

Research and Full Length Article:

Effect of Growth Stage on the Macro Mineral Concentrations of Forbs and Grasses in a Semi-arid Region of Sudan

Sahar Ezzat^{A*}, Babo Fadlalla^B, Hala Ahmed^B

^A Assistant Professor at Sudan University of Science and Technology, College of Forestry and Range Science, Soba, Khartoum, Sudan *(Corresponding Author), Email: s_abdelhag@yahoo.com
^B College of Forestry and Range Sciences, Sudan University of Science and Technology, Soba, Khartoum, Sudan, www.sustech.edu

Received on: 17/12/2016 Accepted on: 03/03/2017

Abstract. Changes in mineral concentrations with maturity often reflect increases in the proportion of stem to leaf with stems showing lower mineral concentrations than young leaves. The objective of this research was to assess the status of the macro mineral elements, Na, K, P, Ca and Mg in the dominant native species during the flowering and seed set stages of plant growth. This experiment was conducted at El Obeid Research Station Farm at Bannu area, Sheikan Locality, North Kordofan State, Sudan, over 2012/2013 seasons. The data indicated a higher content of macro minerals in forbs compared with grasses. Flowering stage showed higher concentrations of macro minerals compared with the seed set stage. It was concluded that the rangelands of North Kordofan State, containing a mixture of grasses and forbs, are good sources of macro minerals. It was considered that macro elements content in forbs and grasses in the study area is adequate for sheep, especially during the stage before plants set their seeds.

Key words: Macro-minerals, Flowering stage, Seed set stage

Introduction

Sudan is a large country with an area of 1.88 million Km², and has the second largest animal population in Africa consisting of 52.08 million sheep, 43.44 million goats, 41.76 million cattle and 4.62 million camels (MARF, 2013). The majority of animal wealth is concentrated in western Sudan (40%), followed by central Sudan (23%) (MARF, 2011). Minerals are divided into two groups, macro-minerals, those that are required at 0.1% or more in the diet, and microminerals, are those that are required at very small amounts measured in part per million (ppm). Macro minerals include calcium, phosphorus, sodium, potassium, chlorine, sulphur and magnesium. Micro minerals include iron, copper, cobalt, manganese, zinc, iodine and others. Mineral deficiencies can lead to reproduction decreased growth and (Hajer et al., 2014). Ruminants grazing forages in severely mineral-deficient areas may even be more limited by mineral deficiency than by a lack of or protein (McDowell and energy Conrad, 1977). Mineral imbalances in soils and forages are responsible for low production and reproduction among grazing livestock. As grazing livestock are not usually presented with mineral supplements apart from common salt, they depend upon forages for their requirements. However forages seldom completely satisfy all mineral requirements (Pastrana et al., 1991). Mineral intakes of livestock are influenced by the factors that determine the mineral content of plants and their seeds. The concentrations of minerals in plants depend mainly on plant genotype, soil environment, climate and stage of Leguminous maturity. species are generally much richer in macro-elements than grasses growing in comparable conditions, whether temperate or tropical (Pastrana et al., 1991). Small ruminant represents production the principal economic output, contributing a large

share of the income of farmers (Ben Salem and Smith, 2008). Goats are important source of milk and meat for small farmers, fetch income locally and can be sold in local markets, to cover cash expenditures (Devendra, small 1985). Moreover, some areas of the tropics are known to be deficient in certain minerals, and the seasonal movement of sheep under nomadic or transhumant systems minimizes the effect of localized deficiencies. Underwood (1981) stated that mineral imbalance arises in an animal because the mineral content of its food is either deficient or in excess. It was also reported that sodium (Na) mineral content of food is either deficient or in excess. Rick (2007) reported that sodium (Na) together with chlorine (Cl) occurs as sodium chloride (NaCl) salt and it functions in amino acid and glucose transport and muscle contractions. Sodium deficiency occurs in tropical Africa and the inland parts of Australia (Underwood, 1981). Mineral deficiencies in goats in many countries are caused by low or variable contents due to soil, season, maturity of plants and digestibility; where mineral low supplementations were applied correctly (Hajer et al., 2014). The objective of this study was to assess the status of the macro mineral elements Na, K, P, Ca, and Mg in the dominant native species during the flowering and seed set stages of plant growth at Sheikan Locality, North Kordofan State, Sudan.

Methods and Methods Study area

This study was conducted at Bannu area at Sheikan Locality, North Kordofan State over 2012/2013 seasons (Fig. 1). The average annual rainfall is about 300mm, consisting of storms of short duration between July and September with the highest rainfall generally occurring in August. During the rainy season, forage biomass is suitable to provide sufficient feed for animals, but during the dry season forage is scarce and small quantities of grain are also fed to animals (MARF, 2009).

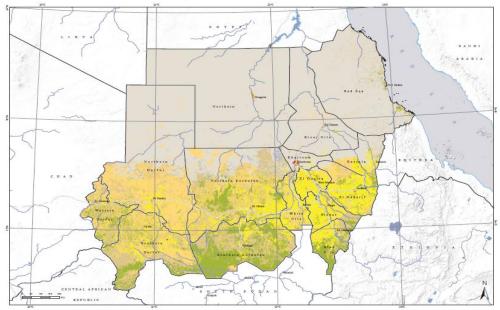


Fig. 1. The study area

Sampling and experimental study

Sampling periods corresponded to two different stages of growth namely flowering (mid-rainy season) and seed set (early dry season) of 2012 and 2013. A total of 29 plant species (21 forbs and 8 grasses) were collected from the rangelands. Plants' shoots (leaves and stems) were picked randomly by hand according to the botanical composition of the diet selected by sheep as determined by bite count technique (Bjugstad et al., 1970). Sheep were monitored for three days at flowering and at seed set stages, where the number of bites from each plant species was counted (Sahar, 2013). Similar materials were collected for analysis. Inductively Coupled Plasma Emission Spectrometer (ICP) was used to determine minerals. Data was analysis using SAS package (GLM Procedure).

Results

Tables 1 and 2 illustrate the levels of the macro-minerals Na, K, P, Ca and Mg of some plant species of the rangeland of North Kordofan over the two stages of growth for forbs and grasses, respectively. Flowering stage showed higher concentrations of K, P and Ca compared with the seed set stage. There were significant differences (P<0.05) in the content of macro-minerals over the two stages of growth namely flowering and seed set. Also a higher content of macro-minerals was found in forbs compared with grasses.

There was great variation between species for Concentrations of macroelements in both forbs and grasses. For example, Result of forbs at flowering stage for Na concentration showed that *Ipomoea belpharosepala* and *Blepharis linariifolia* with average values of 12156 and 127 (mg/kg) had higher and lower Na content, respectively (Table 1). The same trend with lower values were observed in seed set stage.

Mineral requirements of sheep from national research council (NRC, 1985) is presented in Table 3. According NRC (1996) the concentrations in forage needed to meet requirements of sheep for Na, Ca P, Mg, K and S were (0.09-0.18), (0.20-0.82), (0.16-0.38), (0.12-0.18), (0.50-0.80) and (0.14-0.26) percent, respectively (Table 3).

Scientific name		Seed set stage (mg/kg)								
	Na	Κ	ring stage (P	Ca	Mg	Na	K	Р	Ca	Mg
Colocynthis citrullus	212	13863	1823	9948	2666	275	11854	1167	7907	1733
Seddera spp.	1433	11660	1328	21824	3593	4673	13485	1614	18997	4608
Polygala erioptera	473	22692	1654	18858	3247	625	12596	2049	6461	2486
Crotalaria spp.	280	21462	1854	12640	2426	178	14767	1043	8292	1501
Requenia obcordata	235	16049	1517	9656	2631	389	17829	1606	9051	2658
Justicia kotschyi	203	27631	2011	31457	18277	230	28632	2063	18694	10340
Blepharis linariifolia	127	21445	1581	18578	3978	102	15860	1295	17604	2650
Ipomoea sp.	10142	24012	2509	9194	4437	3084	26609	2581	9172	6197
Tephrosia spp.	669	18548	1504	10002	3173	172	14897	1319	11818	3524
Tribulus terrestris	1507	20173	2049	26132	5606					
Corchorus olitorius	808	22394	1703	13950	3669	388	15200	2301	20378	3459
Indigofera aspera	671	41579	2369	24604	11755					
Acanthus spp.	665	15139	1696	11038	3813	613	20019	1838	12186	4746
Indigofera spp.	410	20191	1795	26752	5277	260	16176	1240	14524	2592
Solanum dubium	294	29652	2320	15361	6684	158	25396	1451	14516	4538
Dicoma tomentosa	181	19597	2272	9748	4081					
Farsetia longifolia	594	15831	1870	18057	4673					
Ipomoea belpharosepala	12156	19010	2536	7524	3382	8079	21194	1483	9199	3727
Acanthospermum						407	29131	1180	11733	4689
hispidum										
Abutilon glaucm						748	22719	1769	24015	6383
Total Means	1726	21163	1910.6	16407	5187	1274	19148	1625	13409	4114

Table 1. Concentrations of macro-elements Na, K, P, Ca and Mg (mg/kg) for some forbs at flowering and seed set stage

Table 2. Concentrations of macro-elements Na, K, P, Ca and Mg (mg/kg) for grasses at flowering and seed set stage

Scientific name	Flowering stage (mg/kg)				Seed set stage (mg/kg)					
	Na	Κ	Р	Ca	Mg	Na	Κ	Р	Ca	Mg
Echinochloa colonum	2718	25962	1415	3863	4345	1319	21958	697	5531	3690
Eragrostis tremula	11606	11926	1689	3905	2244	11397	11894	1221	3552	2535
Schoenefeldia gracilis	3412	16114	1199	3994	2031	1091	15606	705	3658	1994
Cenchrus biflorus	280	23633	1101	6086	2417	1448	20262	706	4080	2608
Chloris virgata	299	22480	1209	3694	3553					
Dactyloctenium aegyptium	3256	10673	1229	5121	2219					
Cyperus spp.	632	17332	867	6175	3250	1282	20535	1017	6914	2708
Aristida mutabilis	195	11324	1194	2972	1703					
Total Means	2800	17431	1238	4476	2720	3307	18051	869	4747	2707

Table 3. Mineral requirements of sheep from National Research Council (NRC, 1985)

- asie et minerar requirement	(inte, i) of	
Nutrient	Sheep mineral requirement	
	(% diet dry matter)	
Sodium	0.09-0.18	
Calcium	0.20-0.82	
Phosphorus	0.16-0.38	
Magnesium	0.12-0.18	
Potassium	0.50-0.80	
Sulfur	0.14-0.26	

Discussion

Mineral concentrations in plants generally reflect the capability with which the soil can supply absorbable minerals to the roots. However, plants react to insufficient supplies of available minerals in the soil by limiting their growth, reducing the concentration of the deficient elements in their tissues or, more commonly, by reducing growth and concentration simultaneously. The extent of a particular response varies with different minerals, different plant species as well as with the soil and climatic conditions. Nevertheless, the primary reason for mineral deficiencies in grazing animals is that the soils are inherently low in plant-available minerals (Alloway, 2004).

According NRC (1996)the concentrations in forage needed to meet requirements of beef cattle for P, Ca, Mg, Na and K were 1.9 g/kg, 3.2 g/kg, 1.15 g/kg, 672 mg/kg and 5.76 g/kg, respectively. Grusak (2001) reported that the concentrations in forage needed to meet requirements of sheep for P, Ca, Mg and K were 0.2%, 0.5%, 0.2% and 1.0%, respectively. The requirement of sheep according to NRC (1985) for Na ranges between 0.09- 0.18% (Table 3), so our results indicate that Na is adequate to meet sheep requirements. Also the same result was found by Abdel Moniem et al. (2014) who reported a high sodium concentration at the flowering stage and a low concentration during the seed setting stage. Out of the 19 forbs collected at flowering stage and analyzed for P, only reached the 0.2% 8 concentration considered adequate for sheep. This agrees with Cook and Fadlalla (1987) who reported a deficiency of phosphorus in the diets of grazing animals in South Sudan. reflected Kordofan. in concentrations in range plants varying from 0.18% in the rainy season to 0.09% in the dry season. Calcium concentrations were adequate exceeding the 0.5% level in all plants, similarly Mg was also sufficient (>0.2%) in all plants except one; while K values exceeded the 1.0% reference level for adequacy in all plants. In the present study the concentrations of minerals adequate was for the requirements grazing of sheep particularly those not yet at peak productivity level. A slight correction in the mineral content of feed, with the addition of salts containing one or two of the main elements (i.e. Ca and P) may be sufficient. A similar result was obtained by Coates et al. (1990) who reported that phosphorus concentrations of crop and forage plants declined markedly with advancing maturity, although the decline was less in legumes than in grasses. Concentrations of many other elements also decline, but rarely to the same extent as those of phosphorus. Such changes often reflect increases in the proportion of stem to leaf and old to new leaves, with stems and old leaves having lower mineral concentrations than young leaves (Minson, 1990).

Ca deficiency is most likely to occur in areas of high rainfall and humidity. Abundant rainfall seems to have an adverse, probably leaching effect, on P. Mg is often deficient in young grass, tropical forage, straw and other lowquality forages and a deficiency of Mg can reduce the digestibility and intake of forage. During long periods of P deficiency, this mineral may become deficient in the rumen of sheep, leading to reduced microbial growth efficiency and at times digestibility and intake of forage (Leng, 1990). This is probably due to slightly different adaptations and feeding habits, although these two animal species (sheep and goats) have a same type of digestive system. Goats prefer more browsing, while sheep are grazing lower forages. It has been observed that browsed forages have higher mineral contents than lower forage and grasses. Also as forages mature and dry up, their mineral concentration declines. The rate of this decline is higher in grasses than that of browsed forage plants as reported by Hajer et al. (2014).

Conclusion

It was concluded that the mineral nutrition of livestock at this region was at the marginal deficient level. This concentration may change abruptly to severe deficient levels at any time and may result in decreasing effective minerals particularly at dry season due to decrease in the levels of essential minerals in forages which are considered as the main reason for poor animal performance.

Acknowledgements

The authors wish to express their appreciation to the Federal Research

Effect of ... /28

Centre for Cultivated Plants - Julius Kühn- Institut, in Braunschweig, Germany for technical support and for giving us the absolute access to the laboratory.

References

- Alloway, B.J., 2004. Zinc in soils and crop nutrition. IZA Publications, International Zinc Association, Brussels, p. 1–16.
- Abdel Moniem, M.A., El Hag Hassabo, A.A., Turki, I.Y., Bushara, I. and Eisa, M.O., 2014. Determination of sodium and chloride in the blood serum of goats grazing at El-Khuwei locality, West Kordofan, Sudan. Wudpecker, Jour. Agricultural Research, 3(8): 154-156.
- Ben Salem, H. and Smith, T., 2008. Feeding strategies to increase small ruminant production in Dry environments. Small Ruminant Res. 77: 174-194.
- Bjugstad Ardell, J., Crawford, H.S. and Neal, D.L., 1970. Determining forage consumption by direct observation of domestic animals. In: Range and Wild. Habitat Eval. A Res. Symp. U.S. Dept. Agric. Forest Serv. Misc. Pub. No. 1147.220 p.
- Coates, D.B., Kerridge, P.C., Miller, C.P. and Winter, W.H., 1990. Phosphorus and beef production in Australia. The effect of phosphorus on the composition, yield and quality of legume based pasture and their relation to animal production. Tropical Grasslands, 24: 209-220.
- Cook, R. H. and Fadlalla, B., 1987. Seasonal variations in plasma phosphorus levels of transhumant sheep in Kordofan, Sudan. Trop. Anim. Health Prod. 19(1):57-62.
- Devendra, C., 1985. Integrated farming systems involving small ruminants. Proc. III. Asia-Australasian Animal. Sci. Congress, 6-10 May 1985. Seoul. Korea.
- Grusak, M. A., 2001. Plant Macro- and Micronutrient Minerals. Encyclopedia of life sciences and 2001 Nature Publishing Group / www.els.net.
- Hajer, I. I., Ishraga, G. I., Shamat, A. M., Aisha,A. and Eisa, S.H., 2014. Mineral Profile ofSheep and Goats Grazed Natural Pasture in

Nyala Locality, Western Sudan. Jour. Agricultural and Veterinary Sciences, 15(1).

- Leng, R. A., 1990. Factors Affecting the Utilization of "Poor-Quality" Forages by Ruminants Particularly Under Tropical Conditions. Nutrition Research Reviews, 3: 277-303.
- MARF., 2009. Ministry of Animal Resource and Fisheries, report. North Kordofan, Sudan.
- MARF., 2011. Ministry of Animal Resource and Fisheries. Statistical Bulletin for Animal Resources, Issue No. 20, Khartoum, Sudan.
- MARF., 2013. Ministry of Animal Resources and Fisheries. Statistical Bulletin for Animal Resources, Issue- No. 20. Khartoum, Sudan.
- McDowell, T.R. and Conrad, J.H., 1977. Trace mineral nutrition in Latin America. World Anim. Rev., 24: 24-33.
- Minson, D.J., 1990. Forages in Ruminant Nutrition. Academic Press, San Diego, California, pp. 208–229.
- NRC, (National Research Council), 1996. Nutrient requirements of Beef cattle (7th Ed). National Academy Press. Washington. D.C.
- NRC, (National Research Council), 1985. Nutrient requirements of sheep (6th Ed). National Academy press. Washington. D.C.
- Pastrana, R., Mcdowell L.R., Conrad, J.H. and Wilkinson, N.S., 1991. Mineral status of sheep in the Paramo region of Colombia. II. Trace minerals. Small Ruminant Research 5: 23-34.
- Rick, M., 2007. Minerals of Small Ruminant Series. Uvalde. Texas Agricultural Extension Service. fromhttp://sullontx.tamu.edu/publication/ACF2 75/pdf.
- Sahar, E. A., 2013. Effect of reseeding and water harvesting on productivity, botanical composition and diet selected by grazing transhumant sheep in Sheikan Locality, North Kordofan State, Sudan. Ph.D. thesis in range science. Sudan University of Science and Technology, College of Forestry and Range Science. Department of range science.
- Underwood, E. J., 1981. The Mineral Nutrition of Livestock. 2nd ed. Commonwealth Agricultural Bureax, London, England. 180 p.

اثر مراحل مختلف رشد بر غلظت مواد معدنی پر مصرف در گیاهان پهن برگ و گندمیان در منطقه نیمه خشک سودان

سحر عزت^{الف»}، بابو فادلاله^پ، هاله احمد^ب ^{الف}استادیار دانشگاه علم و صنعت سودان، دانشکده جنگلداری و علوم مرتع، سوبا، خارطوم، سودان [«](نگارنده مسئول)، پست الکترونیک: s_abdelhag@yahoo.com ^پدانشکده جنگلداری و علوم مرتع، دانشگاه علم و صنعت، سوبا، خارطوم، سودان

> تاریخ دریافت: ۱۳۹۵/۰۹/۲۷ تاریخ پذیرش: ۱۳۹۵/۱۲/۱۳

چکیده. تغییرات غلظت مواد معدنی با رشد گیاه، اغلب در ساقه نسبت به برگ دیده میشود. غلظت مواد معدنی در ساقه کمتر از برگهای جوان میباشد. هدف از این پژوهش، ارزیابی وضعیت عناصر معدنی پر مصرف از قبیل سدیم، پتاسیم، فسفر، کلسیم و منیزیم در مراحل مختلف رشد گونههای غالب بومی در طول گلدهی و تشکیل دانه بود. این آزمایش در مزرعه تحقیقاتی ال عبید در منطقه بانو، محل شیکان، شمال کردفان دولت سودان، در فصول مختلف و بین سالهای ۱۳۹۰ الی ۱۳۹۱ انجام شد. دادهها نشان داد که غلظت مواد معدنی پر مصرف در گیاهان پهن برگ در مقایسه با گیاهان گندمیان بیشتر است. همچنین در مرحله گلدهی غلظت مواد معدنی پر مصرف در مقایسه با مرحله تشکیل دانه بالاتر است. مواد معدنی پر مصرف در گیاهان پهن برگ در مقایسه با مرحله تشکیل دانه بالاتر است. مواد معدنی پر مصرف در معانی معاوی مخلوطی از گیاهان پهن برگ و گندمان، منابع خوبی از مواد معدنی پر مصرف در ماله میباشد. همچنین نتایج نشان داد عناصر پر مصرف در پهن مواد معدنی پر مصرف در ماله میباشد. همچنین نتایج نشان داد عناصر پر مصرف در پهن مواد معدنی پر مصرف در مطالعه برای گوسفند و به خصوص در مرحله قبل از تشکیل دانه کافی میباشد.

کلمات کلیدی: عناصر پر مصرف، مراحل رشد، مرحله تشکیل دانه