglement. This entanglement is responsible for the
intricate correlations between the black hole quantum states
and the emitted radiation. As evaporation continues, the
entanglement pattern between the qubits evolves, gradually
decreasing the black hole’s entropy.

4.3 Information paradox and spacetime emergence

There is a paradox of information when entangled particles
are emitted from the event horizon, with half of the parti-
cles remaining inside the horizon. On the one hand, the
event horizon should not exhibit any particular region in
space, and we should not witness any firewall at the horizon;
hence, it is expected to be smooth. Consequently, the par-
ticles on both sides of this region must be fully correlated.
On the other hand, when a considerable amount of emission
is exerted, particles located at significant distances must re-
main entangled with their partners inside the event horizon.
According to monogamy principles, they cannot be simulta-
neously correlated with particles in their surroundings (in
4-dimensional spacetime).

To address this issue, several approaches have been pro-
posed. After the complete evaporation of the black hole,
a region with high entropy (essentially equal to the black
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hole’s entropy) remains wholly disconnected from space-
time. The main problem with this approach lies in its
contradiction with thermodynamic principles, Bekenstein-
Hawking entropy, and the area law.

As a result of this choice, there exists a region in space that,
although its size is very close to zero, can have entropy
comparable to the black hole’s most significant amount of
entropy. This is because there is no longer an upper bound
on entropy in a limited area.

As a second approach, the black hole concept could be re-
defined entirely and considered a phenomenon that behaves
like a black hole at a distance. However, this manipulation
of black holes raises significant issues, as it eliminates any
thermofield double to resolve the problem. Despite address-
ing this particular issue, it leads to numerous other problems,
making it an unsuitable approach to understanding black
holes correctly.

The approach adopted in this paper is based on considering
a more general definition of locality, which behaves differ-
ently from the classical notion of locality. It should be noted
that locality is a geometric concept with no specific purpose
in quantum gravity. The main challenge we face is the close
connection between Hawking radiation at a distance from
the black hole and its entangled pairs inside the black hole.
The central question addressed in this article is whether it
is possible, with the help of higher dimensions, to define
novel geometry related to this connection. This is where
locality holds for particles far from the black hole and its
nearby entangled pairs.

Here we consider two aspects: 1. The necessity of corre-
lation between particles for smoothness of a region, and 2.
The vacuum environment itself is subject to a form of von
Neumann entanglement.

Therefore, we can infer that the spacetime continuum is
an emerging subject due to entanglement. This suggests
that the entanglement between particles gives rise to the
smoothness and structure of the spacetime continuum. Fur-
thermore, the entanglement between particles in a vacuum
environment creates a form of von Neumann entanglement,
which can explain the emergence of the spacetime con-
tinuum. This implies that the behavior of particles at the
quantum level can be used to describe the universe’s struc-
ture. As such, this entanglement can be used to understand
the spacetime continuum better.

Consequently, a specific form of space is required when
particles far from the event horizon are entangled with parti-
cles inside them. This additional space extends beyond the
dimensional limitations of spacetime confined by the event
horizon of the black hole. That’s why the membrane that
acts as a barrier for everything in spacetime no longer inter-
feres with this connection. The spacetime model sees this
as tunneling, which, as we know, should extend to higher
dimensions.

One of the most effective approaches to analyzing this per-
spective more comprehensively while considering dimen-
sional connections is Ads/CFT. This method allows for
locality redefinition in QG.
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S. Conclusion: unveiling the quantum
symphony of spacetime

To understand the fundamental nature of our universe,
we journeyed through the intricate tapestry of quantum
entanglement, spacetime emergence, and the enigmatic
interplay between black holes and quantum information.
Our exploration delved deep into theoretical physics,
unveiling a symphony of interconnected threads weaving
spacetime fabric together.

At the heart of our voyage lies the mesmerizing phe-
nomenon of entanglement. This is a dance of particles that
defy distance and time. From the delicate choreography of
particles responding instantaneously to their partners’ ac-
tions to the entwined nature of quantum states transcending
boundaries, entanglement emerges as a fundamental force,
resonating with cosmic harmonies.

This symphony unfolds in spacetime, where reality
is intertwined with entanglement. The emergence of
spacetime from the intricate entanglement reveals a deeper
connection between geometry and quantum information.
Through the lens of AdS/CFT correspondence, we glimpse
the unity between gravitational theories and quantum
fields, offering a glimpse into the holographic nature of our
universe.

Black holes take center stage in a cosmic theater. As we
explored their dynamics and interactions with quantum
information, we uncovered paradoxes that challenge our
understanding of locality, entropy, and information fate.
The process of black hole evaporation, driven by the
complex interplay of entangled qubits, presents an image
of conserving and recovering information that challenges
conventional classical understanding.

Throughout this exploration, we came across the profound
notion of the thermofield double, which links disparate
spacetime domains. The entanglement binding the left and
right Rindler wedges and its correlation with the entan-
glement entropy of black holes points to a fundamental
interplay between information and gravitational dynamics
on a cosmic scale.

As we stand at the crossroads of discovery, tantalizing
future paths beckon us forward. These uncharted territories
promise to expand our understanding even further.

1. Quantum Entanglement in Curved Spacetimes and the
Holographic Perspective: The exploration of quantum
entanglement within curved spacetimes opens doors to
unraveling holographic mysteries. The replica trick and
island effects offer potential avenues to delve deeper into
the holographic nature of information and its intricate
connection with spacetime curvature.

2. Tensor Networks: A Path to Unified Description:
Tensor networks provide a promising framework for
uniting holography, higher dimensions, and spacetime
emergence. We may unlock new ways to describe the
intricate relationships between entanglement, geometry,
and spacetime emergence by harnessing the power of tensor
networks.

As we conclude this exploration, the harmonious interplay
between quantum information and spacetime dynamics
beckons us to further investigate the mysteries beyond. The
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enigma of information paradoxes and the quest to reconcile
quantum mechanics with gravity invite novel avenues of
research. This promises to illuminate the deeper layers of
our universe’s symphony.

In the grand orchestration of reality, we find entanglement,
spacetime, and quantum information harmonizing in
ways that transcend our conventional understanding—a
symphony of spacetime composed of vibrating quantum
entanglement threads.

As we gaze toward the uncharted horizons of theoretical
physics, we stand at the frontier of discovery. We are
well-positioned to unravel the symphonic secrets of the
universe’s most intricate melodies.

We conclude our journey through quantum entanglement,
spacetime emergence, and the dance of black holes and
quantum information. This article offers a glimpse into
the intricate interplay that shapes the cosmic symphony. It
invites readers to contemplate the harmonies that resonate
throughout reality. As we explore and unravel the mysteries,
we are reminded that the universe’s song is still being
written—one note at a time; the future beckons with
promises of more profound insights and new horizons as
we strive to decode the cosmos’ symphony.
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