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Abstract:
In this paper, we study the quantum dynamic of the Klein-Gordon particles/antiparticles with
generalized Deng-Fan potential. We determine the energy spectra and the corresponding wave
function expressed in terms of confluent Heun function using the extended Nikiforov Uvarov
method. The influence of the potential parameters on the energy spectra is discussed in details.
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1. Introduction

Solutions of Klein Gordon equation (KGE) has many useful
applications in the field of nuclear and high energy physics
since it can be used to describe the quantum dynamic of
the system at the relativistic regime [1, 2]. The solutions
of the KGE are restricted to the nature of the potential
models. This implies that the relativistic KGE contains four
vector momentum operator and a scalar rest mass [3, 4].
The restricted potential coupling in the KGE comprising
of the four vector potential V (r) and the space-time scalar
potential S(r). The KGE in three dimensional spaces is

defined as [4–6],{
−
(

i
∂

∂ t
−V (r)

)2

−∇
2 +(S(r)+m0)

}
ψ(r) = 0 (1)

where ∇2 is the Laplacian operator, i∂/∂ t is the energy op-
erator, ψ(r) is the wave function, m0 is the rest mass and the
natural unit notation (h̄ = c = 1) has been used. As it is well
known that the KGE is used in describing spin-zero particles
due to its square terms and in some special cases contain
some known solutions already known in the solutions of
non-relativistic Schrodinger equation. The KGE becomes
very complicated because of the square term in it especially
for some potentials with unequal scalar and vector poten-
tials. In recent time, quit a number of researchers have
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shown interest in finding the solutions of the Schrodinger,
Klein-Gordon and Dirac equations for different varieties
of potential. The most important efforts put by researchers
in obtaining either the exact or approximate solutions of
the wave equation is because of the information that can be
extract of it which describe quantum dynamical system of
the system [7, 8]. Nevertheless, once the solutions of the
system have been obtained then the solutions can be used in
different areas of physics, chemistry and chemical physics
[9–12].
In obtaining the analytical solutions of the Schrodinger-like
equation, many authors in recent years have devoted their
interest in proposing different analytical techniques such as
factorization [13], Nikiforov-Uvarov (NU) [14], asymptotic
iteration method (AIM) [15], supersuymmetric quantum
mechanics [16], exact quantization rule [17], Nikiforov-
Uvarov-functional-analysis (NUFA) method [18, 19] among
others. A great number of research works have been re-
ported on the KGE with different potential models [20–23].
Okorie et al. [24] and his co-workers studied the bound and
scattering state KGE with Mobius square potential. Ikot
et al. [25] studied the bound and scattering state of Deng
Fan potential in higher dimensions. The unequal vector and
scalar Deng Fan potential takes the form [26],

V (r) =V0 +
bV1

(eαr −1)
+

b2V2

(eαr −1)2 ,

S(r) = S0 +
bS1

(eαr −1)
+

b2S2

(eαr −1)2

(2)

where Vi, Si =, i = 0, 1, 2 are the potential parameters,
b = eαre − 1, α is the screening parameter and re is the
equilibrium bond length. Deng Fan in some literature are
usually referred to as Morse-like potential and it can be used
in the study of nucleon motion and for studying interaction
of nuclei. Another usefulness of the Deng Fan potential is
in diatomic molecule spectra analysis [27].
Recently, Nagiyev and Ahmadov [28] studied the motion
of a charged relativistic particle in three dimensions with
noncentral coulomb plus ring-shaped potential, using finite
difference method. Here, the dynamic symmetry group of
the radial part of the equation of motion was obtained. By
using the supersymmetric quantum mechanics formalism,
the modified Klein-Fock-Gordon equation for the Hulthen
plus Yukawa potential was solved [29]. Its relativistic en-
ergy eigenvalues and wave functions were obtained. These
energies were seen to be very sensitive to the potential pa-
rameters for the quantum states considered. With the help
of an improved approximation scheme, the bound state so-
lutions of KGE with Manning-Rosen and a class of Yukawa
potentials were studied [30]. The energy levels obtained
were seen to be sensitive to both potential parameters and
quantum numbers involved. In another development, Ah-
madov and his collaboartors [31] solved the KGE for a
combined Hulthen-Yukawa potential model using the NU
and traditional approaches. The energies obtained were
inversely proportional to the quantum numbers at certain
values of screening parameter.
In this present article, we consider the KGE of Equation 1 in
the presence of the generalized Deng-Fan potential of Equa-

tion 2 and solve it analytically using ENU [32–34] method,
since other known method cannot solve it because of the
higher power of polynomial of order four in the resulting
Schrodinger-like equation. The organization of the paper
is as follows. The solution of the KGE is given in section
2. Results and Discussion are given in section 3. Finally, a
brief conclusion is presented in section 4.

2. Solutions of the Radial KGE via ENU
method

The radial KGE in D-dimensions for unequal vector and
scalar potential is defined as [26],{

d2

dr2 +E2
nl +V 2(r)−S2(r)−m2

0 −2EnlV (r)−2m0S(r)−

(D+2l −1)(D+2l −3)
4r2

}
Rnl(r) = 0

(3)

Substituting Equation (2) into Equation (3) yields{
d2

dr2+E2
nl+

(
V0 +

bV1

(eαr −1)
+

b2V2

(eαr −1)2

)2

−(
S0 +

bS1

(eαr −1)
+

b2S2

(eαr −1)2

)
−m0−

2Enl

(
V0 +

bV1

(eαr −1)
+

b2V2

(eαr −1)2

)
−

2m0

(
S0 +

bS1

(eαr −1)
+

b2S2

(eαr −1)2

)
−

(D+2l −1)(D+2l −3)
4r2

}
Rnl(r) = 0

(4)

Now using the improved Greene-Aldrich approximation
scheme for the centrifugal barrier [35]

1
r2 ≈ α

2
(

c0 +
1

(eαr −1)
+

1
(eαr −1)2

)
, (5)

and using the new coordinate transformation of the form
ξ = (eαr −1), Equation (4) becomes,

d2Rnl(ξ )

dξ 2 +
ξ 2

ξ 2(1+ξ )

dRnl(ξ )

dξ
+

1
ξ 4(1+ξ )2×

(ε2
n ξ

4 +λ1ξ
3 +λ2ξ

2 +λ3ξ +λ4)Rnl(ξ ) = 0
(6)

where

ε
2
n =

1
α2 {E2

nl +V0 −2EnlV0 −m2
0 −S2

0 −2m0S0 −α
2c0γ},

λ1 =
1

α2 {2bV0V1 −2bV1Enl −2bS0S1 −2bm0S1 −α
2
γ},

λ2 =
1

α2 {b2V 2
1 +2b2V0V2 −2Enlb2V2 −b2S2

1 −2b2S0S2−

2m0b2S2 −α
2
γ}

λ3 =
b3

α2 (2V1V2 −2S1S2), λ4 =
b4

α2 (V
2
2 −S2

2),

γ =
(D+2l −1)(D+2l −3)

4
, c0 =

1
12

(7)
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As the name implies, the ENU method [28–30] is an exten-
sion of the standard Nikiforov-Uvarov (NU) [14] and its
NUFA methods [18, 19]. This method was developed and
proposed by Karayer et al. [27] and her co-workers. The
ENU takes the form [32–34],

ψ
′′(ξ )+

τ̃e(ξ )

σe(ξ )
ψ

′(ξ )+
σ̃e(ξ )

σ2
e (ξ )

ψ(ξ ) = 0 (8)

From Equation (6) and Equation (8), we obtain the follow-
ing polynomials

τ̃e = ξ
2, σe(ξ ) = ξ

2(1+ξ )

σ̃e(ξ ) = ε
2
n ξ

4 +λ1ξ
3 +λ2ξ

2 +λ3ξ +λ4
(9)

By using the ENU method, we obtain the πe(ξ ) as follows

πe(ξ ) = ξ
2 +ξ±

(
(1+P− ε

2)ξ 4 +(2+P+Q−λ1)ξ
3+

(Q−λ2 +1)ξ 2 −λ3ξ −λ4

)1/2

(10)

Here, G(ξ ) = Pξ +Q and πe(ξ ) must be a second degree
polynomial and the terms under the square root sign must be
equal to a square of a polynomial of degree two of the form
(A+Bξ +Cξ 2)2. Therefore, the polynomial in Equation
(10) becomes,

πe(ξ ) = ξ
2 +ξ ± (A+Bξ +Cξ

2) (11)

The parameters A, B, C, P, Q are obtained as follows

A =±
√
−λ4, B =− λ3

±2
√
−λ4

,

C =−
(
±
√
−λ4 +

λ3

±2
√
−λ4

)
±√

(λ1 −λ2 +λ3 −λ4 − ε2)

Q =λ1 − ε
2 +2BC−C2

P =−B2 −2AC+2BC−1+(λ1 −λ2)

(12)

The two possible values of G(ξ ) are given as,

G1(ξ ) =(−B2 −2AC+2BC−1+(λ1 −λ2))ξ+

(λ1 − ε
2 +2BC−C2)

(13)

G2(ξ ) =(−B2 −2AC+2BC−1(λ1 −λ2))ξ−
(λ1 − ε

2 +2BC−C2)
(14)

The four corresponding polynomials for πe(ξ ) with dif-
ferent values of G1(ξ ) and G2(ξ ) are obtained as follows:

πe(ξ ) = ξ
2 +ξ +

(
±
√
−λ4+

(
− λ3

±2
√
−λ4

)
ξ+(

−
(
±
√

−λ4 +
λ3

±2
√
−λ4

)√
(λ1 −λ2 +λ3 −λ4 − ε2)

)
ξ

2
)

(15a)

πe(ξ ) = ξ
2 +ξ +

(
±
√
−λ4+

(
− λ3

±2
√
−λ4

)
ξ+(

−
(
±
√

−λ4 +
λ3

±2
√
−λ4

)√
(λ1 −λ2 +λ3 −λ4 − ε2)

)
ξ

2
)

(15b)

πe(ξ ) = ξ
2 +ξ +

(
±
√
−λ4+

(
− λ3

±2
√
−λ4

)
ξ+(

−
(
±
√

−λ4 +
λ3

±2
√
−λ4

)√
(λ1 −λ2 +λ3 −λ4 − ε2)

)
ξ

2
)

(15c)

πe(ξ ) = ξ
2 +ξ +

(
±
√
−λ4+

(
− λ3

±2
√
−λ4

)
ξ+(

−
(
±
√

−λ4 +
λ3

±2
√
−λ4

)√
(λ1 −λ2 +λ3 −λ4 − ε2)

)
ξ

2
)

(15d)

The following four distinct choices ++, –, +-, -+ had been
used in obtaining the four values of πe(ξ ) polynomials. The
polynomials h(ξ ), τ(ξ ) and hn(ξ ) are obtained as follows:

h(ξ ) = (p+2±C)ξ +(Q+1±B) (16)

τ(ξ ) = 6ξ
2 +2ξ ±2(A+Bξ +Cξ

2) (17)

hn(ξ )=−n−3nξ ∓n(B+2Cξ )− n(n−1)
6

−n(n−1)ξ +Cn

(18)
with Cn being the integration constant.
Now equating equations h(ξ ) = hn(ξ ) yields the following
equation,

(p+2±C)ξ +(Q+1±B) =−n−3nξ ∓n(B+2Cξ )−
n(n−1)

6
−n(n−1)ξ +Cn

(19)

By comparing the coefficients of “ξ ” and constant in Equa-
tion (19) yield the eigenvalue equation and the integration
constant as follows,

P+2+3n+n(n−1) = (2n+2)C (20)

Q+1+B =−n− n(n−1)
6

−nB+Cn (21)

where the positive (++) option is used in obtaining Equa-
tions (20) and (21), respectively. Solving Equation (20)
explicitly gives the energy eignvalues for the relativistic
spinless particles with generalized Deng-Fan potential in
D-dimensions as,

{E2
nl +V 2

0 −2EnlV0 −m2
0 −S2

0 −2m0S0 −α
2c0γ}=

α
2(−λ4 +2λ3 +λ1 −λ2)

−α
2
[
−
√

−λ4 +
λ3

2
√
−λ4

+
1
2
×

(λ1 −λ2 +3n+n(n−1)− ( λ3

2
√

−λ4
)2 −1

n+1+
√
−λ4 +( λ5

2
√

−λ4
)

)]2

(22)

The four eigen functions can be determine for all values of
πe1 , πe2 , πe3 and πe4 using Equations (15)a-(15)d. However,
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Figure 1. Variation of energies spectra with principal quantum number n for various dimensions.

we will determine one which is applicable to others. We
find that the function ϕ(ξ ) is obtained as,

ϕe(ξ ) = z(
1
2+A+B)(1− z)

1
2 (A+B+C)e−

A
ξ (23)

Using the condition h(ξ ) = hn(ξ ), we have that

χ
′′
n (ξ )+

[
1+

1+2A+2B
ξ

+
2(A+B+C)

1−ξ

]
ξ
′(ξ )+[

P+Q+B+2C− 1
2

ξ
+

P+Q+B+2C− 1
2

1−ξ

]
χ(ξ ) = 0

(24)

The confluent Heun differential equation (CHDE) which is
a special case of Heun differential equation is defined as
[36, 37],

χ
′′
n (ξ )+

[
α+

β +1
ξ

+
γ +1
ξ −1

]
χ
′(ξ )+

[
µ

ξ
+

ν

ξ −1

]
χ(ξ )= 0

(25)
By comparing Equations (24) and (25), the parameters
α, β , γ, δ are obtained as follows,

α =1, β = 2(A+B), γ +1 =−2(A+B+C)

µ =−ν =−(P+Q+B+2C− 1
2
)

(26)

The solution of Confluent Heun differential equation of
Equation (25) can only be a polynomial Hc(a,b,γ,δ ,x) of
order n if and only if µ + ν = −nα [36, 37], where δ =

µ+ν−α/2(β +γ+2) and η =α/2(β +1)−µ−1/2(β +
γ +βγ). Thus the solution of Equation (24) becomes,

χ(ξ ) = Heun(α,β ,γ,δ ,η ,ξ ) (27)

Thus, the total wave function for the Klein Gordon equation
becomes

ψnl(r) =Nnr−(D−1
2 )(e−αr)(

1
2+A+B)(1− e−αr)

1
2−(A+B+C)

e−Aeαr
Hc(α,β ,γ,δ ,η ,r)

(28)

where Nn is the normalization constant. The normalization
can be determined and details analysis on how to evaluate
the normalization can be seen in Refs. [36, 37].

3. Results and discussion
In this work, we considered the following parameters α =
0.4, V0 = 1, V1 = 0.8, V2 = 0.7; m0 = 1, S0 = S1 = S2 = 0.1,
b = 0.1 in our analysis.
In Figs. 1-11, we plot the variations of the energy spectrum
of the KG particles versus the quantum numbers and po-
tential parameters. The left panel represents the negative
energy (particles) and the right panel is the positive energy
(antiparticles) for different dimensions. Fig. 1 shows the
plot of the energy spectrum of the KG particles/antiparticles
versus the principal quantum number n. It can be seen in
Fig. 1 that the negative energy spectrum first started to
decrease and later started increasing as the quantum number

Figure 2. Variation of energies spectra with angular momentum quantum number l for various dimensions.
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Figure 3. Variation of energies spectra with screening parameter α for various dimensions.

Figure 4. Variation of energies spectra with potential parameter b for various dimensions.

Figure 5. Variation of energies spectra with potential parameter V0 for various dimensions.

Figure 6. Variation of energies spectra with potential parameter V1 for various dimensions.
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Figure 7. Variation of energies spectra with potential parameter V2 for various dimensions.

Figure 8. Variation of energies spectra with rest mass m0 for various dimensions.

Figure 9. Variation of energies spectra with potential parameter S0 for various dimensions.

Figure 10. Variation of energies spectra with potential parameter S1 for various dimensions.
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Figure 11. Variation of energies spectra with potential parameter S2 for various dimensions.

is increased while the positive energy first increases and
later decreases as the quantum number n is increased for
different dimensions D = 3,4,5 and 6. The variation of
the energy spectra versus the orbital angular momentum
quantum number l is illustrated in Fig. 2. It is observed
in Fig. 2 that the energy of the particles decreases as the
orbital quantum number is increased while the energy of
the antiparticles increases as the orbital quantum number
is increased for different dimensions. The variations of
the energy spectra against the screening parameter are dis-
played in Fig. 3 for the particles and antiparticles. As seen
in Fig. 3, the energy of the particle increases to a peaked
value and started decreasing as the screening parameter is
increased for different dimensions while the energy spec-
trum of the antiparticle increased as the screening parameter

is increased for different dimensions. The behaviour of the
energy spectra of the KG particles/antiparticles versus the
potential parameter b are shown in Fig. 4. It is seen clearly
in Fig. 4 that the energy spectrum of the KG particle in-
creases to a peaked value of 0.4 MeV and become bounded
as the potential parameter b is increased for different dimen-
sions. Similarly, the energy spectrum of the antiparticles
first decreases to a minimum value of 0.5 MeV and started
increases as the potential parameter b is further increased.
The plots of the energy spectra versus potential parameter
V0 are shown in Fig. 5. The variations of the energy spectra
are linearly and that of the particles gives negative energy
while the antiparticles spectrum are positive as illustrated in
Fig. 5 for different dimensions. Fig. 6 shows the variation
of the energy spectra of the Klein-Gordon particles/antipar-

Table 1. Energy spectrum of Deng-Fan potential at different quantum states and dimensions.

n l D = 3 D = 4 D = 5 D = 6
0 0 1.38919 1.39647 1.40842 1.42480

1 0 1.89791 1.90300 1.91142 1.92309
1 1.91142 1.92309 1.93789 1.95570

0 1.79694 1.80490 1.81476 1.82836
2 1 1.80490 1.82836 1.84554 1.86609

2 1.82836 1.86609 1.88979 1.91639

3

0 1.41100 1.90300 1.91142 1.92309
1 1.44099 1.92309 1.93789 1.95570
2 1.49572 1.95570 1.97634 1.99967
3 1.56831 1.99967 2.02551 2.05368

4

0 0.990227 0.990236 0.990253 0.990278
1 0.990253 0.990278 0.990313 0.990361
2 0.990313 0.990361 0.990428 0.990521
3 0.990428 0.990521 0.990660 0.990885
4 0.990660 0.990885 0.991331 0.992940

5

0 0.996064 0.996077 0.996099 0.996131
1 0.996099 0.996131 0.996172 0.996225
2 0.996172 0.996225 0.996290 0.996370
3 0.996290 0.996370 0.996466 0.996584
4 0.996466 0.996584 0.996726 0.996901
5 0.996726 0.996901 0.997119 0.997394
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ticles versus the potential parameter V1. The energy level
of the particles is bounded for small values of the potential
parameter V1 and becomes positive energy as the potential
parameter is further increased and the energy spectrum of
the antiparticles decreases as the potential parameter is in-
creased as shown in Fig. 6. The behaviour of the energy
spectra of the Klein-Gordon particles/antiparticles against
the potential parameter V2 are displayed in Fig. 7. It is
observed here that the energy spectrum of the particles
increases as the potential parameter is increased and the en-
ergy spectrum for the antiparticles decreases as the potential
parameter is increased as shown in Fig. 7. The variation of
the energy spectra of the KG particles/antiparticles versus
the rest mass of the particles are displayed in Fig. 8. The
energy spectrum for the KG particles varied linearly and
later decreases as the rest mass is increased while the energy
spectrum of the KG antiparticles also varied linearly and
then increases as the rest mass of the particles is increased.
Fig. 9 shows the variation of the energy spectra versus
the scalar potential parameter S0. The energy spectrum of
the particles decreases while the energy of the antiparticles
decreases as the potential parameter S0 is increased for dif-
ferent dimensions. The energy spectra of the KG particles
versus potential parameters S1 and S2 are illustrated in Figs.
10-11. In each case, the energy of the particles decreases
and the energy of antiparticles increases as the potential
parameters are increased.
It has been reported that the bound state energies in D-
dimensions are invariant under a transformation of an in-
crease in the higher dimension by two (D→D+2) and a de-
crease in the rotational quantum number by one (l → l −1)
[9] which implies that there exists an inter-dimensional
degeneracy symmetry for the D-dimensional relativistic en-
ergy spectra of the Deng–Fan potential. Here, we show
the energy spectrum of the KG particles in Table 1. We
reported bound state energies of the Deng–Fan potential
at different quantum states as seen presented in Tables 1
at different dimensions. The energy spectrum of the KG
particles increases with increase in the principal and orbital
momentum quantum numbers for different dimensions.

4. Conclusion
In this work, we obtained the approximate bound state
solution of the KGE for generalized Deng potential in
higher dimensions using the ENU method. The coordinate
transformation carried out led to second order differential
with a polynomial of at most fourth order and the resulting
KGE was solved using the ENU to obtain the energy level
for the system. Under the conditions h(ξ ) = hn(ξ ), the
hypergeometric equation of Equation (8) was transformed
into Heun differential equation and special case of the
Heun differential equation called Confluent differential
equation was obtained and from there, the wave function
was obtained. One can see that the wave function of the
KGE with the Deng Fan potential yields confluent Heun
function.
The behaviour of the bound state energies of the KG
particles versus quantum numbers and all the potential
parameters of the Deng-Fan are illustrated in Figs. 1-11. It

has been clearly shown that the bound state energies of the
KG particles are greatly affected by the Deng-Fan potential
parameters and quantum states considered. Also, there is an
inter-dimensional degeneracy symmetry that occurs in the
various bound state energy at higher dimensions, as shown
in Table 1. The obtained wave functions are expressed in
terms in terms of confluent Heun function. It can be con-
cluded that the ENU is an efficient and power method can be
used in findings solutions to the Schrodinger, Klein-Gordon
and Dirac equations with higher polynomials of at most
power four. These solutions can find many applications in
high energy physics, nuclear physics and molecular physics.
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special solutions of biconfluent and triconfluent
Heun equations in elementary functions by ex-
tended Nikiforov–Uvarov method.”. Reports on
Mathematical Physics, 76:271–281, 2015. DOI:
https://doi.org/10.1016/S0034-4877(15)00039-7.

2251-7227[https://dx.doi.org/10.57647/j.jtap.2024.1802.18]

https://doi.org/10.1007/978-94-007-1917-0
https://doi.org/10.1007/s00601-012-0434-y
https://doi.org/10.1007/s12648-013-0336-y
https://doi.org/10.1140/epjd/s10053-021-00059-x
https://doi.org/10.1140/epjd/s10053-021-00059-x
https://doi.org/10.1007/s00601-021-01693-2
https://doi.org/10.1007/s00601-021-01693-2
https://doi.org/10.1088/0253-6102/57/3/02
https://doi.org/10.1142/S0217751X19500891
https://doi.org/10.1155/2021/8830063
https://doi.org/10.1016/j.physleta.2020.126372
https://doi.org/10.1016/j.physleta.2019.06.043
https://doi.org/10.1063/1.4922601
https://doi.org/10.1140/epjp/s13360-022-03590-x
https://doi.org/10.1088/1402-4896/acf20f
https://doi.org/10.1103/PhysRevA.14.2363
https://doi.org/10.1016/S0034-4877(15)00039-7
https://dx.doi.org/10.57647/j.jtap.2024.1802.18

	Introduction
	Solutions of the Radial KGE via ENU method
	Results and discussion
	Conclusion

