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Abstract:
In this work, zinc oxide nanopowders (ZnO-NPs) were synthesized by atmospheric pressure plasma jet and
continuous laser diode (CLD) techniques. ZrO2 powder were made up with the ZnO nanopowders to study
its effect on ZnO properties. The study initiated with the utilization of the atmospheric pressure plasma jet
technique recognized for its capability to generate nanoparticles using cold plasma, ensuring high purity and
controlled growth. Following this, CLD techniques were employed to fine-tune the structural attributes of the
ZnO-ZrO2 nanocomposite. The average particle size and morphology were examined by FE-SEM, and the
crystallinity was estimated by XRD analysis and the spectroscopic properties of the powder were measured
by using FTIR spectroscopy. XRD studies confirm that zinc oxide has a high degree of crystallinity. The
particle size of ZnO was found to be about 18 nm. The purpose of this study involved the investigation of
ZnO nanoparticle characteristics. The outcome considered a new synthesis of ZnO nanopowders that may be
employed in many scientific applications using continuous laser diode to increase the oxidization. This is
represented as a novel method and also a simple and cost effective one.

Keywords: ZnO nanopowders; Atmospheric pressure plasma jet; Continuous laser diode, FTIR spectroscopy

1. Introduction

Nanotechnology, with its ability to manipulate matter at the
atomic and molecular scale, continues to develop materials
science, offering new roads for advanced materials with
different properties [1]. Zinc oxide (ZnO) nanoparticles
have emerged as a focal point in nanomaterial research due
to their unique properties and adaptable applications across
various scientific fields [2]. The synthesis and modification
of ZnO nanoparticles offer opportunities for unprecedented
advancements in material science and technology [3]. Pure
ZnO nanoparticles have notable intrinsic semiconductor
characteristics, exceptional transparency, and remarkable
photostability [4]. These properties make them invaluable in
numerous applications, covering optoelectronics, catalysis,
sensing, and biomedical fields [5]. The ability to harness

ultraviolet (UV) light and exhibit photocatalytic activity
positions pure ZnO nanoparticles as promising candidates
for solar energy harvesting [6], environmental cleaning, and
antibacterial applications [7].
Doping ZnO nanoparticles with various elements introduces
a tailored approach to fine-tune their properties [8]. This
incorporation of dopants such as metal ions, transition met-
als, or other semiconductors offers control over electronic,
optical, and structural attributes, expanding the range of po-
tential applications [9]. Among the diverse dopants, empha-
sis is often placed on elements like aluminum (Al), gallium
(Ga), and zirconia (ZrO2), each imparting unique function-
alities to the ZnO matrix [10]. Synthesizing ZnO nanoparti-
cles demands precision, and various techniques have been
developed to control size, shape, and composition [11].
Traditional methods include sol-gel, hydrothermal, and pre-
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cipitation methods, while more recent approaches employ
advanced techniques such as microwave-assisted synthesis
and atmospheric pressure plasma jet [12]. Therefore, the
preparation method always determines the final properties
of the nanoparticles [13].
In nanomaterials, the incorporation of zirconia (ZrO2) into
zinc oxide (ZnO) nanoparticles is a powerful strategy for en-
gineering enhanced functionalities and expanding the scope
of applications [14]. Zirconia, characterized by its high
thermal stability and mechanical properties, imparts unique
characteristics to ZnO nanoparticles when intentionally in-
troduced as a dopant. This intentional addition serves as a
precision engineering approach to tailor the structural, mor-
phological, and optical properties of ZnO, offering unique
control over the material’s behavior [15].
The semiconducting nature and excellent optical properties
of ZnO nanoparticles, both pure and doped, make them
candidates for the development of high-performance op-
toelectronic devices [16]. Also, engineered ZnO nanopar-
ticles find application in gas sensors, biosensors, and en-
vironmental monitoring devices. Surface-modified ZnO
nanoparticles, often doped for specific functionalities, ex-
hibit biocompatibility and can be employed in drug delivery
systems, imaging agents, and cancer therapy [17]. ZnO
nanoparticles, when doped with suitable materials, become
efficient catalysts for a range of chemical reactions, pro-
viding opportunities for sustainable and environmentally
friendly processes [18]. Also, the incorporation of ZrO2
can enhance the mechanical properties and thermal stability
of ZnO [19].
This study explores the integration of zirconia (ZrO2) ad-
ditives into zinc oxide (ZnO) nanopowders, synthesized
through atmospheric pressure plasma jet techniques and sub-
sequently refined using continuous laser diode treatments.
The investigation aims to unravel the nuanced impact of
ZrO2 on the structural, morphological, and optical proper-
ties of the resulting anocomposites, with a particular focus
on elucidating potential applications in diverse technolog-
ical domains. The results are expected to advance our un-
derstanding of anocomposites design and foster innovative
applications across multiple disciplines.

2. Experimental setup

zinc oxide nanopowders were synthesized through an at-
mospheric plasma jet system. The cathode, constructed

from stainless steel with an inner diameter of 0.5 mm and a
length of 8 cm, was positioned 2 cm away from the anode
(zinc sheet). The anode, measuring 5 cm in width, 10 cm
in length, and with a 2 cm2 immersion area, was securely
fixed with a 2 mm gap between the tube end and the liquid
surface. Argon gas, flowing through the tube at a rate of
65 mL/min and regulated by a glass flow meter, served as
the discharge gas. The chemical reaction took place in a
glass beaker, with the polished Zn anode immersed in an
electrolyte containing 1 g/L NaOH, 1.3 g/L HNO3, and 1
g/L glucose (fructose) as stabilizers to prevent uncontrolled
particle growth and agglomeration. The discharge initiation
involved applying a high voltage of 3 kV with a frequency
of 40 KHz using an AC power supply while maintaining a
constant discharge current within the range of 5 – 10 mA.
The electrolyte exposure varied in duration (15, 30, and
45 minutes), and the resulting sediments underwent cen-
trifugation, washing with deionized water and ethanol, and
drying at 60 ◦C for 2 hours. Subsequently, ZrO2 was added
in different proportions (10% ZrO2 + 90% ZnO, 20% ZrO2
+ 80% ZnO, and 50% ZrO2 + 50% ZnO). The compositions
underwent annealing using a continuous laser diode system
with a laser power of 1500 mW and a wavelength of 405
nm, controlled by software. This diode laser was used to
improve the oxidization of the prepared nanoparticles. The
prepared nanoparticles were studied by X-ray diffraction,
FE-SEM, and FTIR spectroscopy to explore changes in
crystalline structure, morphology, and molecular structure
by introducing the ZrO2 into the system of the prepared
nanoparticles. Fig. 1 shows the experimental setup.

3. Results and discussion

Fig. 2 shows the X-ray diffraction analysis of the ZnO-
ZrO2 nanocomposite within the range of 10° to 80°. The
diffraction patterns displayed numerous diffraction peaks
consistent with the JCPDS card 96-901-1663. The three
noticeable diffraction lines located at Bragg’s angles (2θ )
correspond to Miller indices (hkl) of 31.88° (100), 34.49°
(002), and 36.5125° (101), corresponding to hexagonal ZnO
crystal. Concurrently, minor diffraction peaks emerged, cor-
responding to the cubic shape of ZrO2 crystallites in the
JCPDS card 96-152-2144. These peaks intensified with
increasing ZrO2 content. The positional, intensity, and
broadening characteristics of these peaks provided insights
into the strain, composition, and crystallite size of the ZnO-

Figure 1. Experimental setup.
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ZrO2 particles. Utilizing the Scherrer formula, the average
crystallite size for ZnO nanocrystallites was determined to
be 16.2 nm, while for ZrO2 crystals, it was 12.5 nm. Inter-
estingly, ZrO2 crystallites exhibited a smaller size than ZnO
nanocrystallites, possibly attributable to their lower concen-
tration. The narrower Bragg’s diffraction lines suggested
the highly crystalline nature of ZnO nanocrystallites rela-
tive to ZrO2. Additionally, the presence of noisy diffraction
spectra hinted at the existence of some amorphous content
in the sample. Notably, a negative shift in the 2θ value was
observed, possibly indicating the introduction of strain in
the ZnO crystallite lattice due to the intrusion of zirconium
cations substituting into the lattice.
Fig. 3 depicts the compositional morphology, as analyzed
through field emission scanning electron microscopy (FE-
SEM). The structure exhibits irregular formations around 50
nm diameter interconnected to constitute the overall entity.
The impact of introducing ZrO2 to ZnO powders is evident.
Notably, at a ZrO2-ZnO ratio of 10% ZrO2 + 90% ZnO, the
surface displays small white particles attached to the surface
and structural vacancies, as illustrated in Fig. 2(a). As the

ZrO2 ratio increases from 20% to 50%, the accumulation
dots increase while the vacancies diminish, as observed in
Figs. 2(b, c). This additive has the potential to augment the
hardness of ZnO nanostructures by mitigating the presence
of vacancies. The emergence of two-particle modes aligns
with the result of two distinct phases, as exposed in the
XRD test.
In the context of ZnO-ZrO2 nanoparticles prepared via
plasma jet, FTIR analysis was employed to elucidate the
compositional bond configurations within the 400 to 4000
cm−1 spectral range. In the initial configuration (10% ZrO2
+ 90% ZnO), a strong and broad absorption band at approx-
imately 532.84 cm−1 was identified, corresponding to the
Zn-O bond. Broad absorption bands were also evident at
3446.49 and 1635.42 cm−1, indicative of O-H stretching
and bending modes, respectively. Upon transitioning to
a 20% ZrO2 ratio, distinctive absorption bands at 749.82
cm−1 and 763.10 cm−1 emerged, attributed to the Zr-O
bond. These bands intensified with a further increase in the
ZrO2 ratio to 50%. Simultaneously, Zn-O absorption bands
at 546.13 cm−1 (80% ZrO2) and 537.27 cm−1 (50% ZrO2)

Figure 2. The XRD patterns of ZnO: ZrO2 nanopowder at different ratios.
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displayed a reduction in intensity. Notably, an additional
band around 1369 cm−1 surfaced, indicative of an inter-
mediate phase of metal hydroxide. These FTIR findings
provide detailed insights into the evolving bond configura-
tions within the ZnO-ZrO2 composite nanoparticle under
varying ratios.

4. Conclusion

In conclusion, this study contributes to the evolving
landscape of nanomaterials by exploring the effects of
ZrO2 additives in ZnO nanopowders. The outcomes of
this study hold promise for diverse applications, including

advanced photocatalysis for environmental remediation,
optoelectronic devices such as sensors and solar cells,
and biomedical applications. The tailored properties of
the ZnO-ZrO2 nanocomposite are poised to unlock new
possibilities in materials engineering and technology
development.
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Figure 3. FE-SEM image measurements of the fabricated ZnO-ZrO2 nano composited A) 10% ZrO2 + 90% ZnO, B) 20%
ZrO2 + 80% ZnO and, C) 50% ZrO2 + 50% ZnO.
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Figure 4. FTIR spectrum of ZnO with different ZrO2 A) 10% ZrO2 + 90% ZnO ,B) 20% ZrO2 + 80% ZnO and, C) 50%
ZrO2 + 50% ZnO.

Table 1. XRD parameter of ZnO with different ZrO2 concentration.

Sample 2θ (Deg.) FWHM (Deg.) dhkl Exp.(Å) C.S (nm) Aver. C.S (nm) hkl Phase

A 28.4187 0.6563 3.1381 12.5 12.5 (11-1) Cubic. ZrO2

32.0500 0.6125 2.7904 13.5 16.2 (100) Hex. ZnO

34.6750 0.4375 2.5849 19.0 (002) Hex. ZnO

36.5125 0.5251 2.4589 15.9 (101) Hex. ZnO

B 28.4625 0.5450 3.1334 15.0 15.0 (11-1) Cubic. ZrO2

32.0063 0.6562 2.7941 12.6 14.4 (100) Hex. ZnO

34.6312 0.5250 2.5881 15.9 (002) Hex. ZnO

36.4688 0.5688 2.4618 14.7 (101) Hex. ZnO

C 28.3750 0.5288 3.1429 15.5 15.5 (11-1) Cubic. ZrO2

31.9187 0.8313 2.8015 9.9 12.7 (100) Hex. ZnO

34.5438 0.5687 2.5944 14.6 (002) Hex. ZnO

36.4688 0.6126 2.4618 13.7 (101) Hex. ZnO
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Table 2. Bonds in FTIR spectra of ZnO with different ZrO2
concentration.

Band Type A B C

O-H stretch 3446.49 3433.21 3446.49

CH2 2923.99 2923.99 2923.99

H2O 1635.42 1626.57 1626.57

M-OH 1369.74 1365.31 1365.31

Zr-O —— 749.82 763.10

Zn-O 532.84 546.13 537.27
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