

Research and Full Length Article:

Determination of Potential Habitat of Range Plant Species Using Maximum Entropy Method

Fatemeh Palashi^A, Hossein Piri Sahragard^B*, Majid Ajorlo^C

^A M.Sc. Graduated, Department of Rangeland and Watershed Management, Faculty of Soil and Water, University of Zabol, Zabol, Iran.

^B Assistant Professor, Department of Rangeland and Watershed Management, Faculty of Soil and Water, University of Zabol, Zabol, Iran, *(Corresponding author). Email: hopiry@uoz.ac.ir

^C Associate Professor, Department of Rangeland and Watershed Management, Faculty of Soil and Water, University of Zabol, Zabol, Iran.

Received on: 24/11/2018 Accepted on: 13/05/2019

Abstract. This study aimed to identify the most important physical variables affecting the distribution of four range plant species (Tamarix aphylla, Calligonum comosum, Prosopis spicigera and Salsola rigida) habitats and to prepare potential habitat map of the species using Maximum Entropy (MaxEnt) method in rangelands of Jiroft city, Kerman province, Iran. To this end, sampling of vegetation including species type and percent cover was conducted with a randomized-systematic method in 2015. Sample size was determined as 60 plots with a quadrat size of 25-100 m². For soil sampling, eight profiles were dug in each habitat and samples were taken at two depths, i.e., 0-30 and 30-60 cm. Results indicated that the classification accuracy of the model was acceptable and soil variables including EC, percentage of lime, organic matter, moisture content and texture had the greatest effect on the distribution of the studied plant species habitats. Correlations between the actual and predicted maps for Tamarix aphylla and Calligonum comosum habitats were at a very good level, Kappa= 0.81 and 0.79, respectively; for *Prosopis spicigera* habitat, it was at a good level. Kappa= 0.75, and finally for *Salsola rigida*, it was at a moderate level. Kappa = 0.53. These results indicate that the MaxEnt method can provide valuable information about the physical conditions of plant habitats in arid rangeland. Knowledge on physical characteristics of plant habitats can be useful in determination of potential habitats and rangeland improvement projects.

Key words: Plant distribution, Potential habitat, MaxEnt, Kappa index, Jiroft rangelands

Introduction

Predictive modeling of the range plant species distribution can play a key role in conservational studies on biology. determination of habitat suitability for plant species, changes in rangeland vegetation and diversity through quantitative assessment of habitat conditions (Guisan and Thuiller, 2005; Piri Sahragard and Zare Chahouki, 2015; Zare Chahouki and Piri Sahragard, 2016). Prediction models using a set of physical variables in a specific area predict the distribution of the indicator species as a physical function of variables and determine the suitability of that area for the species under consideration (Hirzel and Guisan, 2002). In other words, these models formulate the relationship between plant species and environmental conditions using GIS facilities and multivariate statistical tools to quantify the impact of important physical variables on habitat desirability (Yalpanian et al., 2015).

Several methods are used in predictive modeling of range plant species distribution. Machine learning methods are one of the non-parametric methods used in prediction modeling of plant species distribution. Methods such as MaxEnt, inductive classification, decision tree, genetic algorithms and artificial neural networks are included in this group. These methods usually predict the probability of membership of each class to each category related to the response variables based on the frequency distribution in the data used to train the model (Piri Sahragard and Zare Chahouki, 2016). Each of these modeling methods has certain preconditions that should be considered in selecting the method. For example, some methods such as MaxEnt only use presence data for modeling and hence, it has not got complexities of methods that use both presence and absence data (Phillips et al., 2006). The MaxEnt method is a multipurpose method for predicting or deducing incomplete data. This method aims to estimate the probability of distribution of a species by finding a probabilistic distribution with MaxEnt (Phillips *et al.*, 2004). In this method, in the first step, the model of the layers related to the environmental variables is evaluated based on the data of the trainer related to the study area and then, the probability of occurrence of any species in the entire study area is estimated (Piri Sahragard and Zare Chahouki, 2016).

Modeling the distribution of the potential habitat of plant species using MaxEnt method has shown that this method can be useful for prediction of plant species with low amount of available data and the results can be used in rangelands monitoring and conservation programs (Kumar and Stohlgren, 2009; Tarkesh and Jetshcke, 2012). Comparison of the predictive function of the MaxEnt with Bioclimatic Prediction and Modeling System (BIOCLIM) and Genetic Rule Algorithm for Set Production (GARP) methods also suggests that the predictive function of the MaxEnt method is better than other methods (Tarkesh and Jetshcke, 2012). Moreover, the use of MaxEnt method in the modeling of the potential distribution of a medicinal plant, i.e., Justicia adhatoda in Himalayan Mountains suggested that the produced models had high accuracy so that the method can be effectively used to predict the distribution of the species and its conservation (Yang et al., 2013). In addition, modeling the distribution of three species including Tamarix ramosissima. Seidlitzia *rosmarinus* and Cornulaca monacantha using the MaxEnt method in Poshtkouh rangelands of Yazd province, Central Iran showed that distribution of these species was mainly affected by soil properties such as EC, available moisture and the amount of lime. The accuracy of the MaxEnt method was acceptable in estimating the potential distribution of these species in Poshtkouh rangelands (Zare Chahouki and Piri Sahragard, 2016). On the other hand, the repeated use of these predictive models in new regions to

evaluate their predictability is one of the points predicting important in the distribution of plant species (Termansen et 2006). Considering the al., various methods used in prediction modeling of the distribution of plant species, identifying more user-friendly, more accurate and less costly methods is one of the research priorities in this field. Therefore. considering the necessity of repetition of models in different climate zones to evaluate their predictive performance with the aim of public models development with a specific confidence interval and usable in rangeland improvement practices, the present study was carried out in Jiroft, Southeastern Iran. The objectives of this study were to determine the capability of the MaxEnt method in identifying effective variables in the separation of range plant habitats, the ecological analysis of the relationship between these variables and the distribution of species, and preparation

of predicted map for these habitats in rangelands.

Materials and Methods Study Area

The study site with an area of 11,717 ha is located in Kerman province, southern part of Jiroft city and north of the Jiroft -Farvab road. The area lies within 56° 17' E longitude and 26° 43' N latitude (Fig. 1). The highest and lowest elevation of this area is 527 and 805 m above sea level (msl), respectively. The maximum and minimum rainfall occurs in February and September, 41.2 and 2.8 mm, respectively. The average annual rainfall is about 183.1 mm. The climate of the area is classified as dry and desert by Emberger's climate classification. Major plants of the study Chenopodiaceae and area belong to Polygonaceae families. Vegetation types change clearly with topography, soil and variations (Maddahi Nezhad, altitude 2015).

Fig. 1. Location of the study site in Kerman Province, Iran

Data Collection

Sampling units were identified by mapping the slope, elevation and geology of the study area in the scale of 1:25000. Homogeneous sampling units were selected by intersecting slope, elevation and geology maps in GIS environment. Four homogeneous sampling units were selected for vegetation and soil sampling according to percent slope, elevation and

geological characteristics of the habitats. randomized-systematic The sampling method was used for vegetation sampling through establishment of quadrats along the four transects with 200-300m length. The length of transects and space between was determined according them to vegetation type, plant distribution pattern, topography and other physical conditions of habitat. In each habitat, four transects were established parallel and perpendicular to slope. The distance between transects was determined based on the number of samples and the area of habitat. Quadrat size ranged from 25 to 100 m² according to the existing species type, percent canopy

cover, plant density and the variables under consideration (Table 1). The sample size was determined in each sampling unit with regard to vegetation changes and Cochran statistical method (Piri Sahragard et al., 2018). Some of the information about the vegetation types and soil characteristics are presented in Tables 2 and 3. In addition to recording vegetation characteristics (species type and percentage of canopy) in each habitat, information on elevation, slope, aspect, latitude and longitude of sampling points as well as geographical coordinates related to the boundaries of each habitat was recorded in order to provide a real map of the vegetation.

Table 1. Length of sampling line, distance between quadrats, number of quadrats and quadrat size in studied habitats of rangelands in Jiroft, Kerman Province, Iran

S/n	Habitat	Sampling line	Distance between	Number of	Quadrat
		length (m)	quadrats (m)	quadrats	size (m ²)
1	Tamarix aphylla	300	30	40	100
2	Prosopis spicigera	300	30	40	100
3	Salsola rigida	200	15	60	25
4	Calligonum comosum	200	15	60	25

Table 2. Characteristics of plant habitats in arid climate rangelands in Jiroft, Kerman Province, Iran

S/n	Habitat	Symbol	Cover	Slope	Aspect	Area	$Rainfall^*$	Altitude
			(%)	(%)		(ha)	(mm)	(m)
1	Tamarix aphylla	Ta. ap	35-40	1-5	Southern	3,061	100-190	500-600
2	Prosopis spicigera	Pr. sp	35-40	1-5	Southern-northern	2,856	100-190	600-650
3	Salsola rigida	Sa. ri	40-50	5-10	Southern	2,037	100-200	650-700
4	Calligonum comosum	Ca. co	45-50	5-10	southern	3,763	100-200	700-800

* Rainfall is the mean of 20-year data (1995-2015)

Preparation of Soil Properties Map Using Geostatistics Methods

To prepare the predicted map of a habitat, it is necessary to map the environmental factors using Geostatistics methods. In this study, the relationship and spatial structure of the variables were investigated using the Kriging method and the GS^+ version 5. The Kriging method is one of the highprecision interpolation methods, which provides the best unbiased estimation with the least variance. In this way, error reduction can be achieved by measuring more data (Wu et al., 2008; Zare Chahouki et al., 2010). To create the MaxEnt model, layers related to environmental variables and information about the presence points are required. of the species After generating maps of the environmental variables, the layers of the environment variables were prepared in ASCII format and the layers of the presence of the species were prepared in CSV format. After preparing the layers and performing the desired settings in the software MaxEnt configuration, the software Version 3.3.3e was used for modeling. It should be noted that in this method, 25% of the data was used to test the model and the rest was used for training. The maximum number of times of the model running also considered was 1000 repetitions. Jackknife test was used to determine the importance of environmental variables. This test has been accepted as an assessment method with an acceptable accuracy (Phillips et al., 2004; Hosseni et al., 2013).

Evaluating the Effectiveness of Prediction Models for Preparing Presence and Absence Maps of Species

In order to evaluate the prediction models generated by the MaxEnt method, analysis of the Area Under Curve (AUC) of the function feature was used (Sweet, 1988). Because MaxEnt model output is a continuous map, it is necessary to determine the optimal threshold for generating presence or absence maps of the species (Phillips et al., 2006; Negga, 2007). In this research, after determining optimum the threshold using the combination of equal sensitivity and specificity, continuous predicted maps were converted into the presence and absence maps of the species. This method is one of the common methods for determining the limit of optimal thresholds in which the sensitivity (the fraction of correctly predicted presence) and the specificity (the fraction of correctly predicted absence) are calculated around the threshold between 0 and 1 (for example, 0, 0.01, 0.02, 0.03 ... 0.99, 1). In the next step, by plotting the changes of these two indicators in front of each other, the intersection of the two charts (the point where the sensitivity and specificity are equal) was considered as the optimal threshold for the presence (Kumar and Stohlgren, 2009). After determining the optimum threshold and producing maps for the presence and absence of species, their agreement with the actual map was evaluated by calculating Kappa index in IDRISI 32 release 2 software. Studies have shown that Kappa is one of the best and most widely used indices for this purpose (Zare Chahouki *et al.*, 2010; Mohtashamnia *et al.*, 2011).

Results and Discussion

Altitude, soil lime content, EC and organic matter in first depth (0-30 cm) had the greatest effects on the distribution of the habitat of *T. aphylla* (Fig. 2). According to the response curves of *T. aphylla* to the environmental factors, the most probable presence of this species occurred in areas with altitude of 500–550 m above msl, soil lime content of 10-14%, EC of 6-16 dS/m, and organic matter amount of 4-6% in soil's first depth. The response curve analysis of lime content of soils in first depth indicated that increasing the amount of lime to 10-14% can increase the likelihood of *T. aphylla* presence (Fig. 2).

Soil EC in 0-30 and 30-60 cm depths, saturated moisture and percentage of sand in depth 30-60 cm were the most important factors. respectively in distribution of P. spicigera habitat. The highest fitness for the occurrence of P. spicigera was in areas where soil EC was 20-30 and 55-60 dS/m in 0-30 and 30-60 cm depths, respectively, and saturated moisture was about 40-45%. Altitude and soil organic matter in 0–30 cm depth were the most effective variables in habitat distribution of S. rigida. Areas with altitude of 550-600 m and 1-2.5% organic matter in 0-30 cm soil depth had the highest presence of S. rigida habitat. Furthermore, Altitude, soil lime content in 0-30 cm depth, and soil EC in 30-60 cm depth had the greatest effects on the distribution of C. comosum habitat. It can be stated that the most probable occurrence of C. comosum was in areas with altitude of 630-650 m, 6-8% of lime in 0-30 cm depth and EC of 3-5 dS/m.

Fig. 2. Response curves of the most important variables in Tamarix aphylla habitat

Analysis of the relative importance of physical variables using Jackknife test showed that altitude, soil moisture content, texture, lime content, EC, pH, and organic matter played the most important role in the distribution of the studied plant habitats in rangelands of Jiroft, Kerman province, Southeastern Iran (Fig. 3). Consistently, it has been reported that soil organic matter, EC, pH, nitrogen, phosphorus, potassium, lime, slope and altitude were the most important environmental factors affecting plant habitats in rangelands of Jiroft (Maddahi Nezhad, 2015). These variables provide useful information about the distribution of range plant species. Other variables, when used individually, have less significance in prediction models of the habitats. Variables with less importance can be removed from the prediction model in order to improve its accuracy (Zare Chahouki and Piri Sahragard, 2016; Piri Sahragard and Ajorlo, 2016). Moreover, the results of the importance of variables indicated that the location of each habitat affected the input of the most influential variables in prediction models. Our results clearly demonstrated that the MaxEnt method was suitable for modeling the distribution of plant species in arid rangelands. This method can be easily used by experts and users (Phillips et al., 2006), and it uses small number of variables to generate an accurate prediction model (Piri Sahragard and Ajorlo, 2018).

Fig. 3. Results of Jacknife test for determining the relative importance of environmental variables in *Tamarix aphylla* and *Prosopis spicigera* habitats

The effect of soil lime and pH has been reported as one of the factors influencing the distribution of T. aphylla (Zare Chahoukiet et al., 2010; Zare Chahouki and Piri Sahagard, 2016). Furthermore, several studies have emphasized on the role of altitude as a positive factor on the distribution of T. aphylla (Arekhi et al., 2010; Maltez; Mouroet et al., 2005). Altitude can largely affect the distribution of plant species through affecting air temperature, air pressure, ultraviolet radiation, precipitation, and consequently changing the climatic conditions. Thus, various plant species are located in different altitude levels according to their ecological needs. In addition, it has been reported that there is a strong correlation between the presence of *Tamarix* sp. with high levels of soil EC and saturated moisture content; hence, this species is known as a halophyte species that grows in saline lands with fine-grained texture (Tatian et al., 2011; Zare Chahouki et al., 2012). Soil texture as one of the effective physical variables in the distribution of

Tamarix sp. can play important roles in distribution and growth of its communities in arid regions through affecting the water and nutrients availability for the plant (Enright et al., 2005). For example, Tamarix passerinoides has been introduced as a species of saline lands with a finegrained texture in several studies with a high availability of water due to poor and low infiltration (Zare drainage Chahoukiet et al., 2010; El-barasi and Barrani, 2012). Furthermore, salinity is directly affected by soil texture as finer soil texture can increase salinity level (Sokoti Oskuei et al., 2007). The effect of salinity on increasing the suitability of habitat for Tamarix sp. and the presence of this species in plant composition has been emphasized in numerous studies (Azarnivand et al., 2010; Khalasi Ahwazi et al., 2012; El-Barasi and Barrani, 2012; Zare Chahouki and Piri Sahragard, 2016). High soil saturated moisture content which can be affected by soil texture can also cause soils to retain more moisture (Cohen, 1960).

Topographic features such as elevation, slope and aspect can be very influential in some soil characteristics such as depth, moisture content and organic matter; thereby, they can control the distribution of plant species such as S. rigida (Mohtashamnia et al., 2011; Piri Sahragard and Zare Chahouki, 2015). The role of altitude as a positive factor in the distribution of plant species has also been reported in many studies (Arekhi et al., 2010; Zare Chahouki et al., 2012; Piri Sahragard et al., 2018). Increase in altitude, lime content of soils in 0-30 cm depth and EC 30-60 cm soil depth can provide the conditions for the establishment of С. comosum. In consistent, it was reported that C. comosum mostly grows on sandy soils of watercourses and light soils such as loamysand with relatively high loam (Ahqaqiet et al., 2011).

Based on the categorization of the AUC values (Table 3), accuracy of prediction models for *T. aphylla* habitat was at a good level and for *P. spicigera*, *S. rigida* and *C. comosum* was at an acceptable level (Table 4). The predicted maps of presence and absence of species for each habitat showed that their agreement with actual maps was different (Fig. 4). In consistent with the findings of this study, it has been reported

that the values of the AUC are affected by the ecological niches of species, and its value tends to be lower for species with a wide range of distribution than for species with limited ecological niche (Evangelista et al., 2008; Yang et al., 2013; Ardestani et al., 2015; Piri Sahragard and Ajorlo, Based on the classification of 2017). Kappa index values (Cohen, 1960), actual and predicted maps of T. aphylla and C. comosum habitats had a very good agreement, in *P. spicigera* habitat they had a good agreement and finally in S. rigida habitat, they had a moderate agreement (Table 5). In fact, the lowest and highest agreement levels were allocated to T. aphylla (as a species with limited distribution range) and S. rigida, respectively. In contrast to the findings of this study, it has been reported that the MaxEnt method is able to estimate species with broad ecological niches more accurately (Piri sahragard and Zare Chahouki, 2015). In addition to the nature and algorithm used in modeling, model prediction function also depends on species characteristics, response form of species to environmental conditions and the range of geographical distribution of species (Luoto and Hjort, 2005; Zare Chahouki and Piri Sahragard, 2016).

Table 3. Classification of area under curve (AUC) (Sweet, 1988)

Range	Accuracy level
0.5-0.7	Weak
0.7–0.9	Acceptable
0.9-1.0	Good

Table 4. Area under curve (AUC) and	classification	accuracy	of the	prediction	models in	the studied	l habitats,
Jiroft rangelands, Kerman Province, Iran	1	-					

Habitat	AUC value	Classification accuracy			
Tamarix aphylla	0.93	Good			
Prosopis spicigera	0.89	Acceptable			
Salsola rigida	0.73	Acceptable			
Calligonum comosum	0.75	Acceptable			

Table 5. Presence optimal threshold and agree	ment level of predic	cted and actual maps in the	studied habitats,
Jiroft rangelands, Kerman Province, Iran			

	· · · · · · · · · · · · · · · · · · ·		
Habitat	Presence optimal threshold	Kappa value	Agreement level
Tamarix aphylla	0.30	0.81	Very good
Prosopis spicigera	0.20	0.75	Good
Salsola rigida	0.20	0.53	Moderate
Calligonum comosum	0.50	0.79	Very good

Fig. 4. Predicted and actual maps of the studied habitats generated by using MaxEnt method (color parts are predicted maps)

Conclusion

The results of this study showed that the MaxEnt is a suitable method for identifying the ecological needs of plant species and predicting the distribution of species in the study area. The special features of this method is providing great amount of information about the ecological needs of plant species and the ease of understanding of the outputs. In this study, due to the fact that most of the studied species had a limited distribution range, the MaxEnt method was able to estimate the range of geographical distribution of these species accurately. The most accurate estimate of the distribution range was related to *T. aphylla*. This indicates that in comparison with other species, this species has more limited ecological niches and it is necessary to pay special attention to this species in conservation and utilization of vegetation in the region. In addition, soil properties such as EC, lime content, organic matter, moisture content and texture play a pivotal role in vegetation distribution compared to other environmental factors in the study area. Therefore, by focusing on these characteristics in future research and using the MaxEnt method, the success of utilization projects and vegetation sustainable protection can be increased in addition to saving the cost and time.

Acknowledgment

This study was supported by research grant from University of Zabol, Iran (grant No. UOZ-GR-9517-24). The authors gratefully acknowledge use of the services and facilities of the Faculty of Soil and Water, University of Zabol, Iran.

References

- Ahqaqi, R., 2011. A study of some ecological properties of four scenic bodies in Yazd province. MSc thesis, Faculty of Natural Resources and Desert Study, Yazd University, 74p.
- Ardestani, E. G., Tarkesh, M., Bassiri, M. and Vahabi, M. R., 2015. Potential habitat modeling for reintroduction of three native plant species in central Iran. Journal of Arid Land, 7: 381-390.
- Arekhi, S., Heydari, M. and Pourbabaei, H., 2010. Vegetation-environmental relationships and ecological species groups of the Ilam oak forest landscape, Iran. Caspian Journal of Environmental Sciences, 8: 115-125.
- Azarnivand, H., Joneidi Jafari, H., Nikoo, SH., Zare Chahouki, M. A. and Malekian, A. 2010. Study of effective ecological factors on distribution of vegetation types (Case study: Southern margin of Haj Aligholi Kavir, Damghan). Desert Journal, 15: 1-4.
- Cohen, J. A., 1960. Coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20: 37-46.
- El-barasi, Y. M. and Barrani, M. W., 2012. Factors affecting natural vegetation on EL-Harouge Mountain, Central part of Libyan desert (Sahara). Bocconea, 24: 199-211.
- Enright, N. J., Miller, B. P., and Akhter, R., 2005. Desert vegetation and vegetation-environment relationships in Kirthar National Park, Sindh. Pakistan. Journal of Arid Environment, 61: 397-

418.

- Evangelista, P. H., Kumar, S. and Stohlgren, T. J., 2008. Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distribution, 14: 808–817.
- Guisan, A. and Thuiller W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8: 993-1009.
- Hirzel, A., and Guisan A., 2002. Which is the optimal sampling strategy for habitat suitability modelling. Ecological Modelling. 157: 331-341.
- Hosseni, S. Z., Kappas. M., Zare Chahouki, M. A., Gerold, G., Erasmi, S. and Rafiei Emam, A., 2013. Modelling potential habitats for *Artemisia sieberi* and *Artemisia aucheri* in Poshtkouh area, Central Iran using the maximum entropy model and Geostatistics. Ecological Informatics, 18: 61-68.
- Khalasi Ahvazi, L., Zare Chahouki, M. A. and Ghorbannezhad, F., 2012. Comparing Discriminant Analysis, Ecological Niche Factor Analysis and Logistic Regression methods for geographic distribution modelling of *Eurotia ceratoides* (L.) C. A. Mey. Journal of Rangeland Science, 3: 45-57.
- Kumar, S. and Stohlgren, T. J., 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree *Canacomyrica monticola* in New Caledonia. Journal of Ecology and the Natural Environment, 1: 94-98.
- Luoto, M. and Hjort J., 2005. Downscaling of coarsegrained geomorphological data. Earth Surface Processes and Landforms, 33: 75-89.
- Maddahi Nezhad, S., 2015. Modeling the desirability of plant species habitat using MaxEnt method in Jiroft plain. MSC Thesis, Faculty of Water and Soil, University of Zabol, 64p. (In Persian).
- Maltez–Mouro, S., Garcia, L.V., Maranon, T. and Freitas, H., 2005. The combined role of topography and overstory tree composition in promoting edaphic and floristic variation in a Mediterranean forest. Ecological Research, 20: 668-677.
- Mohtashamnia, S., Zahedi, GH. and Arzani, H., 2011. Multivariate analysis of rangeland vegetation in relation to edaphical and physiographical factors. Procedia Environmental Sciences, 7: 305-310.
- Negga, H. E., 2007. Predictive Modelling of Amphibian Distribution Using Ecological Survey Data: a case study of Central Portugal, Master thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.
- Phillips, S. J., Anderson, R. P. and Schapire R. E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259.
- Phillips, S. J., Dudik, M. and Schapire, R. E., 2004. A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning, ACM Press,

New York. 655-662.

- Piri Sahragard, H. and Ajorlo, M., 2016. Predicting the distribution of plant species habitats using maximum entropy model (A case study in rangelands of western Taftan, Southeastern Iran). Soil and Environment, 35: 224-234.
- Piri Sahragard, H. and Ajorlo, M., 2017. A comparison of logistic regression and maximum entropy for distribution modeling of range plant species (a case study in rangelands of western Taftan, southeastern Iran). Turkish Journal of Botany, 42: 28-38.
- Piri Sahragard, H. and Zare Chahouki M.A., 2015. An evaluation of predictive habitat models performance of plant species in Hoze-i Soltan rangelands of Qom province. Ecological Modelling. 309 and 310: 64-71.
- Piri Sahragard, H. and Zare Chahouki, M. A., 2016. Modeling of *Artemisia sieberi* Besser habitat distribution using Maximum Entropy Method in desert rangelands. Journal of Rangeland Science, 6(2): 93-101.
- Piri Sahragard, H., Ajorlo, M. and Karami, P., 2018. Modeling habitat suitability of range plant species using random forest method in arid mountainous rangelands. Journal of Mountain Science. 15(10), 1-13. https://doi.org/10.1007/s11629-018-4898-1.
- Sokoti Oskuei, R., Mehdyan, M. H., Mahmodi, S. H. and Qahramani, A., 2007. Comparison of the efficiency of some Geostatistical methods for determination of spatial dispersion of soil salinity, A case study of Urmia plain. Research and development in agriculture and horticulture, 74: 90-98. (In Persian).
- Sweet, J. A., 1988. Measuring the accuracy of a diagnostic systems. Science, 240: 1285-1293.
- Tarkesh, M. and Jetshcke, G., 2012. Comparison of six correlative models in predictive vegetation mapping on a local scale. Environmental and Ecological Statistics, 19: 437-457.

- Tatian M. R., Zabihi A., Tamartash, R. and Shabani, M., 2011. Determination of indicator species of some soil characteristics by ordination method in Kooh-e-Namak rangelands of Qom. Journal of Environmental Studies, 37(52): 34-52. (In Persian).
- Termansen, M., Mcclean, C. J, Preston, C. D. 2006. The use of genetic algorithms and Bayesian classification to model species distributions. Ecological Modelling, 192: 410–424.
- Wu, J., Boucher, A. and Zhang, T., 2008. SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Computers & Geosciences, 34(12): 1863-1874.
- Yalpanian, A. A., Karami, M., Shams Esfand Anad, B. and Makhfi, G., 2015. Assessment of *Canis lupus* gray wolf habitat in Khangrmans protected area of Hamedan Province using MaxEnt method. Quarterly of animal ecology, **7**: 19-30.
- Yang, X. Q., Kushwaha, S.P.S., Saran, S., Xu, J. and Roy, P. S., 2013. MaxEnt modeling for predicting the potential distribution of medicinal plant, *Justicia adhatoda* L. in Lesser Himalayan foothills. Ecological Engineering, 51: 83-87.
- Zare Chahouki, M. A. and Piri Sahragard, H., 2016. MaxEnt modelling for distribution of plant species habitats of rangelands (Iran). Polish Journal of Ecology, 64 (4): 453-467.
- Zare Chahouki, M. A., Azarnivand, H., Jafari, M. and Tavili, A., 2010. Multivariate statistical methods as a tool for model based prediction of vegetation types. Russian Journal of Ecology, 41: 84-94.
- Zare Chahouki, M. A., Khalasi Ahvazi, L. and Azarnivand, H., 2012. Comparison of three modeling approaches for predicting plant species distribution in mountainous scrub vegetation (Semnan rangelands, Iran). Polish Journal of Ecology, 60: 105-117.

تعیین رویشگاه بالقوه گونههای گیاهی مرتعی با استفاده از روش آنتروپی حداکثر

فاطمه پلاشی^{الف}، حسین پیری صحراگرد^{ب*}، مجید آجورلو^ت ^{اش}دانش آموخته کارشناسی ارشد، گروه مرتع و آبخیزداری، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران ^۳ استادیار، گروه مرتع و آبخیزداری، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران ^{*}(نگارنده مسئول)، پست الکترونیک: hopiry@uoz.ac.ir ^۵ دانشیار، گروه مرتع و آبخیزداری، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

چکیده. هدف این مطالعه شناسایی متغیرهای مهم فیزیکی مؤثر در پراکنش رویشگاه چهار گونه مرتعی (Salsola rigida و Imarix aphylla, Calligonum comosum, Prosopis spicigera) و تهیه نقشه رویشگاه بالقوه این گونهها با استفاده از روش آنتروپی حداکثر (MaxEnt) در مراتع جیرفت، استان کرمان، در جنوب شرق ایران بود. برای این منظور، نمونهبرداری از پوشش گیاهی شامل نوع گونهها و درصد پوشش به روش برای نمونهبرداری خاک هشت پروفیل در هر رویشگاه حفر و نمونهها از دو عمق صفر تا ۳۰ و ۳۰ تا ۶۰ برای نمونهبرداری خاک هشت پروفیل در هر رویشگاه حفر و نمونهها از دو عمق صفر تا ۳۰ و ۳۰ تا ۶۰ سانتیمتر برداشت شدند. نتایج نشان داد که صخت طبقهبندی مدل قابل قبول بوده و متغیرهای خاک شامل سانتیمتر برداشت شدند. نتایج نشان داد که صخت طبقهبندی مدل قابل قبول بوده و متغیرهای مال دارند. همبستگی بین نقشههای واقعی و پیشبینی برای گونههای Ramit aphylla و برای گونه مطالعه شده *comosum* در سطح خیلی خوب با مقدار ضریب کاپای بهترتیب ۲۸/۱۰ و ۲۹/۰ و برای گونه محالعه در سطح *spicigera* در سطح خیلی خوب با مقدار ضریب کاپای بهترتیب ۲۸/۱۰ و ۲۹/۰ و برای گونه می salsola در سطح مینوسط با مقدار ضریب کاپای برابر با ۲۵/۰ و در نهایت برای گونه Salsola در سطح مینوبهای الطاعات در میاطلا می در می ویژند می می تواند متوسط با مقدار ضریب کاپای برابر با ۲۵/۰ و در نهایت برای گونه مای در سطح می می می در می می می می می می می می در می می می می در مناطق خشک ارائه نماید. آگاهی از ویژگیهای فیزیکی رویشگاههای گیاهی می می تواند در تعیین رویشگاه بالقوه و برنامههای اصلاح مرتع مفید باشد.

كلمات كليدى: پراكنش گياهى، رويشگاه بالقوه، MaxEnt، شاخص كاپا، مرتع جيرفت