

Contents available at ISC and SID

Journal homepage: www.rangeland.ir

Research and Full Length Article:

Effects of Silica and Silver Nanoparticles on Seed Germination Traits of *Thymus kotschyanus* in Laboratory Conditions

Masoomeh Abbasi Khalaki^A, Ardavan Ghorbani^B, Mehdi Moameri^C

^APh.D. Student of Range Management Science at the Department of Range & Watershed Management, University of Mohaghegh Ardabili, Ardabil, Iran

^BAssociate Professor, University of Mohaghegh Ardabili, Ardabil, Iran (Corresponding Author),

Email: ardavanica@yahoo.com

^C Assistant Professor, University of Mohaghegh Ardabili, Ardabil, Iran

Received on: 04/11/2015 Accepted on: 10/03/2016

Abstract. The introduction of nanoparticles into seed germination and seedling growth of plants might have a significant impact and thus, it can be used for agricultural applications for better growth and yield. The purpose of this study was to compare the effects of silica and silver nanoparticles on seed germination and early growth traits as well as percent and rate of germination, root length, shoot length, seedling fresh and dry weight and seed vigor index of *Thymus kotschyanus*. Experiment was conducted using a completely randomized design with four replications in winter 2014. Seed sources were from Sabalan rangelands, Ardabil province, Iran. Treatments were control (distilled water) and silica and silver nanoparticles with the concentration of 20 and 60%. Thirty seeds were sown in each Petri dish. Seed germination began from the fourth day after sowing and they were counted every day until germination was stopped. Seed germination was controlled for 14 days. The statistical analyses were conducted using analysis of variance (ANOVA). Duncan test was performed to examine the differences between the treatments. Results showed that the germination of *T. kotschyanus* was strongly affected by nano-silver treatments in comparison with nano-silica and control treatments. Overall, higher values of seed germination traits were observed in nano-silver (20%). Moreover, increasing silica nanoparticle concentration had enhanced the seed germination. In contrast, the increase of silver nanoparticle concentration had decreased the germination traits.

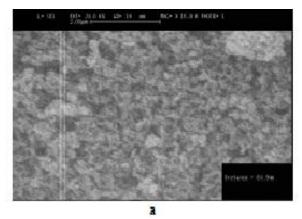
Key words: Nanoparticles, Seedling growth, Seed germination, Vigor index, *Thymus kotschyanus*

Introduction

Nano-technology has emerged as a new discipline, and nanoparticles have become a center of attraction for researchers because of its unique physico-chemical properties as compared to their bulk particles (Monica and Cermonini, 2009). There is an increasing interest in the use of ex vivo synthesis of nanoparticles for purposes such as medical diverse treatments, use in various branches of industry production, and wide incorporation into diverse materials such as cosmetics or clothes (Lee et al., 2008; 2010b). Nanoparticles are microscopic particles with at least one dimension less than 1000 nm. For this, these particles are very attractive materials to handle in biological system. Nanoparticles are found to be very suitable in sensing and detection of biological structures and al.. (Singh systems et 2008). Nanoparticles show a promise in different fields of agricultural biotechnology (Majumder et al., 2007). Agricultural application of nanoparticles is currently an interesting area of interest (Majumder et al., 2007; Lee et al., 2008; Siddiqui and Al-Whaibi, 2014). The introduction of nanoparticles into plants might have a significant impact and thus, it can be used for agricultural applications for better growth and yield (Josko and Oleszczuk, 2013). However. a thorough understanding of the role of Nano-sized engineered materials in plant physiology at the molecular level is still lacking (Khodakovskaya et al., 2011) whereas the action mode of nanoparticles on plant growth and development is still too scarce. Plants under certain conditions were reported to be capable of producing mineralized nano-materials natural necessary to their growth (Wang et al., 2001). As we know, seed germination provides a suitable foundation for plant growth, development and yield (Siddiqui and Al-Whaibi, 2014). Plants generally require silica to control biotic and abiotic stress (Ma, 2004). Silicon is one of the beneficial elements on plant growth under biotic and abiotic stresses. Some studies reported that silicon could ameliorate salt stress depression on plant species (Adatia and Besford, 1986; Wang et al., 2010; Wang et al., 2011; Zuccarini, 2008). Nano-silica is an important metal-oxide that covers all major fields of science and technology including industrial, electronics and biomedical applications 2011). (Paulkumar et al., nanoparticle acts as a delivering agent that delivers DNA and chemicals into plants as well as animal cell and tissue (Torney et al., 2007). It has gained a greater attention because of its highly reactive surface-tovolume ratio property (Cheng et al., 2008). Short-term influence of silica, palladium, gold and copper nanoparticles on a soil microbial community and the lettuce germination of seeds investigated at different concentrations of nanoparticles. Shoot and root ratio of lettuce seeds significantly reduced as compared to control when exposed to nanoparticle solution (Mazumdar, 2014). Nanoscale titanium dioxide was reported to promote photosynthesis, and growth of spinach (Hong et al., 2005; Yang et al., 2006). Similarly, mixture of nanoscale SiO₂ and TiO₂ had a significant effect on germination and growth of soya bean (Lu et al., 2002). Manzer et al. (2014) reported that nano-SiO₂ had a significant impact on the tomato seed germination potential. Silver nanoparticles are also interested because of the unique properties (e.g., size and shape depending optical, electrical, and magnetic properties) which can be incorporated antimicrobial into applications, biosensor materials, composite fibers. cryogenic superconducting materials, cosmetic products, and electronic components (Senapati, 2005; Klaus-Joerger et al., 2001). Silver-based materials have been widely used over the last decades within medicine, electronic, photography, etc. (Ratte, 1999). Silver nanoparticles are currently receiving considerable attention because of their numerous applications in consumer products. By far, the greatest number of consumer product applications of nano-materials involves nano-silver effect of silver (El-Temsah and Joner, 2010). Silver nanoparticles may hold significant applications in agriculture and gardening by selectively inhibiting harmful fungi and bacteria on seeds and could provide an alternative source of fertilizer that may improve sustainable agriculture (Parveen and Rao, 2014). Nanoparticles on the reduction of biomass and transpiration rate were reported in Cucurbita pepo. The adverse effect on C. pepo was more prevalent in nanoparticles than bulk silver solutions (Musante and White, 2012). Zhu et al. (2008) reported that Cucurbita maxima growing in an aqueous medium containing magnetic nanoparticles can absorb, move and accumulate the particles in the plant tissues whereas Phaseolus limensis is not able to absorb and move particles. It indicates that different plants have the different responses to same nanoparticles.

According to the problems with the germination of some plants and over grazing, the rate of forage production is greatly reduced. Thus, to take the advantages of such plants, it is necessary to identify and remove barriers of germination and establishment of suitable plants (Tavili et al., 2014). One of these plants is T. kotschyanus which has medicinal values and it is important for beekeeping and food production (Shahraki et al., 2015). T. kotschyanus which is from the genus Thymus is belonged to mint family (Lamiaceae). It is a wooden, short, perennial and grey colored plant with C₃ metabolism system with 20-40 cm tall depending on the climate of growth region and soil quality (Khorshidi et al., 2010). T. kotschyanus plays an important role in the economy of local people at most regions where its cultivation helps the regional economy (Darvishi etal.. 2013). However, under the overgrazing and

germination problem, there is evident of the reduction of that in many rangelands such as Sabalan rangelands in Ardabil province, Iran. Thymus spp. has a medicinal value which is widely used since many years ago (Darvishi et al., 2013; Tavili et al., 2014; Shahraki et al., 2015). They are fragrant, prominent and renowned species in terms of quality and quantity (Darvishi et al., 2013). Therefore, this study aimed to compare the effects of silica and silver nanoparticles on seed germination traits of T. Kotschyanus, and also to examine the effectiveness of using nano-particles in the accelerating plant growth and development.


Materials and Methods Nano-particle suspension

As the aim was to evaluate the effects of silica and silver nanoparticles on T. kotschyanus seed germination and seed index, the experiment conducted in a completely randomized design with four replications in winter 2014 at the Rangeland laboratory of Agricultural Technology and Natural Resources College in the University of Mohaghegh Ardebili, Ardabil, Iran. Treatments were control (distilled water) Silica and silver with concentrations of 20 and 60% for each nanoparticle (Azimi et al., 2014). Thirty seeds were placed in each Petri dish. The seeds were collected from Sabalan rangelands, Ardabil, Iran. Seed viability, purity and seed moisture content of T. kotschyanus were 50, 96 and 10%, respectively. In addition, 1000 seed weight (gr) of it was 0.18 g.

Initially, the seeds were disinfected with a solution of sodium hypochlorite with 10% for 30 seconds, and then, were rinsed with distilled water. Seeds for the treatments of nanoparticles were placed in different nano-solutions for 2 h, and after washing them with distilled water, they were sown on a filter paper in Petri dishes and seeds were irrigated with 10 ml of distilled water (Bekhrad *et al.*, 2015). The experiment

was performed in a germinator with an average temperature of 25/15±1°C for 8/16 h in darkness and light, respectively.

The characteristics of silica and silver nanoparticles were subjected to the identification and morphology that are given in Fig. 1, respectively. The morphological study of these nanoparticles was done by scanning electron microscope (SEM).

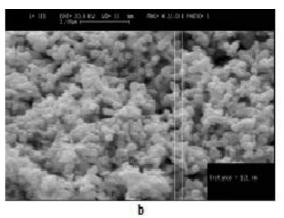


Fig. 1. Scanning electron microscopy (SEM) image of Silica nanoparticles (a) and Silver nanoparticles (b)

Seed germination traits

Seed germination began from the fourth day after cultivation and the germinated seeds were counted and recorded on the same day. Exiting of 2 mm root length was the germination criterion (Seyedi *et al.*, 2002). Seed counting continued for 14 days (Haghighi *et al.*, 2012). On the tenth day, the shoot and root of seedlings were measured using a ruler. Seedling fresh and dry weights were recorded using a digital scale.

Germination percent (GP) was calculated using the equation 1 (Parveen and Rao, 2014) and the Germination Rate (GR) was calculated using the equation 2 (Panwar and Bhardwaj, 2005). Vigor index (Vi) was calculated using the equation 3 (Vashisth and Nagarajan, 2010). Mean germination time (MGT) which is an indicator of the speed and acceleration of germination was calculated based on equation 4 (Ellis and Roberts, 1981).

$$GP = \frac{ni}{N} \times 100 \tag{1}$$

$$GR = \sum \frac{ni}{t} \tag{2}$$

The results of ANOVA showed a significant effect of Silica and Silver

$$Vi = GP \times (rl + sl) \tag{3}$$

$$MGT = \frac{\sum ni \times di}{N} \tag{4}$$

Where:

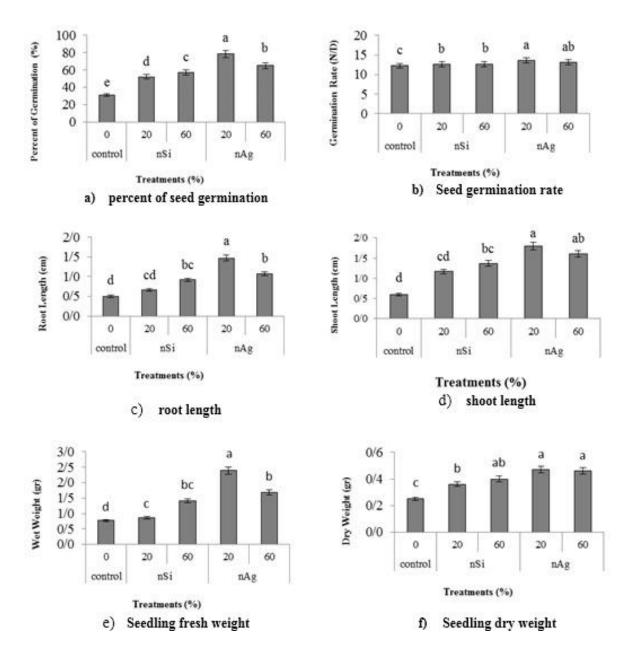
 $n_{i=}$ the number of seeds germinating on the d_i^{th} day of germination testing,

t= the number of days since sowing,

rl and sl= root and shoot length, respectively

N= total number of seeds germinating during the experiment

Statistical analysis


Germination percent, germination rate, mean germination time, root length, shoot length, fresh and dry weights and vigor index were measured in this study. The statistical analysis was conducted using ANOVA and Duncan method was used to examine the differences between treatments. Before carrying out the analysis, the normality and homogeneity of data were evaluated by Kolmogorov-Smirnov's and Leven's tests, respectively. Data were analyzed using SPSS version 22.


Results and Discussion

Nanoparticles on all of seed germination traits $(P \le 0.01)$ (Table 1). Thus, the

application of silica nanoparticles had enhanced the seed germination potential. The means comparisons among treatments are presented in Fig. 2. For all the seedling parameters, nano-silica with 60% concentration showed higher mean values than that for 20% concentration and control. Vice versa, in the silver

nanoparticles (nAg), treatment with the concentration of 20% showed higher mean values than that for nano-silver 60% concentration and control. In addition, the seedling properties values in silver nanoparticles treatments were always higher than silica nanoparticles (both in 20 and 60% concentrations) (Fig. 2).

Fig. 2. Effects of nanoparticles (nSi= nano-Silica; nAg= nano-Silver) on seed germination traits of T. *kotschyanus*. Vertical error bars represent the \pm SE. Different letters in each bar differ significantly according to DMRT test (p<0.05)

Table 1. ANOVA results for root and shoot length, speed and rate of germination, fresh and dry weight and vigor

index of T. kotschyanus

inden of 1. Noticely and									
Source of	df	MS							
variation		Percent of	Speed of	Mean	Root	Shoot	Fresh	Dry	Seed
		Germination	Germination	Germination	Length	Length	Weight	Weight	Vigor
			(n/d)	Time	(cm)	(cm)	(g)	(g)	Index
Treatments	4	1237.4**	1.21**	0.006*	0.56**	0.85**	1.72**	0.03**	2.75**
Error	15	3.76	0.47	0.000	0.03	0.02	0.03	0.00	0.02

^{*, **=}Corresponding MS significant at 5% and 1% respectively

Seed germination, germination rate and germination time

Results showed that nanoparticle treatments significantly increased the germination percent and rate in comparison with the The maximum values germination percent (78.5%) and rate (13.65 n/d) were recorded in the nano-silver 20% concentration; the maximum average of mean germination time of seeds belonged silver nanoparticles with concentration (6 days) and minimum values were recorded in control (Figs. 2a, 2b and 2h). Raskar and Laware (2014) investigated the effects of different concentrations of Zinc Oxide nanoparticle treatments on onion seed germination and early seedling growth. Seed germination and related indices were increased in lower concentrations: however, they were decreased at higher concentrations. Karimi (2012)indicated that nanoparticles did not reduce wheat seed germination. Silver nanoparticles can protect seeds against fungi as well as the conventional fungicide, Carboxitiram and protection afforded seed bv

nanoparticles. Similarly, nano-SiO₂ significantly enhanced the seed germination in tomato (Siddiqui and Al-Whaibi, 2014). Germination improvement as a result of silica nanoparticles application demonstrated the effects of this nanomaterial. Similar resultes were reported by other studies such as those done by Zuccarini (2008), Lee et al. (2010a), Wang et al. (2010) and Wang et al. (2011) who had confirmed the positive effects of silicon at salinity stress. Yin et al. (2012) examined the effects of silver nanoparticles on the germination and growth of eleven wetland common plant species. They compared the effects of two silver nanoparticles as 20 nm polyvinylpyrrolidine coated nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L21 GA-AgNP exposure significantly reduced the germination rate of three species and

enhanced the germination rate of Eupatorium fistulosum species. Parveen and Rao (2014) reported that biologically synthesized silver nanoparticles enhanced the percentage of seed germination in glaucum Pennisetum but higher concentration of silver nanoparticles decreased the root, shoot and total seedling length in this species. They observed that higher concentration of nanoparticles had adverse effects on plant species. Inhibition of seed germination and root elongation had been found to be highly dependent on both plant type and nano-particle properties. Karimi et al. (2012) suggested that silver nano-solution coated seeds recorded better germination than the seeds treated with fungicide and concluded to use silver nanocoating instead of using fungicides. Silver nanoparticles even at the highest concentration did not disturb germination traits and seedlings growth of Ricinus communis (Jyothsna and Pathipati, 2013). Results of Karimi's et al. (2012) showed that treating seeds with silver nanoparticles did not reduce germination; it is possible to use this treatment in the agricultural practices. In other words, silver nanoparticles did not affect the seed living process adversely. Results of Haghighi et al. (2012) that studied the effect of nano-Si on tomato seed germination demonstrated that mean germination time had low reduction of 1 and 2 ppm nano-Si application.

Seedling root and shoot length

According to Duncan tests, the highest root and shoot lengths were observed in nanosilver with 20% concentration (1.47 and 1.8 cm, respectively). Moreover, the lowest root and shoot length was observed in control treatment. The silica nanoparticles had increased root and shoot length with increasing the concentration of the nanoparticles, and silver nanoparticles decreased root and shoot length in 60% concentration. Shoots and roots growth responded differently to nanoparticles with relative inhibition of root growth generally

being lower for shoot growth (Figs. 2c and 2d). Vashisth and Nagarajan (2010) studied germination and early growth characteristics in sunflower and showed that effects of treatments of nanoparticles at different concentrations. They had related the ZnO nanoparticles as a good effect on root and shoot growth. Baoshan et al. (2004) examined nano-structured silicon dioxide on growth of Changbai larch (Larix olgensis) seedlings. They observed that seedling growth and quality of Larix treated with silicon dioxide was promoted. 500 μL/L showed the highest seedling length, root collar diameter, root length and the number of lateral roots of seedlings. Tan (2009) concluded that silver et nanoparticles treatment mostly affected the shoot and root growth in comparison with seed germination.

Seedling Fresh and Dry weight

Results showed that the maximum means of seedlings fresh and dry weights were obtained for silver nanoparticles with 20% concentration (2.39)and 0.47 respectively) while they were at minimum in the control treatment. In silver nanoparticles, by increasing concentration, fresh and dry weights were reduced; however, the increase of silica nanoparticles concentration was decreased for fresh and dry weights (Figs 2e and 2f). The results of Zhu et al. (2008) on the Phaseolus vulgaris showed that shoot length, fresh and dry weights of shoot had influenced by different concentrations of ZnO nanoparticles and dry shoot weight was significantly different among the treatments. However, the lowest fresh and dry weight was observed in control. However, the maximum shoot length was recorded in 20mg as compared to the other concentrations and control. Moreover, Haghighi et al. (2012) expressed that great effects of silica nanoparticles had improved salinity stress on tomato seed germination. 25 ppm silica nanoparticles showed great enhancement on germination characteristics

such as germination rate, root length and dry weight.

Vigor index

Seed vigor index in control of 20 and 60% nanoparticle concentrations significantly different and the highest value was found for 20% silver nanoparticles treatment (2.55) (Fig. 2g). Aghajantabar Alee et al. (2014) reported that silver nanoparticles had enhanced root and shoot in both species of Festuca ovina and Festuca arundinaceae; however despite of the positive effects on both species, the effect on Festuca arundinaceae was lower. In addition, the concentration of 20 ppm silver nanoparticles to improve in terms of speed germination, seedling vigor index and shoot length was compared to control salinity. Moreover, Siddiqui and Al-Whaibi (2014)studied the role of nanoparticles in germination of tomato (Lycopersicum esculentum) and reported that among the treatments, application of 8 ppm of SiO₂ nanoparticles proved to be the best by giving the highest values of seedling vigor index and seed germination. Ushahra et al. (2014) by evaluating the effects of biogenic nanoparticles on shoot and root length, fresh and dry matter, and vigor index reported that nanoparticles caused to improve the seed parameters.

Conclusion

In general, results of the current study reveal that the application of silica and silver nanoparticles has significantly enhanced the seed germination potential. Application of silica and silver nanoparticles improved all of early growth characteristics of T. kotschyanus seedlings. The results showed that the germination of T. kotschyanus was more affected by nano-silver treatments in comparison with silica nanoparticles and control treatments. In overall, higher values of seed germination traits were observed in nanoparticles with silver concentration. By increasing the silica nanoparticle concentration, the germination had also increased; however,

by increasing the silver nanoparticle concentration of 60%, the seed germination was decreased.

Literature Cited

- Adatia, M. H. and Besford, R. T., 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annals of Botany, 58: 343-351.
- Aghajantabar Alee, H., Pirdashti, H., Kashani, A. and Biparva, P., 2014. Effect of silver nanoparticles on germination of two plants Festuca ovina and Festuca arundinaceae stressed salinity. Jour. Range Management, 1: 33-45. (In Persian).
- Azimi, R., Jankju Borzelabad, M., Feizi, H. and Azimi, A., 2014, Interaction of SiO nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish Jour. Chemical Technology, 16(3): 25 -29.
- Bao-shan, L., Shao-qi, D., Chun-hui, L., Li-jun, F., Shu-chun, Q. and Min, Y., 2004. Effects of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Jour. Forestry Research, 15(2): 138-140.
- Bekhrad, H., Mahdavi, B. and Rahimi, A., 2015. Effect of halopriming on germination, morphological and physiological characteristics of Sesamum indicum L. under alkalinity stress. Jour. Plant Production Researches. 22(2): 25- 46. (In Persian).
- Cheng, L., Zheng, L., Li, G., Yao, Z., Yin, Q. and Jiang, K., 2008, Manufacture of epoxy-silica nanoparticle composites and characterisation of their dielectric behavior. International Jour. Nanoparticles, 1: 3–13.
- Darvishi, L., Zare Chahouki, M. A., Jafari, M., Azarnivand, H. and Yousefi Valikchali, M., 2013. Study on the Environmental Factors Contributing to distribution of Thymus kotschyanus in Taleghan Basin, Iran. Jour. Rangeland Science, 4(1): 82-90.
- Ellis, R. H. and Roberts, E. H., 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9: 377-409.
- El-Temsah, Y. S. and Joner, E. J., 2010. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27(1): 42-49.
- Haghighi, M., Afifipour, Z. and Mozafarian, M., 2012. The Effect of N-Si on Tomato Seed Germination under Salinity Levels. Jour. Biological and Environmental Science, 6(16): 87-90.

- Hong, F. S, Yang, F., Ma, Z. N., Zhou, J., Liu, C., Wu, C. and Yang, P., 2005. Influences of nano-TiO2 on the chloroplast ageing of spinach under light. Biological Trace Element Research, 104: 249–260.
- Josko, I. and Oleszczuk, P., 2013. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere, 92: 91–99.
- Jyothsna, Y. and Pathipati, U., 2013. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and physiology. Environmental Science and Pollution Research, 20: 8636-8648.
- Karimi, N., Minaei, S., Almassi, M. and Shahverdi, A. R., 2012. Application of silver nanoparticles for protection of seeds in different soils. African Jour. Agricultural Research, 7(12): 1863-1869.
- Khodakovskaya, M. V., Silva, K., Nedosekin, D. A., Dervishi, E., Biris, A. S., Shashkov, E. V., Ekaterina, I. G. and Zharov, V. P., 2011. Complex genetic, photo thermal, and photo coustic analysis of nanoparticle-plant interactions. Proceeding of Natural Academy Science, 108(3): 1028–1033.
- Khorshidi, J., Rostaei, A. and Fakhre Tabatabaei, M., 2010. Effect of climate and phenological stage on essential oil quantity of Thymus caramanicus Jalas. Scientific Conference on Medicinal plant Industry Development in Iran. 28 February & 1 March, Tehran, Iran. (In Persian).
- Klaus-Joerger, T., Joerger, R., Olsson, E. and Granqvist, C. G., 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnology, 19(1): 15–20.
- Lee, S. K., Sohn, E. Y., Hamayun, M., Yoon, L. Y. and Lee, I. J., 2010a. Effects of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80: 333-430.
- Lee, W. L., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., Braam, J. and Alvarez, P. J. J., 2010b. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29: 669–675.
- Lee, W. M., An, Y. J., Yoon, H. and Kweon, H. S., 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27(9): 1915–1921.
- Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R. and Tao, M. X., 2002. Research of the effect of

- nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21: 168–172.
- Ma, J. F., 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Jour. Soil Science and Plant Nutrition, 50: 11–18.
- Majumder, D. D., Ulrichs, C., Mewis, I., Weishaupt, B., Majumder, D., Ghosh, A., Thakur, A. R., Brahmachary, R. L., Banerjee, R., Rahman, A., Debnath, N., Seth, D., Das, S., Roy, I., Sagar, P., Schulz, C., Linh, N. Q. and Goswami, A., 2007. Current status and future trends of Nano-scale technology and its impact on modern computing biology medicine and agricultural biotechnology. In: Proceedings of the international conference on computing: theory and applications. IEEE Press, ICCTA, India, March, 5–7: 563-572.
- Manzer, H., Siddiqui, M. and Al-Whaibi, H., 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudian Jour. Biological Sciences, 21: 13–17.
- Mazumdar, H., 2014. Accumulation and Uptake of Silver Nanoparticles during Seed germinations of selected annual crop plants. International Jour. Chem Tech Research. 6 (1): 108-113.
- Monica, R.C., Cremonini, R., 2009. Nanoparticles and higher plants. Caryologia; International Journal of Cytology, Cytosystematics and Cytogenetics, 62: 161–165.
- Musante, C. and White, J. C., 2012, Toxicity of Silver and Copper to Cucurbita pepo: Differential Effects of Nano and Bulk-Size Particles, Environmental Toxicology, 27(9): 510-517.
- Panwar, P. and Bhardwaj, S. D., 2005. Hand book of practical forestry, Agrobios, India, 21p.
- Parveen, A. and Rao, S., 2014. Effect of nano-silver on seed germination and seedling growth in Pennisetum glaucum. Jour. Cluster Science, 26 (3): 693-701.
- Paulkumar, K., Arunachalam, R. and Annadurai, G., 2011. Biomedical applications of organically modified bioconjugated silica nanoparticles. International Jour. Nanotechnology, 8: 653-663.
- Raskar, S. V. and Laware, S. L., 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Jour. Current Microbiology and Applied Sciences, 3 (2): 467-473.
- Ratte, H. T., 1999. Bioaccumulation and toxicity of silver compounds: A review. Environmental Toxicology Chemistry, 18: 89–108.
- Senapati, S., 2005. Biosynthesis and immobilization of nanoparticles and their applications. Ph.D.

- thesis, CSIR-National Chemical Laboratory, University of Pune, India.
- Seyedi, M., Hamzei, J., Bourbour, A., Dadrasi, V. and Sadeghi, F., 2002. Effect of hydro-priming on germination properties and seedling growth of the safflower (Carthamus tinctorius L.) under drought stress. Jour. Agronomy Sciences, 5(8): 63-76.
- Shahraki, M. R., Gholami Baghi, N., Sharafatmandrad, M. and Behmanesh, B., 2015. Rangelands Goods and Services Local People Views and Priorities (Case Study: Hezarjarib Rangelands, Mazandaran Province, Iran). Jour. Rangeland Science, 5(3): 212-221.
- Siddiqui, M. H. and Al-Whaibi, M. H., 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds. Mill.). Saudian Jour. Biological Sciences, 21: 13-17.
- Singh, M., Shinjini, S., Prasad, S. and Gambhir, I. S., 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Jour. Nanomaterials and Biostructures, 33:115-122.
- Tan, X. M., Lin, C. and Fugetsu, B., 2009. Studies on toxicity of multiwalled carbon nanotubes on suspension rice cells. Carbon, 47: 3479-3487.
- Tavili, A., Mirdashtvan, M., Alijani, R., Yousefi, M. and Zare, S., 2014. Effect of different treatments on improving seed germination characteristics of Astragalus adscendens and Astragalus podolobus. Jour. Rangeland Science, 4(2): 110-117.
- Torney, F., Trewyn, B. G., Lin, V. S. Y. and Wang, K., 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2: 295–300.
- Ushahra, J., Bhati-Kushwaha, H. and Malik, C. P., 2014. Biogenic nanoparticle-Mediated augmentation of seed germination, growth, and antioxidant level of Eruca sativa Mill. Varieties. Applied Biochemistry Biotechnology, 174: 729–738.
- Vashisth, A. and Nagarajan, S., 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Jour. Plant Physiology, 167(2): 149–156.
- Wang, X. D., Ou-yang, C., Fan, Z., Gao, S., Chen, F. and Tang, L., 2010. Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Jour. Animal and Plant Science, 6: 700-708.
- Wang, X., Wei, Z., Liu, D. and Zhao, G., 2011. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Jour. Biotechnology, 10: 545-549.

- Wang, L. J., Guo, Z. M., Li, T. J. and Li, M., 2001. The nano structure SiO2 in the plants. Chinian Science Bulletin, 46: 625–631.
- Yang, F., Hong, F. S., You, W. J., Liu, C., Gao, F. Q., Wu, C. and Yang, P., 2006. Influences of nanoanatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110: 179–190.
- Yin, L., Colman, B. P., McGill, B. M., Wright, J. P. and Bernhardt, E. S., 2012. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLOS ONE, 7(10): 1-7.
- Zhu, H., Han, J., Xiao, J. Q. and Jin, Y., 2008. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Jour. Environmental Monitoring, 10: 713–717.
- Zuccarini, P., 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52: 157-160.

مقایسه اثر نانو ذرات سیلیس و نقره بر پارامترهای جوانهزنی بذر آویشن کوهی (Thymus) مقایسه اثر نانو ذرات سیلیس و نقره بر

معصومه عباسی خالکی الف اردوان قربانی بهدی معمری معصومه عباسی خالکی الف اردوان قربانی بهدی معمری معصومه عباسی خالکی الف الفتاح الفتاری معمری معصومه عباسی خالکی الفتاری الفتاری الفتاری معمری معصومه عباسی خالف الفتاری الفتا

الفردانشجوی دکتری علوم مرتع، گروه مرتع و آبخیزداری، دانشگاه محقق اردبیلی ^بدانشیار دانشگاه محقق اردبیلی (نگارنده مسئول)، پست الکترونیک: ardavanica@yahoo.com عاستادیار دانشگاه محقق اردبیلی

> تاریخ دریافت: ۱۳۹۴/۰۱/۲۲ تاریخ پذیرش: ۱۳۹۴/۱۲/۲۰

چکیده، معرفی نانو ذرات ممکن است تأثیر قابل توجهی روی جوانهزنی و رشد گیاهان داشته و در نتیجه، می توان از آن برای برنامههای کاربردی کشاورزی برای رشد و عملکرد بهتر استفاده نمود. هدف از انجام این مطالعه مقایسه اثرات ذرات نانو سیلیس و نانو نقره بر خصوصیات جوانهزنی و صفات اولیه رشد بذر گیاه آویشن کوهی (Thymus kotschyanus) از جمله؛ درصد جوانهزنی، سرعت جوانهزنی، طول ریشهچه، طول ساقه-چه، وزن تر گیاهچه، وزن خشک گیاهچه و شاخص بنیه بذر می باشد. آزمایش در قالب طرح کاملاً تصادفی با که تیمار و ۴ تکرار در زمستان ۹۳ انجام شد. بذر این گونه از مراتع سبلان جمع آوری شد. تیمارها شامل؛ شاهد (آب مقطر)، نانو نقره و نانو سیلیس هر کدام با غلظتهای ۲۰ و ۶۰ درصد بودند. تعداد ۳۰ بذر در هر پتریدیش کشت شد. جوانهزنی بذرها از روز چهارم پس از کشت شروع شده و خصوصیات مورد مطالعه از همان روز ثبت کشت شدند و جوانهزنی بذور به مدت ۱۴ روز کنترل شد. برای بررسی اختلاف معنی داری بین تیمارها، از تجزیه واریانس یکطرفه و برای مقایسه میانگین تیمارها از آزمون دانکن استفاده شده است. نتایج نشان داد که جوانهزنی بذور آویشن بهشدت تحت تاثیر تیمارهای نانو نقره قرار گرفته است. همچنین بیشترین مقدار خصوصیات جوانهزنی بذر، در تیمار نانو نقره با غلظت ۲۰٪ مشاهده شد. افزایش غلظت نانو سیلیس باعث خصوصیات جوانهزنی بذور شده در حالیکه، افزایش غلظت نانو نقره موجب کاهش جوانهزنی گردیده است.

كلمات كليدى: نانو ذرات، صفات اوليه رشد، خصوصيات جوانهزني، شاخص بنيه، آويشن كوهي