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Abstract:

In this work, copper oxide (CuO) thin films were prepared using the pulsed laser deposition (PLD) technique.
The effect of laser beam energy and pulse number on the structural, morphological, and topographical
characteristics was investigated. X-ray diffraction (XRD) results indicate the presence of characteristic peaks
for CuO with a crystalline growth orientation at the (111) plane and an increase in crystallite size (D) when
the laser power and number of pulses increase. EDX results indicate the presence of distinct energy peaks
for the copper and oxygen elements that form CuO, and the weight percentage (wt.%) of Cu increases with
increasing laser energy. The atomic force microscope (AFM) results showed the dependence of the roughness
on the laser energy used, as the roughness decreased from 31.18 to 20.89 nm when the energy increased from
700 to 820 mlJ. It increases with the increase in the number of laser pulses at the same energy (700 mlJ). Field
emission scanning electron microscopy (FESEM) confirms the presence of sub-spherical nanoparticles, and

increasing laser energy and pulses increases nanoparticle size.
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1. Introduction

Thin films, seen as two-dimensional (2D) systems, hold
significant importance in various fields and possess distinct
features that vary from those exhibited by bulk materials [1].
Innovations in the fields of magnetic recording media, elec-
tronic semiconductor devices, gas sensing, light-emitting
diodes, optical coatings, photo-detector, hard coatings on
cutting tools, and energy generation and storage batteries
were all made possible by developments in thin film depo-
sition technique [2]. The chemical and physical properties
of a material’s bulk can be affected by its nanostructure,
defined as having at least one dimension smaller than 100
nm [3]. As a result, there has been a rise in the fabrication
of nanoscale structures worldwide, which are then used
as the foundation for nanotechnology. The nanoparticles,
nanobeams, nanowires, nanoribbons, nanotubes, nanoplates,
and components of nanomachines are all examples of struc-
tures on the nanoscale [4]. Nanoparticles are particles with
nanometer-scale dimensions (1 — 100 nm). It has better

colloidal stability and optical, chemical, electrical, thermal,
and mechanical properties than larger particles because of
their small size and high surface area [5].

The term “metal oxide” (MO) refers to a group of miner-
als in which one or more metal ions have formed covalent
bonds with oxygen ions (O>~). Minerals that include hy-
droxides are also classified as oxides. The most widely used
metal oxides include zinc oxide, titanium dioxide, iron ox-
ide, nickel oxide, selenium oxide, silicon oxide, magnesium
oxide, manganese oxide, and copper oxide [6]. Benefits of
MOs include their simplicity in preparation, high stability,
shape, and porosity, amenability to engineering to the de-
sired size, lack of swelling variation, adaptability to both
hydrophilic and hydrophobic systems, and fast sensing and
detection of another chemical material [7].

In contrast, copper oxide is one of the most studied nano-
materials because it has a direct band gap of 1.2 —-2.0 eV,
an intrinsic p-type behavior, excellent electrochemical prop-
erties, and can be fabricated inexpensively. Cuprous oxide
(Cu,0) and CuO are the two most prevalent polymorphs
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of CuO compounds [7]. CuO nanoparticles have been uti-
lized in a wide range of applications, including magnetic
storage media, nanosensors, near-infrared filters, photocatal-
ysis, antibacterial agents, and supercapacitors [8]. In the
same vein, various techniques have been employed to fab-
ricate CuO nanoparticles, such as green synthesis, sol-gel
method, laser ablation, microwave-assisted, and chemical
precipitation methods [9]. Pulsed laser deposition (PLD)
is commonly employed to enhance oxide films due to its
advantageous ability to preserve stoichiometry in complex
materials. However, a limited number of studies have inves-
tigated the growth of CuO using this technique. Neverthe-
less, it has been observed that the PLD of CuO can produce
films with improved properties [10].

The Deposition of thin films can be accomplished through
various physical and chemical techniques [11-15]; however,
tpulsed laser deposition possesses features that distinguish
it from the others. A. A. Menazea et al., prepared thin
copper oxide films using the PLD technique. The optical,
structural, and morphological properties were studied, but
the effect of changing the laser parameters (laser power and
number of pulses) on the film thickness was not studied
[10]. Rudrashish et al. used the PLD technique to prepare
thin films of CuyO/CuO and then studied their application
inphotocatalysis. The authors succeeded in preparing thin
films with a uniform shape. Still, the effect of preparing
thin films of different thicknesses by increasing or decreas-
ing the number of laser pulses or their energy has not been
studied [16]. Majed H. Dwech et al. studied the effect of
increasing the number of laser pulses on the thickness of the
thin film of CuO prepared using the PLD technique. Only
the optical properties were studied without investigating the
increase in the number of pulses on the surface roughness,
nanoparticle shape, and structure properties. Also, the effect
of increasing the laser beam energy on the properties of the
oxide has not been studied. This work aims to prepare CuO
thin films by an inexpensive PLD method. The effect of
increasing the number of pulses from 600 to 1000 pulses,
and increasing the energy change from 700 to 820 mJ, on
the structural, morphological, and topographical properties
of the CuO thin film was studied.

2. Experimental work and characterization

A high-purity CuO powder, with a purity of 99.99%, is sub-
jected to a pressing process utilizing a pressure of 15 tons.
This process results in formaing a target with a diameter
of 2 cm and a thickness of 0.5 cm. The PLD technique
was employed to produce thin films of CuO on glass sub-
strates at room temperature, resulting in a film thickness
of around 100 nm. The film deposition process was con-
ducted within a vacuum chamber that had been evacuated
to a pressure of 2.2 x 1072 millitorr. The chamber was
equipped with substrate holders and a target. The substrate
was positioned close to the target, with its surface oriented
parallelly. To enhance the quality of films, it is imperative
to make modifications to the deposition procedure, which
include adjustments to both the target-substrate positioning
and the target rotation. The separation between the substrate
and the target is 2 cm, whereas the separation between the
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laser source and the target is 5 cm. The system operates
at a temperature of 28 °C, a wavelength of 1064 nm, and a
repetition frequency of 6 Hz.

At room temperature, a Dandong Haoyuan DX-2700B X-
ray diffractometer with a Cu-K radiation source was used
to study the structures of the crystals. A diffraction angle
(20) range of 10° - 80° and X-ray wavelength of 1.54056
A. An atomic force microscope (AFM, NaioAFM, Nano-
surf; Switzerland) was used to measure the roughness and
average diameter of CuO thin films. The Field Emission
Scanning Electron Microscope (FESEM; MIRA3 model-
TE-SCAN) was used to determine the surface morphology
of CuO thin films.

3. Results and discussion

3.1 X-ray diffraction (XRD) analysis

Fig. 1 shows the XRD spectra of CuO thin film deposited
on glass substrates by PLD technique at (1000) pulses with
energy of (700 and 820 mJ). The results indicate diffrac-
tion peaks of different intensities and widths at different
diffraction angles. These peaks correspond to the planes
(110), (-111), (111), (20-2), (020), (202), (-113), (31-1),
(220), (311), and (22-2). which correspond to JCPDS card
No. 96-101-1195 of the CuO monoclinic phase [16]. The
dominant diffraction peaks at energy 700 and 820 mJ were
at (111) and (-111). Increasing the energy of the pulsed
laser contributes to an increase in the diffraction intensity
of the incident X-rays due to the increase in the thickness of
the thin film (number of nanoparticles bonded to each other
due to surface bonding). This high crystallinity can be used
in gas-sensing applications [17].

The results did not show the presence of any additional im-
purities in the prepared sample, thus enhancing the purity of
the thin films. The present results agree with the results of
references [18, 19]. Table 1 shows the XRD parameters of
CuO thin film at (1000) pulses with energy of (700 and 820
mJ). Further investigation on crystallinity was conducted.
The crystallite size (D) of the deposited CuO thin films was
estimated using Scherrer’s formula [20].
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where 6 is the diffraction angle, A is the wavelength of XRD
spectra, and 3 is the full width at half maximum (FWHM)
of the peaks. According to the data shown in Table 1, it can
be concluded that the average crystal size across all planes
was determined to be 14.854 nm at 700 mJ and 18.30 nm
at 820 mJ. This increase in crystalline size as a result of
the increase in energy can be attributed to the increase in
temperature, plasma, and the size of the extracted particles,
and thus the increase in the binding potential of small atoms
with each other.

Fig. 2 shows the XRD pattern of CuO thin film that was
prepared at (700) mJ with pulses of 600 and 1000. The
results also confirm the presence of characteristic peaks
corresponding to the planes (110), (-111), (111), (2-20),
(020), (202), (-113), (13-1), (220), (311), and (22-2), which
correspond to data of JCPDS card No. 96-101-1195 of the
CuO monoclinic phase. As shown in Table 2, the results
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Figure 1. XRD patterns for CuO deposited at 1000 pulses
and energies of 700 and 820 mJ.

indicate an increase in crystal size from 10.21 nm at 600
pulses to 14.85 nm at 1000 pulses. This increase can be
attributed to the increased concentrations of CuO ions. As a
result of this increase, different surface forces (electrostatic
ionic forces, Vander Waals forces, structural forces, and
static forces) can contribute to the aggregation of ions with
each other and, thus, an increase in crystal size [21].

3.2 EDX analysis results

The chemical composition of the CuO thin film was con-
firmed by EDX analysis, as shown in Fig. 3(a) and (b). The
results show the presence of sharp energy peaks for the O
and Cu elements representing the CuO nanostructure. The
purity of the manufactured films was excellent, and they
did not contain any residues (except Si, Ca, Mg, and Na
elements that belong to the constituent elements of the glass
substrate). The energy peak at 2.2 keV is attributed to the
gold layer that the samples were coated with before testing.
The present results support the XRD results and are largely
in agreement with the results of reference [22].

Table 3 presents each condition’s weight percentage (Wt.%)
of the O and Cu elements. The results confirm a significant
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Figure 2. XRD patterns of CuO deposited with 700 mJ at
600 and 1000 pulses.

increase in the Wt.% of Cu in the thin film when the pulsed
laser energy is increased from 700 to 820 mJ. This could be
due to the increase in the energy of the laser photons that
release ions from the surface of the metal target.

3.3 Topographical analysis

The films’ surface topography and surface roughness were
studied using the AFM technique. Fig. 4 displays AFM
topography images of CuO thin films deposited on glass
substrates prepared by the PLD technique. Table 4 displays
the measured roughness characteristics for the CuO films,
which correspond to varying laser pulse energies of 700 and
820 mJ and pulse counts of 1000 and 600. The film showed
a homogeneous distribution, and the grain shapes were al-
most uniform. The results indicate an increase in surface
roughness from 26.58 nm to 31.18 nm due to increasing the
number of pulses from 600 to 1000. In the same context,
the results showed the dependence of roughness on the laser
energy used, as the roughness decreased from 31.18 nm to

Table 1. Structure parameters of CuO deposited at 1000 pulses and energies of 700 and 820 mJ.

Laser energy (mJ) 260 (deg.) FWHM (deg.) dug Exp.(A) D (nm) dyy Std.(A)  hkl
700 38.8897 0.5019 2.3139 16.8 2.3212 -111
820 38.874 0.429 2.3148 19.6 2.3212 -111

Table 2. The structure parameter of CuO deposited with 700 mJ at 600 and 1000 pulses.

Pulses 26 (deg) FWHM (deg.) dyq Exp.(A) D (nm) dyg Std.(A)  hkl
600  38.8441 0.7301 23165 11.5 2.3212 -111
1000 38.8897 0.5019 2.3139 16.8 2.3212 -111
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Figure 3. EDX spectra of CuO thin-film prepared at (a) 700 mJ/600 pulses and (b) 820 mJ/1000 pulses.

20.89 nm when the energy increased from 700 to 820 mJ.

This behavior can be attributed to the small diameter of
nanoparticles and the ideal interaction between micro/-
nanoparticles (see histogram in Fig. 4), which can con-
tribute to the enhancement and increase in roughness [23].
Based on the analysis of X-ray diffraction and topography
of the deposited films, it is evident that there is a consistent
trend of increasing average crystal size and grain size with
increasing energy and pulse number of the laser ablation.
However, it is worth noting that the sample prepared with
700 mJ and 1000 pulses exhibited a decrease in average di-
ameter, deviating from this overall sequence. The observed
decline in average diameter can be attributed to an increase
in the number of border interfaces and boundaries of grains
per unit area, resulting in a reduction in grain size [24, 25].

3.4 Microstructure results

The surface morphology and the histogram of atom distri-
bution of CuO thin films are shown in Fig. 5. The top view
of the film deposited at 700 mJ/600 pulses is revealed in
Fig. 5(a); the results indicate the presence of a distribution
of semi-spherical nanoparticles with an average particle size
of about 16.56 nm (Fig. 5(d)). Fig. 5(b) revealed the top
view of the film deposited at 700 mJ/1000 pulses, the results
confirm the presence of small, spherical nanoparticles with
an average particle size of about 12 nm (Fig. 5(¢)).

Fig. 5(c) revealed the top view of the film deposited at 820
mJ/1000 pulses; the results showed the appearance of an
agglomeration of nanoparticles with an average particle size
of about 13 nm (Fig. 5(f)). Fig. 5(b-f) confirmed an increase
in the distribution of nanoparticles with an increase in the

number of laser pulses, and this can be attributed to the
stability of the particles extracted from the target surface at
the energy of 700 mJ. Moreover, increasing the laser energy
to 820 mJ contributes to increasing the size due to the in-
creased concentration of particles extracted from the target
surface, and this leads to enhanced agglomeration of small
particles due to the high reactivity of the free electrons in the
outer shells [26, 27]. The FE-SEM results match the AFM
results in nanoparticle size dependence on laser energy and
pulses.

4. Conclusion

According to the results, it can be concluded that the PLD
technique is effective in preparing CuO thin films. XRD
results show sharp diffraction peaks attributed to highly
crystalline CuO monoclinic without impurities. Scherer
equation indicated an increase in the size of the crystals
when the energy of the laser beam and its pulses increased.
EDX results show that the highest weight of Cu metal
was achieved when the laser energy was increased to
820 mJ. AFM results confirmed a decrease in roughness
from 31.18 nm to 20.89 nm with increasing laser power
from 700 to 820 mJ. The small diameter of nanoparticles
and ideal micro/nano-particle interaction can increase the
roughness. The FESEM results indicated that increasing
the pulse energy and number of pulses led to the formation
of larger particle sizes and a more spherical and broad size
distribution.

Table 3. EDX analysis of the prepared thin films.

. Cu (0] C Na Mg Ca Total
Conditions
Wt% Wt% Wt% Wt% Wt% Wt% Wt%
700 mJ/600 pulses 26.19 3822 14.6 1206 4.36 4.81 100
700 mJ/1000 pulses 2522 39.13 1695 9.17 3.77 5.77 100
820 mJ/1000 pulses 30.28 3479 1435 11.05 4.7 4.82 100
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Figure 4. AFM 3D topography images of the CuO thin films at (a) 700 mJ/600 pulses, (b) 700 mJ/1000 pulses, and (c) 820
mJ/1000 pulses.

Table 4. AFM results for each condition.

Laser Energy (mJ) Number of pulses Average diameter Roughness (nm) RMS (nm)

700 600 100.8 26.58 5.7
700 1000 93.94 31.18 44
820 1000 210.6 20.89 32
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Figure 5. FESEM morphology images of the CuO thin films at (a) 700 mJ/600 pulses, (b) 700 mJ/1000 pulses, and (c) 820
mJ/1000 pulses, and (d-f) the CuO thin-film atom distribution histogram.
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