

Volume 14, Issue 1, 142401 (1-24)

Iranian Journal of Catalysis (IJC)

https://doi.org/10.57647/j.ijc.2024.1401.01

Green synthesis of nickel oxide nanoparticles using plant extracts: an overview of their antibacterial, catalytic, and photocatalytic efficiency in the degradation of organic pollutants

Farzaneh Moradnia¹, Saeid Taghavi Fardood^{2,*}, Armin Zarei¹, Siamak Heidarzadeh³, Ali Ramazani¹, Mika Sillanpää^{4,5,*}

¹Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.

²Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran.

³Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.

⁴Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, South Africa.

⁵Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.

*Corresponding authors: Saeid Taghavi Fardood: s.taghavi@ilam.ac.ir, saeidt64@gmail.com Mika Sillanpää: mikaesillanpaa@gmail.com

Review Paper	Abstract:
Received: 23 December 2023 Revised: 9 February 2024 Accepted: 5 March 2024 Published online: 20 March 2024 © The Author(s) 2024	In the past decade, numerous longitudinal studies have explored green chemistry and its applica- tions in nanoparticle synthesis due to the toxicity associated with traditional methods. Among the various techniques for nanoparticle synthesis, the use of plant extracts in green synthesis has recently gained significant popularity. Green methods are particularly suitable for large-scale nanoparticle synthesis, offering faster preparation rates compared to microorganisms and the ability to produce nanoparticles in diverse sizes and shapes. Nickel oxide nanoparticles (NiO NPs) have been extensively utilized in catalysis, photocatalysis, optics, magnetism, and antibacterial applications. This review focuses on the preparation of NiO NPs using plant extracts, emphasizing their advantageous features such as the absence of contaminant release, environmental friendliness, and cost-effectiveness. Additionally, we delve into the catalytic, photocatalytic, and antibacterial applications of NiO NPs.

Keywords: Nickel oxide; Green synthesis; Catalytic activity; Antibacterial activity; Photocatalytic ability

1. Introduction

Nanotechnology is ascribed as a novel branch of science related to the synthesis of NPs and their utilizations in a wide range of areas such as health, food, space, environmental, and chemical industries, so the demand for eco-friendly and biodegradable methods for the synthesis of nanoparticles is indisputable [1–14]. Nanoparticles are of important interest owing to their very small size and large surface-to-volume ratio [15–20]. Nanoparticles are particles in the size range of 1-100 nm, and materials at the nanometer sizing represent different properties to those of bulk materials and even the isolated atom. Nanomaterials indicate fortified features such as high catalytic reactivity, thermal conductivity, and chemical steadiness [21–24]. Metal NPs and metal oxide NPs have lately received considerable attention among all the other nanomaterials due to their outstanding properties [25–31]. Generally, there are two approaches for the synthesis of NPs: Bottom-up and top-down (Fig. 1). The former way of NPs synthesis involves the arrangement of smaller molecules atom-by-atom into more complex assemblies and the latter way needs bulk material. In this way, macroscopic particles are first prepared and then they are turned into nanosized materials through a process named plastic deformation. This method is less likely to be applied on a large scale as it is less cost-effective [33–36]. One of the most popular and usual techniques for the preparation of nano substances, which engaged in the top-down method, could be Interferometric Litho- graphic (IL) [37–40]. In the mentioned technique, the self-assembling of the minimized particles plays a vital role in the synthesis of nanomaterials. It is more likely to be an efficient and cost-effective approach [41–43].

In the applied physical procedures for the synthesis of nanoparticles are physical factors needed in the creation of stable and well-structured nano-based materials. The colloidal dispersion method is the best example. The other physical techniques are vapor condensation, amorphous crystallization, and physical fragmentation. Nanoparticle synthesis is gone through physical, chemical, and environment-friendly processes [44–47]. The physical methods are less cost-efficient because of using utilizing expensive facilities, and requiring high temperature and pressure. However, chemical approaches for NPs synthesis, such as chemical microemulsion, wet chemical, direct precipitation and etc. [48–55], involve toxic chemicals that could pose a threat for the environment and people who are

in touch with them. Although a considerable number of studies focused on NPs synthesis from chemical and physical approaches, some terrible side effects of the mentioned two approaches, such as using noxious and carcinogenic chemicals, high vacuum usage needed, and less cost-efficacy, have been reported. [56–61] Therefore, it is undeniable that a cost-efficient and green method is required for the preparation of NPs [62–72]. A green method for the synthesis of NPs could be plant extract usage. This method possesses conving advantages such as cost-efficiency, safety, simple usage, and non-poison [73–75]. Thus, in this review, we have focused on NiO NPs synthesis by means of plant extract usage.

1.1 Nickel oxide nanoparticles

NiO NPs stand as one of the most abundant metal oxides on Earth. In the past decade, numerous studies have been conducted to synthesize NiO NPs due to their diverse applications in fields such as electronics, optics, and biomedical systems [76–81]. The preparation of metallic oxides, like TiO₂, CuO, ZnO, and NiO, has become one of the important subjects in recent studies [82–89]. Among all the mentioned inorganic metal oxides, the NiO NPs have been especially interesting among scientists because these nanoparticles are cost-efficient, easy to prepare, and safe [90]. A. Angel Ezhilarasi et al. presented the NiO NPs by means of the Aegle marmelos plant to treat hazardous diseases in India. Highresolution transmission electron microscopy (HR-TEM) and High-resolution scanning electron microscopy (HR-SEM) analysis indicated the average size of NPs between 8-10

Figure 1. Various methods for the nanoparticle synthesis [32].

nm and the spherical shape of NPs. The band gap of NPs was at 3.5 eV which shows that NiO NPs are active in the visible area, so this is a priceless benefit in comparison to the other photocatalysts like TiO_2 [91]. Diallo et al. reported the NiO NPs synthesis by using Aspalathus linearis. In this research, the optical, structural, and photocatalytic activity of the NPs have been considered. The optical analysis showed that NiO NPs had absorption in UV-visible (518.98 nm), in which the more the temperature increased, the less absorption was observed. For example, the bandgap energies fell to below 4 eV when the sample was heated to around 300-400 °C. Furthermore, the final results depicted that NiO NPs have noticeable photocatalytic activity for the degradation of methylene blue [92].

1.2 Eco-friendly synthesis the NiO NPs

Recently, researchers have shown an increased interest in nanoparticles synthesis using microorganisms. The advantages of such a method far outweigh the disadvantages. Some [93]. merits of this approach are its cost-efficiency, safety, and being ecologically-friendly [63, 95, 96]. Green synthesis is an approach in which the NPs are produced using plants, bacteria, fungi, algae, etc. [63, 65, 97–99]. Ayesha Mariam et al. synthesized NiO NPs using a billing approach by means of Azadirachta indica and Psidium guajava with the aim of considering the anti-cancer activities of these NPs. They figured out that the NiO NPs were spherical with a size range of 17-70 nm [100]. B.T. Sone et al. prepared NiO nanopowders by the use of a green approach of aqueous extracts usage from the red flowers of the plant. Callistemon Viminal's X-ray diffraction analysis delineated the average size of NPs to be 20-35 nm with a crystalline shape. The band gap of these NPs was 3.35 eV. Initially controlled redox processes at ambient temperature were proved by electrochemical impedance spectroscopy. This research finally suggested that plant extract is an ecofriendly, safe, harmless, and economical friendly candidate for NiO NPs preparation which could be utilized in energy storage applications [101].

2. Green synthesis and different applications of NiO NPs

2.1 Green synthesis of NiO NPs using plant extract

Several parts of the plant like leaf, stem, root, fruit, and seed have been applied for the NPs preparation. Figure 2 depicts a number of nanoparticle synthesis using plant extracts, and Figure 3 showcases synthetic methods of NPs along with their characterizations and applications. NPs synthesis by plant extracts usage also has some merits such as lowcost, biodegradability, being green, lack of intermediate base groups needed and costly equipment usage required, less time-consuming, and it results in products with lesser impurities [102]. One of the most applicable NPs synthesis methods is the NPs fabrication with plant sources because this way leads to nano-based materials with a variety in shape and size [103]. A useful approach in terms of NiO NPs synthesis is a process in which leaves or flowers are added at a basic pH of 12. After shaking the mixture for about 10 min and putting it in a hot air oven as long as 90 min, the mixture color shifted from light to dark green as the reduction process supplemented. Finally, NiO NPs dried and stored for the following usage. The final results of the research clearly showed that NiO NPs, which have been synthesized by using a synthetic nature-friendly method of Calotropis gigantea leave usage, have a significant antibiotic potential against Escherichia coli and Bacillus subtilus Furthermore, NiO NPs are a convenient choice in a variety of applications because of their proper features such as their magnetic and electrical features. P. Kganyago et al. have recently investigated the innovative and green synthesis of NiO NPs by the use of Monsonia Burkenea's leaves. XRD and HR-TEM analysis proved the preparation of NiO NPs with a 20 nm average size in a spherical shape. The final findings of the research revealed that the NPs have an antibacterial property against gram-negative strains, such as E.

HR-SEM TGA XPS EDS AFM Characterization techniques FT-IR NRD PL BET HR-TEM

Figure 2. Some examples of the nanoparticle synthesis using plant extracts [94].

Figure 3. Characterization of nanoparticles [104].

coli and Pseudomonas aeruginosa. The researchers also found that although these NiO NPs are less likely to have a very positive proliferation impact on carcinogenic cells, they could be preferably utilized as drug carriers for cancer treatment in the human body [106]. Ali Talha Khalil et al. prepared the NiO NPs by using sageretia tea (Osbeck.) leaves and considered their biological effects. The size of NPs observed by XRD and HR-SEM/TEM analysis was 18 nm and their shape was also spherical. This study has investigated the effects of these NPs on six various gram-positive and gram-negative bacterial strains and finding their toxicity, biocompatibility, antioxidant, and enzyme inhibition features. The results showed that NiO NPs revealed improved antibacterial activities and moderate antioxidant properties. The synthesized NiO NPs also indicated modest enzyme inhibition activities and relatively non-toxicity to human cells [107]. To determine the supercapacitor electrodes applications, Manab Kundu et al. prepared NiO NPs by a green and novel approach to Hydrangea paniculata flower extracts usage. The average size of the NPs was 33 nm. The electrode-based NPs depicted high capacitance, and, interestingly, the NiO NPs electrodes showed remarkable cycling stability. The mentioned excellent electrochemical proficiency was related to the nano-scale of particles, which eases migration over the rapid charge-discharge procedure, reduces the diffusion path length of ions and electrons and finally enhances the efficient electrochemical application of electroactive material [108].

Singh et al. present the structural and crystallinity information of NiO NPs, as depicted in Fig. 4a. The XRD pattern confirms NiO nanoparticle formation, displaying intense reflection peaks at $2\theta = 37.3^{\circ}$, 43.3° , 62.9° , 75.6° , and 79.6° . The pattern aligns with JCPDS card number 47-1049, indicating a face-centered cubic structure with an average crystallite size of 27.7 nm. BET analysis in Fig. 4b reveals a specific surface area of $16.71 \text{ m}^2\text{g}^{-1}$, an average pore size of 1.2 nm, and a total pore volume of $0.32 \text{ cm}^3\text{g}^{-1}$, suggesting mesoporous characteristics with a uniform pore size distribution [105].

Subsequently, Singh et al. utilized HRTEM analysis to ex-

amine the morphology and structure of NiO NPs. Fig. 5 (ac) confirms the formation of agglomerated quasi-spherical particles. In Fig. 5d, sharp diffraction spots in the SAED pattern indicate a polycrystalline nature, consistent with XRD results.

Behera et al. demonstrate the synthesis of NiO NPs, confirmed through XRD. The XRD pattern in Fig. 6(a) shows no additional impurity peaks, indicating the crystalline nature of the NiO NPs. The intense diffraction peaks observed at 37° , 43° , 63° , 75° , and 79° correspond to crystal planes (111), (200), (220), (311), and (222), respectively, consistent with the diffraction patterns of NiO NPs. Additionally, Scherrer's equation was used to determine that the average crystallite size of the NiO NPs was 22.8 nm. The FE-SEM image in Fig. 6(b) illustrates the surface morphology of the NiO. Most of the particles appear spherical, with some exhibiting a rod-like shape. The particle size ranges from 40 to 100 nm. Fig. 6(c) presents the EDX spectrum, confirming the elemental composition of the NiO nanoparticles. Lastly, the TEM image in Fig. 6(d) depicts spherical and rod-shaped NiO nanoparticles with diameters ranging from 10 to 80 nm [109].

As the green synthesis methods are now well-liked and popular among scientists, a considerable amount of literature has been published on the synthesis of NiO NPs by the use of different plants, and their details are given in Table 1.

2.2 Antibacterial applications of NiO NPs

Metallic oxide nanoparticles can be a suitable antibacterial tool. Biological features of metallic oxides NPs are related to their nano-based size and the high possibility of the NPs to interact with bio-objects [130, 131]. Over the last few years, more researchers have studied the antibacterial impacts of different metallic oxides on varied bacterial strains. As there have been more researches that focused on antibacterial applications of NiO NPs, we have considered reported antibacterial applications of NiO NPs on different bacterial strains such as *Streptococcus pneumoniae*, *Staphylococcus aureus*, *E. coli*, *E. hermannii* [132], *P. aeruginosa* [133], *B. anthracis*, *B. subtilus*, *Klebsiella pneumoniae*, *Enterobacter*

Figure 4. (a) XRD pattern, (b) BET (inset: pore size distribution) of the NiO NPs [105].

Figure 5. HRTEM images (a-c) and (d) SAED pattern of NiO NPs [105].

Figure 6. (a) XRD Pattern, (b) FESEM Image, (c) EDX and (d) TEM Image of NiO NPs [109].

No.	Plant(family)	Part taken for extraction	Size (nm)	Shape	Ref.
1	Mytaceae	Red flower	20-35	Quasi reversible with films	[101]
2	Rutaceae	Leaf	8-10	Spherical	[91]
3	Acacia tree	Sap	34	Cubic-spherical	[110]
4	Fabaceae	Flower	6–10	Crystalline	[<mark>92</mark>]
5	Apocynaceae	Leaf	20-40	Spherical	[<mark>93</mark>]
6	Moringaceae	Leaf	5-10	Spherical and slightly agglomerated	[111]
7	Lythraceae	Peel	3	Spherical and face-centered cubic	[112]
8	Geraniceae	Leaf	20-25	Crystalline and spherical	[106]
9	Rhamnaceae	Leaf	18	Spherical	[<mark>107</mark>]
10	Hydrangeaceae	Flower	33	Cubic crystalline	[108]
11	Tamaricaceae	Flower	10–14	Crystalline	[113]
12	Euphorbiaceae	Cassav waste	5-10	Hexagonal and sphere	[114]
13	Mytraceae	Leaf	10–20	Cubic	[115]
14	Apocynaceae	Leaf	20	Crystalline	[116]
15	Fabaceae	Root	10–15	Face-centered cubical structure	[117]
16	Rutaceae	Leaf	15–23	Cubic crystalline	[118]
17	Sapindaceae	Rambutan peel waste	50-100	Crystalline	[119]
18	Mytraceae	Leaf	44	Cubic and crystalline	[100]
19	Limonia accidissima	Fruit	23	Spherical	[120]
20	Plectranthus amboinicus	Leaf	100	Spherical	[121]
21	Jatropha gossypiifolia	Leaf	30-40	Rod shape	[122]
22	Ageratum conyzoides	Leaf	40-60	Nanoflakes	[122]
23	Senna auriculata	Flower	20	Spherical	[123]
24	Nigella sativa	Seed	10–50	Spherical and oval	[124]
24	Olive	Leaf	30–65	Spherical	[125]
25	Lantana camara	Flower	40–50	Oval	[126]
26	Orange	Leaf	26-64	Spherical and like oval	[127]
27	Piper betle	Leaf	20-40	Spherical	[128]
28	Aloe vera	Leaf	-	-	[129]

Table 1. Plant mediated synthesis of NiO NPs.

aerogenes [134], *S. pyogenes*, and *Proteus vulgaris* [135]. The other synthesized NiO NPs with different antibacterial capabilities are listed in Table 2.

2.3 Photocatalytic applications of NiO NPs

Organic pollutants, which are released from industrial sectors, might be the biggest threat to our environment as they are highly poisonous and harmful to a variable microorganism [148–151]. The hazardous pollutants degradation has gained more attention, so photocatalytic degradations in the presence of different light sources is said to be an applicable factor for organic pollutant degradation [60, 152– 158]. Nano-based semiconductors like CuO, ZnO, TiO₂, etc. have been the most sufficient photocatalysts for organic pollutants degradation [159–165].

Ahmad Khan and colleagues elucidate semiconductor photocatalysis, wherein photons with energy equal to or greater

than the bandgap energy of the photocatalyst are required. Upon light irradiation on the nanoparticles (NPs), electrons (e⁻) in the valence band (VB) are excited to the conduction band (CB), creating positively charged holes (h⁺) in the VB. The conduction band electrons (e^{-}) react with O₂ species as electron acceptors, forming the strong oxidizing agent superoxide anion radical (O_2^-). Similarly, h⁺ in the VB reacts with H₂O molecules, generating hydroxyl radicals (OH). Both radicals are responsible for dye degradation [166]. The degradation mechanism is illustrated in Fig 7. Among different nanoparticles which are used as photocatalysts, NiO NPs have been utilized for the degradation of various dyes, such as Methylene blue [136], Methyl orange [167], Evans blue [168], Rhodamine B [169], Rose Bengal [134], Reactive black [170], Congo Red [171], Violet dye [172], Acid scarlet dye [173], and Trypan Blue [144], as well as different organic pollutant degradations

Synthetic approach	Bacterial strain	Zone of Inhibition	Morphology	Crystallite Size (based on XRD)	Reference
	S. pneumoniae	12 mm			
Hot plate combustion	S. aureus	16 mm	Cubic and spherical	0.10	[120]
method	E. coli	11 mm	shape	8–10 nm	[132]
	E. hermannii	6 mm			
				NiO-300 = 5nm	
Hydrothermal	S. aureus E. coli	_	Disk like	NiO-400 = 6.8 nm	[136]
	2.001			NiO-500 = 12.7 nm	
	E. coli	12 mm			
Thermal decomposition	P. aeruginosa	11 mm	Rod like	60 nm	[133]
<u>ucc</u> omposition	S. aureus	10 mm			
	S. pneumoniae	22.4 mm			
	B. anthracis	25.4 mm			
Hot combustion reaction	K. pneumoniae	23.2 mm	Stick like	50 nm	[134]
reaction	E. aerogenes	27.5 mm			
	B. subtilus	-			
		NiO: 10 mm			
	S. aureus	NiO-350: 11 mm			
		NiO-450:15 mm	Hexagonal crystal	12	[127]
biosynthetic method		NiO: 11 mm	And oblong shape	12 1111	[157]
	E. coli	NiO-350: 13 mm			
		NiO-450: 15 mm			
Duland lagar ablation	S. aureus	$12.6\pm0.57~\text{mm}$	Subarical	2 21 nm	[129]
ruised laser abration	E. coli	$14.3\pm1.15~\mathrm{mm}$	Spherical	2-21 1111	[136]
	E. coli-60	17 mm			
	E. coli-52	17 mm			
	P. aeruginosa-48	15 mm			
	P. aeruginosa-64	14 mm			
Green method using Eucalyptus globulus	Methicillin sensitive S. aureus-06	15 mm		10–20 nm	[115]
leaf extract	Methicillin sensitive S. aureus-02	13 mm			
	Methicillin resistant S. aureus-10	15 mm			
	Methicillin resistant S. aureus-31	14 mm			
	E. coli	10 mm			
	K. pneumoniae	0	1		
S-1 1	P. vulgaris	0	Cubic and irregular	20	[120]
Soi-gel	S. mutans	8 mm	shape	30 nm	[139]
	B. subtilus	12 mm	1		
	S. aureus	11 mm]		

 Table 2. Antibacterial applications of NiO nanoparticles.

Continued on next page

Synthetic approach	Bacterial strain	Zone of Inhibition	Morphology	Crystallite Size (based on XRD)	Reference
	E. coli				
	K. pneumoniae	Maximum zone of	Cubic and spherical	20	E1 401
Co-precipitation	B. subtilus	inhibition $= 15 \text{ mm}$	shape	30 nm	[140]
	S. aureus				
Green synthetic routes	E. coli	_			
using Calotropis gigantea	B. subtilus	_	1 –	< 60 nm	[93]
	E. coli				
Green method using	P. aeruginosa		Spherical shape	25 nm	[106]
leaf extract	Enterococcus faecalis	_	Spherical shape	25 mm	
	S. aureus				
	P. aeruginosa	$13.67\pm0.29~\text{mm}$			
Microwave-assisted	E. coli	$15.37\pm0.17~\text{mm}$	Spharical shape	20 nm	[141]
route	K. pneumoniae	$13.80\pm0.29~\text{mm}$	- Spherical shape	20 1111	[141]
	S. aureus	$14.67\pm0.17~\text{mm}$			
	E. coli (5 mg/ml) RT	14 mm			
	E. coli (3 mg/ml) RT	12 mm			
	E. coli (5 mg/ml) RT 60	16mm			
Co-percipitation	E. coli (3 mg/ml) RT 60	15 mm			[1 (0]
method	S. aureus (5 mg/ml) RT	11 mm	_	-	[142]
	S. aureus (5 mg/ml) RT	7mm			
	S. aureus (5 mg/ml) RT 60	15 mm			
	S. aureus (3 mg/ml) RT 60	18 mm			
	E. coli		Carriera	20, 80	[142]
Sol-gel	S. aureus	—	Grainy	30–80 nm	[143]
	S. aureus	9.8 mm			
	S. pyogenes	9.0 mm			
Co-precipitation	B. subtilus	8.5 mm	Spherical and cubical	40 nm	[135]
	P. aeruginosa	8.3 mm	Shape		
	K. pneumoniae	8.1 mm			
	K. aerogenes	_			
Combustion mathed	E. coli	_	Bunsenite form of	29 mm	[144]
Combustion method	P. aeruginosa	4.12 ± 0.43	simple cubic system	28 nm	[144]
	S. aureus	_			
	S. aureus	24 ± 0.9			
Mionor A 1 1	P. vulgaris	19 ± 0.9	Calcular 1	15 16 -	[125]
witcrowave-Assisted	E. coli	25 ± 0.3	Spherical	15–16 nm	[135]
	P. aeruginosa	24 ± 0.6]		

Table 2. Antibacterial applications of NiO nanoparticles. (Continued)

Continued on next page

Synthetic approach	Bacterial strain	Zone of Inhibition	Morphology	Crystallite Size (based on XRD)	Reference
	S. aureus	20 mm			
Green method using	B. subtilus	29 mm			
Rhamnus virgata	P. aeruginosa	16 mm	Spherical	24 nm	[145]
extract	K. pneumoniae	14 mm			
	E. coli	27 mm			
Co procipitation	E. coli	-	Spherical and cubic	12 16 nm	[146]
Co-precipitation	S. aureus	-		12–10 IIII	[140]
Electrospray method	E. coli	-	-	20 nm	[147]
Biogenic synthesis	Proteus	1.1 cm	Spherical	_	[121]
	B. subtilus	4.1 mm			
Green method using	B.cereus	3.6 mm	Ped	20, 40 nm	[122]
Jatropha gossypiifolia	S. aureus	6.2 mm	- KOU	50–40 mm	
	Klebsiella	3.5 mm			
	B. subtilus	21 mm			
Green synthesis	S. aureus	20 mm	Spharical	2 02 nm	[122]
Green synthesis	P.aeruginosa	21 mm	- Spherical	5.92 IIII	[125]
	E. coli	23 mm			
		Nio-1: -		Nio-1: 14.3 nm	[126]
	E. coli	Nio-2: -	Oval		
		Nio-3: 12.33 mm			
		Nio-1: 10.67 mm		Nio-2: 20 nm	
Solution combustion	M. luteus	Nio-2: 11.67 mm			
		Nio-3: 10.33mm			
		Nio-1: 11.67 mm		Nio-3: 26 nm	
	S. aureus	Nio-2: 15 mm			
		Nio-3: 13.33 mm			
Green synthesis	E. coli	25 mm	Spharical and like oval	20.24.27.04 pm	[127]
Green synthesis	S. aureus	32 mm		20.34-27.04 IIII	[127]
Graan synthesis	E. coli	20 mm	Spharical	26.27 nm	[129]
Green synthesis	B. subtilis	25 mm	Spherical	20.27 1111	[120]
	E. coli	18 mm			
Graan synthesis	P. multocida	19 mm		22	[120]
Green synulesis	B. subtilis	23 mm		22 1111	[129]
	S. aureus	25 mm			

Table 2. Antibacterial applications of NiO nanoparticles. (Continued)

like NO destruction [174], 4-chlorophenol [132], Phenol [175], Acetaldehyde [176], Acid fuchsine [177], Whole of the reported photocatalytic applications of NiO NPs in organic pollutants degradation listed in Table 3.

2.4 Catalytic applications of NiO NPs

Biodegradable, green, and costless metallic oxides NPs, such as ZnO, CuO, NiO, MgO, and CdO, have been com-

prehensively surfed as selective catalysts in C-C and Cheteroatom reactions [179]. These nanoparticles and their performance in multicomponent reactions (MCRs) have gained considerable attention in the last decade [180–187]. A Proficient and suitable property of MCRs over the conventional synthetic approaches is that the MCRs are one spot, cheaper as well as being energy and time-sufficient [188, 189]. Some articles have presented the procedure

Figure 7. Illustrative mechanism of photocatalytic degradation using NiO NPs [166].

of various reported metallic oxides nanoparticles catalyzed by different MCRs for vital organic compounds synthesis. Herein, among the mentioned metallic oxide NPs, NiO NPs catalytic applications in MCRs have been considered.

Scheme 1 demonstrates a catalyzed sequential multicomponent reaction route proposed by Moavi and colleagues. The enol form of thiobarbituric acid (1) undergoes Knoevenagel condensation with the catalyst-activated carbonyl of an aryl aldehyde (3) to give the α , β -unsaturated molecule 6, followed by dehydration. Subsequently, 4-hydroxycoumarin (2) reacts at 100 °C with in situ generated ammonia from ammonium acetate (4) to form 4-aminocoumarin (5). Michael's addition of the enamine (5) to the α,β unsaturated carbonyl acceptor of 6 yields the intermediate 7. After the elimination of H₂O, an amino group attacks the carbonyl group with NiO catalyst to cyclize the intramolecular ring to give the desired products 5 in an aqueous medium. The addition of algal NiO NPs to the process enhances the electrophilicity and facilitates the attack of nucleophilic groups due to their acidity. In addition, the Lewis acid NiO nanocatalyst improves the reactivity of the organic material and the stability of the intermediates [178].

Scheme 1. Proposed mechanism for pyridopyrimidine derivatives synthesis using the NiO NPs [178].

Thermal decomposition	Thermal decomposition	Microwave-assisted method	Combustion method	Chemical precipitation method	Sol-gel method	Thermal- decomposition (A), sol-gel (B), hydrothermal (C), and emulsion (D) nano-reactors	Thermal decomposition	Hydrothermal	hot plate combustion method using Aegle marmelos plant	Thermal decomposition	Synthetic approach
Rhodamine B	Methylene Blue	Evans blue	Methyl orange	Methylene Blue	Phenol	Methyl orange	Methylene blue	Methylene blue	4-Chlorophenol	NO destruction	Pollutant type
	5 mg	I	0.1 mM	$1 imes 10^{-5} \mathrm{M}$	100 mg/L	40 mg/L	10 mg/L	15 mg/L	50–250 mg/L 100 mg/L	1 mg/L	Pollutant concentration
Sheet-like	Coral-like	Spherical	Octahedral shape	Oval shape	Spherical	Spherical A: flower like shape of regular nano-woods C: plate-like D: spherical	Crystalline	Disk shaped and spherical	pure face centered cubic phase and single crystalline, spherical	Hexagonal Quasi-hexagonal	Morphology
120 min	90 min	120 min	I	150 min	60 min	120 min	30 min for NiO-400 and 90 min for NiO-300	20 min	30 min	30 min	Time
Osram ultraviolet lamp	Solar light	Solar light	UV	Solar light	UV laser	UV-Visible Green light	UV-Visible Green light	UV-Visible	Low pressure Mercury lamp	High pressure Mercury lamp	Light source
Ι	1 mg	20 mg	0.0125 mM	0.031 g	100 mg	20 mg	5 mg	1 mg	30 mg	I	Catalyst concentration
10 nm	2–3 nm	24 nm	50 nm	64 nm	6–10 nm	100 nm	14 nm 6−10 nm at 300-400 °C	5.1 nm	8–10 nm	400 nm	Crystallite Size based on XRD
80%	$\geq 97\%$	88%	I	I	97%	86%	46% for NiO-300 and NiO-400 was 3 times as that of NiO-300	98.7% (Blue dye) 94–97.6% (other mixture)	87% over 120 min	21%	Degradation efficency
[169]	[192]	[168]	[191]	[190]	[175]	[167]	[92]	[136]	[132]	[174]	Ref.

Continued on next page

2252-0236[https://doi.org/10.57647/j.ijc.2024.1401.01]

Table 3. Photocatalytic efficiency of NiO nanoparticles in the degradation of organic pollutants.

Continued
on
next
page

g < 60 nm 98.6%	~ 60 nm	αð	0.01	Sun light	I	I	0.08 mM	Methylene Blue	Green synthetic routes using Calotropis gigantea
Iet 10 mg 8–12 nm –	Iet 10 mg 8–12 nm	let 10 mg	let	15 W ultravio (UV) lamps	60 min	Wire like	20 mg/L	Acid scarlet	Thermal decomposition
- 8–16 nm -	- 8–16 nm	1		Xe lamp	60 min	Thin films	10 mg/L	Rhodamine B	Pulsed laser deposition
۱۵ mg 50 nm 96.4%	10 mg 50 nm	ump 10 mg	dun	Mercury la	150 min	Spherical and face-centered cubic	75 mg/L	DFB	Thermal decomposition
1.0 g $\leq 100 \text{ nm} \leq 47\%$	$1.0 \text{ g} \leq 100 \text{ nm}$	1.0 g		UV	60 min	Face centered cubic	10 mg/L	Methylene Blue	Hydrothermal
50 mg 20 nm 98%	50 mg 20 nm	50 mg		UV	50 min	Sphere like	I	Violet dye	Percipitation
mp 0.1 g 20 nm 98%	mp 0.1 g 20 nm	mp 0.1 g	mp	Mercury la	30 min	Cube shape	10 mg/L	Congo Red	Hydrothermal
lium- 1.0 g L ⁻¹ 3-4 nm 100%	$\frac{100 \text{ gL}^{-1}}{1.0 \text{ gL}^{-1}} = 3-4 \text{ nm}$	rcury 1.0 g L ⁻¹	lium- rcury	300 W mec pressure me lamp	30 min	Rose-like	20.0 mg/L	Acid fuchsine	Solvothermal
– 10–28 nm 80%	– 10–28 nm	I		UV	270 min	Face cubic	Ι	Methylene Blue	Co-percipitation
20 mg 20–50 nm 98%	20 mg 20–50 nm	20 mg		UV	120 min	Spherical	5 mg/L	Methylene Blue (MB)	solid-state thermal decomposition
sen 30 mg - RB-5 = 87.2% amps - MB = 70.2%	amps 30 mg –	amps 30 mg	en amps	Tungst halogen l	60 min 5 h	Simple cubic structure	$3 imes 10^{-5}$ M	Reactive black 5 Methylene Blue	Thermal decomposition
$0.22 \text{ mg} \qquad 5-10 \text{ mm} 22-27 \qquad 82\% \\ \text{nm} \qquad \geq 69\%$	0.22 mg 5–10 mm 22–27 nm	0.22 mg		UV	100 min	Spherical NiO Hexagonal NiO	0.02 mg/L	Phenol	Calcination method
50 mg 50 nm –	50 mg 50 nm	50 mg		UV	100 min	Stick like	10 mg/L	Rose Bengal	Hot combustion reaction
e arc = 0.1 g = 5-10 nm = 100%	e arc 0.1 g 5–10 nm	0.1 g	e arc	300 W X Lamj	140 min	Rocksalt cubic face	20 mg/L	Methylene Blue	Solvothermal
$6.5 \pm 0.1 \text{ mg}$ – 98%	$6.5 \pm 0.1 \text{ mg}$ –	$6.5\pm0.1~{ m mg}$		UV	120 min	Rime-like	8 M	Acetaldehyde	Co-percipitation
W ssure 15 mg/L 20 nm 99% 250)	w ssure 15 mg/L 20 nm lamp 250)	W ssure 15 mg/L lamp 250)	W ssure lamp 250)	250 v highpre: mercury (GYZ-2	135 min	Rod-like	25 mg/L	Methylene Blue	Thermal decomposition
CatalystCrystalliteDegradationourceconcentrationSize based on XRDefficency	Catalyst Crystallite concentration XRD	Catalyst concentration	ource	Light sc	Time	Morphology	Pollutant concentration	Pollutant type	Synthetic approach

Table 3. Photocatalytic efficiency of NiO nanoparticles in the degradation of organic pollutants. (Continued)

Synthetic approach	Pollutant type	Pollutant concentration	Morphology	Time	Light source	Catalyst concentration	Crystallite Size based on XRD	Degradation efficency	Ref.
Co-precipitation	Congo red dye	20 mg/L	Cubic and spherical shape	30 min	UV	5 mg	30 nm	84%	[140]
Green method using Monsonia burkenea leaf extract	Methylene Blue	20 mg/L	Spherical shape	75 min	15 W LED	20 mg	25 nm	50%	[106]
Microwave-assisted method	Evans blue	I	Spherical shape	150 min	Sunlight	20 mg	20 nm	91%	[141]
Combustion method	Trypan Blue	100 mg/L	Bunsenite form of simple cubic system	150 min	UV	10 mg	40 nm	%86	[144]
Green combustion	Methylene Blue	1 mM	Spherical	90 min	UV	40 mg	23 nm	99.6%	[120]
Green synthesis	Methylene Blue	10 g/L	Spherical	90 min	sunlight	0.2 g/L	3.92 nm	97%	[123]
solution combustion	Methylene Blue	10 mg/L	oval	60 min	UV	30 mg	14.3–26 nm	96–98%	[126]
Green synthesis	Reactive Red 141	50 mg/L	Spherical	100 min	Visible Light	15 mg	26.27 nm	99%	[128]
Green synthesis	methylene blue	50 mg/L	triangular	13 min	UV	10 mg	7–20 nm	98%	[201]
Green sonochemical	Safranin	1 mg/L	Spherical	100 min	UV	5 mg	9.38 nm	92.75%	[202]
Green sonochemical	Methyl orange	1 mg/L	Spherical	100 min	UV	5 mg	9.38 nm	98%	[202]
Biosynthesis	Rhodamine-B	20 mg/L	Spherical	90 min	Visible Light	20 mg	12 nm	85%	[203]
Precipitation	Rhodamine B	0.025 mg/L	Spherical	16 min	Solar light	0.5 mg	Ι	86	[204]
Biosynthesis	Methylene Blue	20 mg/L	flowerlike	270 min	UV	20 mg	18.4 nm	86	[205]
Biosynthesis	Malachite Green	20 mg/L	flowerlike	210 min	UV	20 mg	18.4 nm	86	[205]

Table 3. Photocatalytic efficiency of NiO nanoparticles in the degradation of organic pollutants. (Continued)

2.4.1 Synthesis of pyrroles

Bhalchandra M. Bhanage et al. reported the synthesis of substituted pyrroles via amines, aldehydes, nitroalkanes, and 1,3-dicarbonyl compounds in one pot synthesis reaction which catalyzed by NiO NPs at ambient temperature. They figured out that NiO NPs could be a trustable catalyst, due to having suitable activity and features, for a broad range of different substrates with desirable yields of focused products along with catalyst reusability [206] (Scheme 2).

2.4.2 Synthesis of amidoalkyl napthol derivatives

Ratiram G. et al. reported the synthesis of amidoalkyl napthol derivatives by means of applicable and appropriate

NiO NPs catalyst and using condensation reaction of urea, β -naphthol, and aldehydes. The advantages of this synthetic method were simple workup, solvent free usage, and highly reusability of its catalyst [207] (Scheme 3).

2.4.3 Synthesis of varied spiro and condensed indole derivatives

Another study investigated the synthesis of different spiro and condensed indole derivatives by means of substituted 1H-indole-2,3-diones, 2-thioxo-4-thiazolidinone, and methylene as a reagent as well as highly efficient NiO NPs as a catalyst. The reaction was engaged in Michael and Knoevenagel condensation (Scheme 4). Work simplicity,

Scheme 2. Synthesis of pyrroles by using NiO NPs.

Where, R'=CH₃ NH₂

Scheme 3. Synthesis of amidoalkyl naphthols derivatives by using NiO NPs.

Scheme 4. Synthesis of spiro and condensed indole derivatives.

easy-to-handle, and convincing yields make the catalytic approach more applicable [208].

2.4.4 Synthesis of 2-substituted-4, 6- diarylpyrimidines

A trusted and economical-friendly approach has recently been proposed for the synthesis of 2-substituted-4, 6diarylpyrimidines in the one-pot reaction between Sbenzylthiouronium chloride, morpholine, and varied substituted chalcones by means of NiO NPs as a reproducible and costless catalyst. The reaction could improve the catalytic synthesis of 2-(4-morpholinyl)-4,6-diarylpyrimidines with a proper yield and short reaction time [209] (Scheme 5).

2.4.5 Synthesis of 2-(1H-tetrazol-5-yl) acrylonitrile derivatives

A novel and rapid procedure of 2-(1H-tetrazol-5-yl) acrylonitrile derivatives synthesis has recently been fulfilled using one pot MCRs of malononitrile, aldehydes, and sodium azide which required NiO nanoparticles as a reproducible catalyst (Scheme 6). Safaei-Ghomi et al. stated that this method has a suitable features such as easy to work, shorter reaction time in comparison with traditional methods, and high yields as well as reusability of catalyst [210].

2.4.6 Synthesis of 3,4-dihydropyrimidin-2(1H)-ones

Khashaei and coworkers discovered a method for producing 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) using a NiO NPs catalyst. This involved a condensation reaction between urea, ethyl/methyl acetoacetate, and an arylaldehyde. The technology offers several benefits, including the production of pure NiO nanoparticles through a unique route and their utilization as a low-toxic, affordable, and efficient catalyst for DHPM synthesis [211] (Scheme 7).

Scheme 8 illustrates the reaction catalyzed by NiO nanoparticles to produce the target product. The process initiates by activating arylaldehydes and β -ketoester, leading to the formation of enol-tautomeric forms. Subsequent Knoevenagel condensation results in the formation of intermediate α , β -unsaturated ketones. Activated urea molecules undergo Michael-type addition, yielding an open-chain ureide intermediate, which cyclizes to form the target DHPMs, six-membered heterocyclic compounds. NiO accelerates

Scheme 5. Synthesis of 2-(4-morpholinyl)-4,6-diarylpyrimidines by means of NiO nanoparticles.

Scheme 6. Synthesis of 2-(1H-tetrazol-5-yl) acrylonitrile derivatives using NiO NPs.

Scheme 7. Synthesis of DHPMs using NiO NPs.

Scheme 8. Proposed Mechanism for the synthesis of DHPMs using NiO NPs [211].

all reaction stages, especially under solvent-free conditions, utilizing its Lewis acid and basic sites to activate reactants and facilitate product formation.

3. Conclusion

Plant extracts have become a dependable approach for synthesizing nanoparticles because of their safety, environmental friendliness, and cost-effectiveness. The utilization of this environmentally friendly method to synthesise nanoparticles has a wide range of uses in fields such as nanomedicine, pharmaceuticals, cosmetics, environmental science, and the food industry. The high toxicity of traditional methods for NP preparation presents a major challenge, which poses a danger to sectors related to human health. As a result, the scientific community has been continuously looking for novel, secure, and environmentally-friendly methods. In recent decades, there has been significant progress in the production of nanoparticles by biosynthesis, which is considered an environmentally friendly option.

These eco-friendly methods provide exceptional advantages, including as cost-efficiency, environmental compatibility, ease of testing, and lack of toxicity, which make them extremely beneficial for NP synthesis. An additional noteworthy benefit of green synthesis is the use of stability and reducing chemicals, facilitating convenient regulation of nanoparticle shape and size. NiO NPs are extensively used due to their advantageous features in catalysis, magnetism, antibacterial activity, optics, and photocatalysis. Notably, NiO nanoparticles produced by the use of environmentally benign plant extracts are expected to possess safety, sustainability, and non-harmful properties, rendering them appropriate for diverse applications including catalysis, photocatalysis, and antibacterial purposes.

Ethical Approval

This manuscript does not report on or involve the use of any animal or human data or tissue. So the ethical approval is not applicable.

Funding

No funding was received to assist with conducting this study and the preparation of this manuscript.

Authors Contributions

All authors have contributed equally to prepare the paper.

Availability of Data and Materials

There are no associated datasets used in this manuscript.

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the OICCPress publisher. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0.

References

- [1] A. Bera and H. Belhaj. J. Nat. Gas Sci. Eng, 34:1284–1309, 2016. DOI: https://doi.org/10.1016/j.jngse.2016.08.023.
- [2] L.J. Frewer, N. Gupta, S. George, A. Fischer, E. Giles, and D. Coles. *Trends Food Sci. Technol*, 40:211–225, 2014. DOI: https://doi.org/10.1016/j.tifs.2014.06.005.
- [3] L. Syedmoradi, M. Daneshpour, M. Alvandipoura, F.A. Gomez, H. Hajghassem, and K. Omidfar. *Biosens. Bioelectron*, 87:373–387, 2017. DOI: https://doi.org/10.1016/j.bios.2016.08.084.
- [4] B. Eskandari Azar, A. Ramazani, S. Taghavi Fardood, and A. Morsali. *Optik*, **208**:164129, 2019. DOI: https://doi.org/10.1016/j.ijleo.2019.164129.
- [5] K. Atrak, A. Ramazani, and S. Taghavi Fardood. J. Photochem. Photobiol. A: Chem, 382:111942, 2019. DOI: https://doi.org/10.1016/j.jphotochem.2019.111942.
- [6] S. Taghavi Fardood, F. Moradnia, M. Mostafaei, Z. Afshari, V. Faramarzi, and S. Ganjkhanlu. *Nanochem. Res*, 4:86–93, 2019. DOI: https://doi.org/10.22036/NCR.2019.01.010.

- [7] S. Taghavi Fardood, F. Moradnia, and A. Ramazani. *Micro Nano Lett*, **14**:986–991, 2019. DOI: https://doi.org/10.1049/mnl.2019.0071.
- [8] A. Swaidan, P. Borthakur, P.K. Boruah, M.R. Das, A. Barras, S. Hamieh, J. Toufaily, T. Hamieh, S. Szunerits, and R. Boukherroub. *Sens. Actuators*, **B 294** :253–262, 2019. DOI: https://doi.org/10.1016/j.snb.2019.05.052.
- [9] B. Stephen Inbaraj and B.H. Chen. *Bioresour. Technol*, **102**:8868–8876, 2011. DOI: https://doi.org/10.1016/j.biortech.2011.06.079.
- [10] H. Saeidian and F. Moradnia. *Iran. Chem. Commun*, 5:252–261, 2017.
- [11] B. Karimi, H. Behzadnia, E. Farhangi, E. Jafari, and A. Zamani. *Curr. Org. Synth*, **7**:543–567, 2010. DOI: https://doi.org/10.2174/157017910794328538.
- [12] S. Taghavi Fardood, R. Forootan, F. Moradnia, Z. Afshari, and A. Ramazani. *Mater. Res. Express*, 7: 015086, 2020. DOI: https://doi.org/10.1088/2053-1591/ab6c8d.
- [13] F. Moradnia, S. Taghavi Fardood, A. Ramazani, and V. Kumar Gupta. J. Photochem. Photobiol. A: Chem, **392**:112433, 2020. DOI: https://doi.org/10.1016/j.jphotochem.2020.112433.
- [14] F. Ajormal, F. Moradnia, S. Taghavi Fardood, and A. Ramazani. J. Chem. Rev, :90–102, 2020. DOI: https://doi.org/10.33945/SAMI/JCR.2020.2.2.
- [15] F. Moradnia, A. Ramazani, S. Taghavi Fardood, and F. Gouranlou. *Mater. Res. Express*, 6:075057, 2019. DOI: https://doi.org/10.1088/2053-1591/ab17bc.
- [16] S. Taghavi Fardood, A. Ramazani, F. Moradnia, Z. Afshari, S. Ganjkhanlu, and F. Yekke Zare. *Chem. Method*, 3:696–706, 2019. DOI: https://doi.org/10.33945/sami/chemm.2019.6.2.
- [17] M. A Bhosale and B. M Bhanage. Curr. Org. Chem, 19:708–727, 2015. DOI: https://doi.org/10.2174/1385272819666150207001154.
- [18] Y. Wang, Z. Xiao, and L. Wu. Curr. Org. Chem, 17:1325–1333, 2013. DOI: https://doi.org/10.2174/1385272811317120007.
- [19] H. Batmani, N. Noroozi Pesyan, and F. Havasi. *Microporous Mesoporous Mater*, **257**:27–34, 2018. DOI: https://doi.org/10.1016/j.micromeso.2017.08.024.
- [20] N. Noroozi Pesyan, H. Batmani, and F. Havasi. *Polyhedron*, **158**:248–254, 2019. DOI: https://doi.org/10.1016/j.poly.2018.11.005.
- [21] K. Atrak, A. Ramazani, and S. Taghavi Fardood. *Environ. Technol*, **41**:2760–2770, 2019. DOI: https://doi.org/10.1080/09593330.2019.1581841.

- [23] L. Ouni, A. Ramazani, and S. Taghavi Fardood. Front. Chem. Sci. Eng, 13:274–295, 2019. DOI: https://doi.org/10.1007/s11705-018-1765-0.
- [24] S. Taghavi Fardood, F. Moradnia, S. Moradi, R. Forootan, F. Yekke Zare, and M. Heidari. *Nanochem. Res*, 4:140–147, 2019. DOI: https://doi.org/10.22036/ncr.2019.02.005.
- [25] B. Wang, S. He, L. Zhang, X. Huang,
 F. Gao, W. Feng, and P. Liu. *Appl. Catal*, **B** 243:229–235, 2019. DOI: https://doi.org/10.1016/j.apcatb.2018.10.065.
- [26] E. Pourtaheri, M.A. Taher, G.A. Ali, S. Agarwal, and V.K. Gupta. *Int. J. Electrochem. Sci*, 14:9622–9632, 2019. DOI: https://doi.org/10.20964/2019.10.01.
- [27] A. Kumar, B. Paul, R. Boukherroub, and S.L. Jain. J. Hazard. Mater, :121700, 2019. DOI: https://doi.org/10.1016/j.jhazmat.2019.121700.
- [28] L.J. Hazeem, G. Kuku, E. Dewailly, C. Slomianny, A. Barras, A. Hamdi, R. Boukherroub, M. Culha, and M. Bououdina. *Nanomaterials*, 9:914, 2019. DOI: https://doi.org/10.3390/nano9070914.
- [29] R. Kumar, B.S. Inbaraj, and B. Chen. Mater. Res. Bull, 45:1603–1607, 2010. DOI: https://doi.org/10.1016/j.materresbull.2010.07.017.
- [30] H. Saeidian, S.V. Khajeh, Z. Mirjafary, and
 B. Eftekhari-Sis. *RSC Adv*, 8:38801–38807, 2018.
 DOI: https://doi.org/10.1039/C8RA08376B.
- [31] S. Mallakpour and M. Madani. Prog. Org. Coat, 86:194–207, 2015. DOI: https://doi.org/10.1016/j.porgcoat.2015.05.023.
- [32] M. Sundrarajan, S. Ambika, and K. Bharathi. Adv. Powder Technol, 26:1294–1299, 2015. DOI: https://doi.org/10.1016/j.apt.2015.07.001.
- [33] V. Thirumalai Arasu, D. Prabhu, and M. Soniya. J. Bio. Sci. Res, 1:259–270, 2010.
- [34] R. Varshney, S. Bhadauria, and M.S. Gaur. *Nano Biomed. Eng*, 4:99–106, 2012. DOI: https://doi.org/10.5101/nbe.v4i2.p99-106.
- [35] S. Suresh. Nanotechnol, **3**:62–74, 2013.
- [36] N. Rajput. Int. J. Adv. Eng. Tech, 7:1806, 2015.
- [37] G. Vitor, T. Palma, B. Vieira, J. Lourenco, R. Barros, and M.C. Costa. *Miner. Eng*, **75**:85–93, 2015. DOI: https://doi.org/10.1016/j.mineng.2014.12.003.
- [38] F. Karampour. Asian J. Green Chem, **7**:149–162, 2023. DOI: https://doi.org/10.22034/ajgc.2023.394268.1384.

- [39] N. Pourbahar and S. Sattari Alamdar. Asian
 J. Green Chem, 7:9–16, 2023. DOI: https://doi.org/10.22034/ajgc.2023.1.2.
- [40] O.K. Awote, O.S. Anagun, A.G. Adeyemo, J.O. Igbalaye, M.L. Ogunc, S.K. Apete, S.O. Folami, F.E. Olalero, S.C. Ebube, M.I. Taofeeq, and O.O. Akinloye. *Asian J. Green Chem*, **6**:284–296, 2022. DOI: https://doi.org/10.22034/ajgc.2022.4.1.
- [41] M.I. Rashid, T. Shahzad, M. Shahid, I.M. Ismail, G.M. Shah, and T. Almeelbi. J. Hazard. Mater, **324**:298–305, 2017. DOI: https://doi.org/10.1016/j.jhazmat.2016.10.063.
- [42] R. Shaikh, J. Nayab, and N. Shaikh. Asian J. Green Chem, 5:313–324, 2021. DOI: https://doi.org/10.22034/ajgc.2021.284592.1302.
- [43] N.M. Nemma and Z.S. Sadeq. Chem. Method, 7:325–334, 2023. DOI: https://doi.org/10.22034/chemm.2023.381408.1646.
- [44] C. Vidya, S. Hiremath, M. Chandraprabha, M.L. Antonyraj, I.V. Gopal, A. Jain, and K. Bansal. *Int J Curr Eng Technol*, 1:118–120, 2013.
- [45] R. Aladpoosh and M. Montazer. Carbohydr. Polym, **126**:122–129, 2015. DOI: https://doi.org/10.1016/j.carbpol.2015.03.036.
- [46] M.T. Swihart. Curr. Opin. Colloid Interface Sci, 8: 127–133, 2003. DOI: https://doi.org/10.1016/S1359-0294(03)00007-4.
- [47] N.A. Patil, S. Udgire, D.R. Shinde, and P.D. Patil. *Chem. Method*, 7:15–27, 2023. DOI: https://doi.org/10.22034/chemm.2023.355289.1597.
- [48] R. Yuvakkumar, J. Suresh, B. Saravanakumar, A.J. Nathanael, S.I. Hong, and V. Rajendran. *Spectrochim. Acta, Part A*, 137:250–258, 2015. DOI: https://doi.org/10.1016/j.saa.2014.08.022.
- [49] C. Tan and H. Zhang. *Nat. Commun*, 6:7873, 2015. DOI: https://doi.org/10.1038/ncomms8873.
- [50] R. Laine, J. Marchal, H. Sun, and X. Pan. *Nat. Mater*, 5:710, 2006. DOI: https://doi.org/10.1038/nmat1711.
- [51] F. Foroughi, S. Hassanzadeh-Tabrizi, and J. Amighian. J. Magn. Magn. Mater, 382:182–187, 2015. DOI: https://doi.org/10.1016/j.jmmm.2015.01.075.
- [52] F. Liu, X. He, J. Zhang, H. Chen, H. Zhang, and Z. Wang. J. Mater. Chem. B, 3:6731–6739, 2015. DOI: https://doi.org/10.1039/C5TB01159K.
- [53] J.-H. Noh and R. Meijboom. *Appl. Catal.*, *A*, **497**:107–120, 2015. DOI: https://doi.org/10.1016/j.apcata.2015.02.039.

- [54] S. Taghavi Fardood, F. Moradnia, R. Forootan, R. Abbassi, S. Jalalifar, A. Ramazani, and M. Sillanpaa. J. Photochem. Photobiol. A: Chem, 423:113621, 2022. DOI: https://doi.org/10.1016/j.jphotochem.2021.113621.
- [55] S.M. Khoshfetrat, K. Fasihi, F. Moradnia, H.K. Zaidan, and E. Sanchooli. Anal. Chim. Acta, 1252:341073, 2023. DOI: https://doi.org/10.1016/j.aca.2023.341073.
- [56] P. Dhandapani, A.S. Siddarth, S. Kamalasekaran, S. Maruthamuthu, and G. Rajagopal. *Carbohydr. Polym*, **103**:448–455, 2014. DOI: https://doi.org/10.1016/j.carbpol.2013.12.074.
- [57] C. Dhand, N. Dwivedi, X.J. Loh, A.N.J. Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, and S. Ramakrishna. *RSC Adv*, 5:105003–105037, 2015. DOI: https://doi.org/10.1039/C5RA19388E.
- [58] M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi. Acta Biomater, 9:7591–7621, 2013. DOI: https://doi.org/10.1016/j.actbio.2013.04.012.
- [59] F. Moradnia, S. Taghavi Fardood, A. Ramazani, B. k. Min, S.W. Joo, and R.S. Varma. *J. Cleaner Prod*, **288**:125632, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.125632.
- [60] F. Ali, S. Akbar, M. Sillanpaa, U. Younas, A. Ashraf, M. Pervaiz, R. Kausar, I. Ahmad, A.A. Alothman, and M. Ouladsmane. *Chemosphere*, **313**:137321, 2022. DOI: https://doi.org/10.1016/j.chemosphere.2022.137321.
- [61] Y. Li S. Frindy and M. Sillanpää. Sep. Purif. Technol, 284:120241, 2022. DOI: https://doi.org/10.1016/j.seppur.2021.120241.
- [62] K. Atrak, A. Ramazani, and S. Taghavi Fardood. J. Mater. Sci. Mater. Electron, 29:8347–8353, 2018. DOI: https://doi.org/10.1007/s10854-018-8845-2.
- [63] S. Taghavi Fardood, A. Ramazani, and S.W. Joo. J. Appl. Chem. Res, 12:8–15, 2018.
- [64] H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De, and A. Misra. *Colloids Surf. Physic*ochem. Eng. Aspects, **339**:134–139, 2009. DOI: https://doi.org/10.1016/j.colsurfa.2009.02.008.
- [65] F. Thema, P. Beukes, A. Gurib-Fakim, and M. Maaza. J. Alloys Compd, 646:1043–1048, 2015. DOI: https://doi.org/10.1016/j.jallcom.2015.05.279.
- [66] D. Philip. Spectrochim. Acta, Part A, **73**:650–653, 2009. DOI: https://doi.org/10.1016/j.saa.2009.03.007.
- [67] V.G. Kumar, S.D. Gokavarapu, A. Rajeswari, T.S. Dhas, V. Karthick, Z. Kapadia, T. Shrestha, I. Barathy, A. Roy, and S. Sinha. *Colloids*

Surf. B. Biointerfaces, **87**:159–163, 2011. DOI: https://doi.org/10.1016/j.colsurfb.2011.05.016.

- [68] T. Sun, Z. Zhang, J. Xiao, C. Chen, F. Xiao, S. Wang, and Y. Liu. *Sci. Rep*, **3**:2527, 2013. DOI: https://doi.org/10.1038/srep02527.
- [69] S. Jain and M.S. Mehata. Sci. Rep, 7:15867, 2017. DOI: https://doi.org/10.1038/s41598-017-15724-8.
- [70] S. Iravani. Green Chem, 13:2638–2650, 2011. DOI: https://doi.org/10.1039/C1GC15386B.
- [71] S. Taghavi Fardood, Z. Hosseinzadeh, and A. Ramazani. *Chem. Method*, 8:154–163, 2024. DOI: https://doi.org/10.48309/chemm.2024.430664.1748.
- [72] D. Suresh, P. Nethravathi, H. Rajanaika, H. Nagabhushana, and S. Sharma. *Sci. Semicond. Process*, **31**:446–454, 2015. DOI: https://doi.org/10.1016/j.mssp.2014.12.023.
- [73] S. Taghavi Fardood, F. Moradnia, A.H. Ghalaichi, S. Danesh Pajouh, and M. Heidari. *Nanochem. Res*, 5:69–76, 2020. DOI: https://doi.org/10.22036/ncr.2020.01.007.
- [74] F. Moradnia, S. Taghavi Fardood, A. Ramazani, S. Osali, and I. Abdolmaleki. *Micro Nano Lett*, **15**:674–677, 2020. DOI: https://doi.org/10.1049/mnl.2020.0189.
- [75] R.G. Saratale, G.D. Saratale, H.S. Shin, J.M. Jacob, A. Pugazhendhi, M. Bhaisare, and G. Kumar. *Environ. Sci. Pollut. Res*, 25:10164–10183, 2018. DOI: https://doi.org/10.1007/s11356-017-9912-6.
- [76] P. Vanathi, P. Rajiv, S. Narendhran, S. Rajeshwari, P.K. Rahman, and R. Venckatesh. *Mater. Lett*, **134**:13–15, 2014. DOI: https://doi.org/10.1016/j.matlet.2014.07.029.
- [77] P. Jamdagni, P. Khatri, and J. Rana. J. King Saud Univ. Sci, 30:168–175, 2018. DOI: https://doi.org/10.1016/j.jksus.2016.10.002.
- [78] K. Prasad and A.K. Jha. *Nat. Sci*, 1:129, 2009. DOI: https://doi.org/10.4236/ns.2009.12016.
- [79] B.N. Patil and T.C. Taranath. Int. J. Mycobacteriol, 5:197–204, 2016. DOI: https://doi.org/10.1016/j.ijmyco.2016.03.004.
- [80] S. Gunalan, R. Sivaraj, and V. Rajendran. *Prog. Nat. Sci-Mater*, **22**:693–700, 2012. DOI: https://doi.org/10.1016/j.pnsc.2012.11.015.
- [81] J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu, J. Li, C. Feng, and D. Zhang. *Ultrason. Sonochem*, 18:1082–1090, 2011. DOI: https://doi.org/10.1016/j.ultsonch.2011.03.021.
- [82] N. Sofyan, A. Ridhova, A.H. Yuwono, A. Udhiarto, and J.W. Fergus. *Int. J. Energy Res*, **43**:5959–5968, 2019. DOI: https://doi.org/10.1002/er.4710.

- [83] S.D. Henam, F. Ahmad, M.A. Shah, S. Parveen, and A.H. Wani. *Spectrochim. Acta, Part A*, **213**:337–341, 2019. DOI: https://doi.org/10.1016/j.saa.2019.01.071.
- [84] N. Silva, S. Ramírez, I. Díaz, A. Garcia, and N. Hassan. *Mater*, **12**:804, 2019. DOI: https://doi.org/10.3390/ma12050804.
- [85] S.R. Christy, L.S. Priya, M. Durka, A. Dinesh, N. Babitha, and S. Arunadevi. J. Nanosci. Nanotechnol, 19:3564–3570, 2019. DOI: https://doi.org/10.1166/jnn.2019.16141.
- [86] N.A.A. Yusof, N.M. Zain, and N. Pauzi. Int. J. Biol. Macromol, 124:1132–1136, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.228.
- [87] B.A. Abbasi, J. Iqbal, T. Mahmood, R. Ahmad, S. Kanwal, and S. Afridi. *Mater. Res. Express*, 6:0850a0857, 2019. DOI: https://doi.org/10.1088/2053-1591/ab23e1.
- [88] J. Xu, M. Wang, Y. Liu, J. Li, and H. Cui. Adv. Powder Technol, 30:861–868, 2019. DOI: https://doi.org/10.1016/j.apt.2019.01.016.
- [89] C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, and K.B. Rao. *Spectrochim. Acta, Part A*, **90**:78–84, 2012. DOI: https://doi.org/10.1016/j.saa.2012.01.006.
- [90] A.E. Angel, J.V. Judith, K. Kaviyarasu, L.K. John, R. Ramalingam, and H. Al-Lohedan. J. Photochem. Photobiol. B: Biol, 180:39–50, 2018. DOI: https://doi.org/10.1016/j.jphotobiol.2018.01.023.
- [91] A. Diallo, K. Kaviyarasu, S. Ndiaye, B. Mothudi, V. Rajendran A. Ishaq, and M. Maaza. *Green Chem. Lett. Rev*, **11**:166–175, 2018. DOI: https://doi.org/10.1080/17518253.2018.1447604.
- [92] S. Ravikumar, R. Gokulakrishnan, and P. Boomi. Asian Pac. J.Trop. Dis, 2:85–89, 2012. DOI: https://doi.org/10.1016/S2222-1808(12)60022-X.
- [93] M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, and Environ. Nanotechnol. Monit. Manage., 9:29–36, 2018. DOI: https://doi.org/10.1016/j.enmm.2017.11.005.
- [94] M.G. Berhe and Y.T. Gebreslassie. Int.
 J. Nanomed., 18:4229–4251, 2023. DOI: https://doi.org/10.2147/IJN.S410668.
- [95] E.S. Mehr, M. Sorbiun, A. Ramazani, and S. Taghavi Fardood. J. Mater. Sci. Mater. Electron, 29:1333– 1340, 2018. DOI: https://doi.org/10.1007/s10854-017-8039-3.
- [96] S. Taghavi Fardood and A. Ramazani. J. Appl. Chem. Res, 12:8–15, 2018.

- [97] S. Ahmed, M. Ahmad, B.L. Swami, and S. Ikram. J. Adv. Res, 7:17–28, 2016. DOI: https://doi.org/10.1016/j.jare.2015.02.007.
- [98] S. Taghavi Fardood, A. Ramazani, P.A. Asiabi, and S.W. Joo. J. Struct. Chem, 59:1737–1743, 2018. DOI: https://doi.org/10.1134/s0022476618070302.
- [99] M.T. Kiani, A. Ramazani, S. Rahmani, and S. Taghavi Fardood. Int. J. Environ. Anal. Chem, 30:1–17, 2022. DOI: https://doi.org/10.1080/03067319.2022.2076219.
- [100] A.A. Mariam, M. Kashif, S. Arokiyaraj, M. Bououdina, M. Sankaracharyulu, M. Jayachandran, and U. Hashim. *Dig. J. Nanomater. Biostruct*, **9**:1007– 1019, 2014.
- [101] B. Sone, X. Fuku, and M. Maaza. Int J Electrochem Sci, 11:8204–8220, 2016. DOI: https://doi.org/10.20964/2016.10.17.
- [102] M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, and A. Kahru. *Chemo-sphere*, **71**:1308–1316, 2008. DOI: https://doi.org/10.1016/j.chemosphere.2007.11.047.
- [103] J. Qu, X. Yuan, X. Wang, and P. Shao. Environ. Pollut., 159:1783–1788, 2011. DOI: https://doi.org/10.1016/j.envpol.2011.04.016.
- [104] P. Korde, S. Ghotekar, T. Pagar,
 S. Pansambal, R. Oza, and D. Mane. J. Chem. Rev., 2:157–168, 2020. DOI: https://doi.org/10.22034/jcr.2020.106601.
- [105] Y. Singh, R.S. Sodhi, P.P. Singh, and S. Kaushal. *Materials Advances*, **3**:4991–5000, 2022. DOI: https://doi.org/10.1039/D2MA00114D.
- [106] P. Kganyago, L. Mahlaule-Glory, M. Mathipa, B. Ntsendwana, N. Mketo, Z. Mbita, and N. Hintsho-Mbita. J. Photochem. Photobiol. B: Biol., 182:18–26, 2018. DOI: https://doi.org/10.1016/j.jphotobiol.2018.03.016.
- [107] A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, D. Hassan, and M. Maaza. Artificial cells, nanomedicine, and biotechnology, 46:838–852, 2018. DOI: https://doi.org/10.1080/21691401.2017.1345928.
- [108] M. Kundu, G. Karunakaran, and D. Kuznetsov. *Powder Technol.*, **311**:132–136, 2017. DOI: https://doi.org/10.1016/j.powtec.2017.01.085.
- [109] N. Behera, M. Arakha, M. Priyadarshinee, B.S. Pattanayak, S. Soren, S. Jha, and B.C. Mallick. *RSC Adv.*, 9:24888–24894, 2019. DOI: https://doi.org/10.1039/C9RA02082A.
- [110] S. Taghavi Fardood, A. Ramazani, and S. Moradi. *Chem. J. Mold*, **12**:115–118, 2017. DOI: https://doi.org/10.19261/cjm.2017.383.

- [111] A.A. Ezhilarasi, J.J. Vijaya, K. Kavi-Ayeshamariam, yarasu, M. Maaza, А. and L.J. Kennedy. J. Photochem. Photobiol. B: Biol., 164:352-360, 2016. DOE https://doi.org/10.1016/j.jphotobiol.2016.10.003.
- [112] X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, and M. Maaza. Mater. Res. Bull., 97:457–465, 2018. DOI: https://doi.org/10.1016/j.materresbull.2017.09.022.
- [113] M. Nasseri, F. Ahrari, and B. Zakerinasab. *Appl. Organomet. Chem.*, **30**:978–984, 2016. DOI: https://doi.org/10.1002/aoc.3530.
- [114] B.M. Escobar, M.G. Lucio, R. Barbosa, and D.A. Morales. Synthesis and characterization of nio nanoparticles using manihot esculenta aqueous extracts. In *Preprints*. 2018. DOI: https://doi.org/10.20944/preprints201811.0242.v1.
- [115] S. Saleem, B. Ahmed, M.S. Khan, M. Al-Shaeri, and J. Musarrat. *Microb. Pathog.*, **111**:375–387, 2017. DOI: https://doi.org/10.1016/j.micpath.2017.09.019.
- [116] J. Sharma, P. Srivastava, G. Singh, M.S. Akhtar, and S. Ameen. *Ceram. Int.*, **41**:1573–1578, 2015. DOI: https://doi.org/10.1016/j.ceramint.2014.09.093.
- [117] S. Sudhasree, A. Shakila Banu, P. Brindha, and G.A. Kurian. *Toxicol. Envi*ron. Chem., **96**:743–754, 2014. DOI: https://doi.org/10.1080/02772248.2014.923148.
- [118] F. Thema, E. Manikandan, A. Gurib-Fakim, and M. Maaza. J. Alloys Compd., 657:655–661, 2016. DOI: https://doi.org/10.1016/j.jallcom.2015.09.227.
- [119] R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan, and S. Hong. *Mater. Lett.*, **128**:170–174, 2014. DOI: https://doi.org/10.1016/j.matlet.2014.04.112.
- [120] M.S. Kumar, T. Soundarya, G. Nagaraju, G. Raghu, N. Rekha, F.A. Alharthi, and B. Nirmala. *In*org. Chim. Acta, **515**:120059, 2021. DOI: https://doi.org/10.1016/j.ica.2020.120059.
- [121] R. Ramesh, V. Yamini, S.J. Sundaram, F.L.A. Khan, and K. Kaviyarasu. *Mater. Today: Proc.*, **36**:268–272, 2021. DOI: https://doi.org/10.1016/j.matpr.2020.03.581.
- [122] D. Deepthi, B.S. Rahman, M. Senthilkumar, S. Paranthaman, J. Ahamed, and S.B. Bathusha. *J. pharmacogn. phytochem.*, **10**:20–28, 2021.
- [123] N. Al-Zaqri, K. Umamakeshvari, V. Mohana, A. Muthuvel, and A. Boshaala. J. Mater. Sci. Mater. Electron., 33:11864–11880, 2022. DOI: https://doi.org/10.1007/s10854-022-08149-1.

- [124] M. Boudiaf, Y. Messai, E. Bentouhami, M. Schmutz, C. Blanck, L. Ruhlmann, H. Bezzi, L. Tairi, and D.E. Mekki. J. Phys. Chem. Solids, 153:110020, 2021. DOI: https://doi.org/10.1016/j.jpcs.2021.110020.
- [125] I.M. Rashid, S.D. Salman, A.K.M. Mahdi, and Y. Salih. *Sains Malays.*, **51**:533–546, 2022. DOI: https://doi.org/10.17576/jsm-2022-5102-17.
- [126] M. Mahadevaswamy, S.R. Paniyadi, A. Lakshmikanthan, S.A. Swamirayachar, M.P.G. Chandrashekarappa, K. Giasin, V.K. Shivaraju, M.B. Chougala, and E. Linul. J. Mater. Res. Technol., 19:4543–4556, 2022. DOI: https://doi.org/10.1016/j.jmrt.2022.06.166.
- [127] Z.T. Khodair, N.M. Ibrahim, T.J. Kadhim, and A.M. Mohammad. *Chem. Phys. Lett.*, **797**:139564, 2022.
 DOI: https://doi.org/10.1016/j.cplett.2022.139564.
- [128] A. Singh, V. Goyal, J. Singh, H. Kaur, S. Kumar, K.M. Batoo, J. Gaur, M. Pal, M. Rawat, and S. Hussain. *J. Cleaner Prod.*, **343**:131026, 2022. DOI: https://doi.org/10.1016/j.jclepro.2022.131026.
- [129] B. Ahmad, M. Khan, M. Naeem, A. Alhodaib, M. Fatima, M. Amami, E.A. Al-Abbad, A. Kausar, N. Alwadai, and A. Nazir. *Mater. Chem. Phys.*, page 126363, 2022. DOI: https://doi.org/10.1016/j.matchemphys.2022.126363.
- [130] I. Mamonova, I. Babushkina, I. Norkin, E. Gladkova, M. Matasov, and D. Puchin'yan. Nanotechnologies Russ., 10:128–134, 2015. DOI: https://doi.org/10.1134/S1995078015010139.
- [131] A. Zarei, S. Taghavi Fardood, F. Moradnia, and A. Ramazani. *Eurasian Chem. Commun.*, 2:798–811, 2020. DOI: https://doi.org/10.33945/SAMI/ECC.2020.7.7.
- [132] A.A. Ezhilarasi, J.J. Vijaya, Κ. Kaviyarasu, L.J. Kennedy, R.J. Ramalingam, and H.A. Al-Lohedan. J. Photochem. Photobiol. B: Biol., 180:39-50, 2018. DOI: https://doi.org/10.1016/j.jphotobiol.2018.01.023.
- [133] T. Kavitha and H. Yuvaraj. J. Mater. Chem., **21**:15686–15691, 2011. DOI: https://doi.org/10.1039/C1JM13278D.
- [134] P.I. Rajan, J.J. Vijaya, S. Jesudoss, K. Kaviyarasu, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, and M.-A. Vaali-Mohammed. *Mater. Res. Express*, 4:085030, 2017. DOI: https://doi.org/10.1088/2053-1591/aa7e3c.
- [135] B. Shanaj and X. John. J. Theor. Comput. Sci., 3: 149–159, 2016. DOI: https://doi.org/10.4172/2376-130X.1000149.
- [136] S. Chaudhary, Y. Kaur, B. Jayee, G.R. Chaudhary, and A. Umar. J. Cleaner Prod., 190:563–576, 2018.
 DOI: https://doi.org/10.1016/j.jclepro.2018.04.110.

- [137] V. Helan, J.J. Prince, N.A. Al-Dhabi, M.V. Arasu, A. Ayeshamariam, G. Madhumitha, S.M. Roopan, and M. Jayachandran. *Results Phys.*, 6:712–718, 2016. DOI: https://doi.org/10.1016/j.rinp.2016.10.005.
- [138] K.S. Khashan, G.M. Sulaiman, A.H. Hamad, F.A. Abdulameer, and A. Hadi. *Appl. Phys. A*, **123**: 190, 2017. DOI: https://doi.org/10.1007/s00339-017-0826-4.
- [139] V. Benitha, K. Jeyasubramanian, R. Mala, G. Hikku, and R.R. Kumar. J. Coat. Technol. Res., 16:59– 70, 2019. DOI: https://doi.org/10.1007/s11998-018-0100-5.
- [140] S.A. Bhat, F. Zafar, A.H. Mondal, A. Kareem, A.U. Mirza, S. Khan, A. Mohammad, Q.M.R. Haq, and N. Nishat. *J. Iran. Chemi. Soc.*, **17**:215–227, 2020. DOI: https://doi.org/10.1007/s13738-019-01767-3.
- [141] K. Kannan, D. Radhika, M.P. Nikolova, K.K. Sadasivuni, H. Mahdizadeh, and U. Verma. *In*org. Chem. Commun., **113**:107755, 2020. DOI: https://doi.org/10.1016/j.inoche.2019.107755.
- [142] L. Umaralikhan and M.J.M. Jaffar. J. Adv. Appl. Sci. Res., 1:24–35, 2016. DOI: https://doi.org/10.46947/joaasr14201628.
- [143] N. Talebian, M. Doudi, and M. Kheiri. J. Sol-Gel Sci. Technol., 69:172–182, 2014. DOI: https://doi.org/10.1007/s10971-013-3201-8.
- [144] D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo, and L. Vaccaro. J. Org. Chem., 69:2896–2898, 2004.
 DOI: https://doi.org/10.1021/j00499468.
- [145] J. Iqbal, B.A. Abbasi, T. Mahmood, S. Hameed, A. Munir, and S. Kanwal. Appl. Organomet. Chem., 33:e4950, 2019. DOI: https://doi.org/10.1002/aoc.4950.
- [146] D. Paul and S. Neogi. Mater. Res. Express, 6: 055004, 2019. DOI: https://doi.org/10.1088/2053-1591/ab003c.
- [147] Z. Wang, Y.-H. Lee, B. Wu, A. Horst, Y. Kang, Y.J. Tang, and D.-R. Chen. *Chemosphere*, **80**:525–529, 2010. DOI: https://doi.org/10.1016/j.chemosphere.2010.04.047.
- [148] M. Rezaei and A. Nezamzadeh-Ejhieha. Int. J. Hydrogen Energy, 45:24749–24764, 2020. DOI: https://doi.org/10.1016/j.ijhydene.2020.06.258.
- [149] S. Taghavi Fardood, F. Moradnia, S. Heidarzadeh, and A. Naghipour. *Nanochem. Res.*, 8:134, 2023. DOI: https://doi.org/10.22036/ncr.2023.02.006.
- [150] H. Derikvandi and A. Nezamzadeh-Ejhieh. J. Colloid Interface Sci., 490:314–327, 2017. DOI: https://doi.org/10.1016/j.jcis.2016.11.069.

- [151] S. Senobari and A. Nezamzadeh-Ejhieh. J. Mol. Liq., 261:208–217, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.04.028.
- [152] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann. *Appl. Catal.*, *B*, **31**: 145–157, 2001. DOI: https://doi.org/10.1016/S0926-3373(00)00276-9.
- [153] Y. Zhang, Y. Liu, C. Ge, H. Yin, M. Ren, A. Wang, T. Jiang, and L. Yu. *Powder Technol.*, **192**:171–177, 2009. DOI: https://doi.org/10.1016/j.powtec.2008.12.009.
- [154] S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, and M.H. Cho. *Nanoscale*, 5:9238–9246, 2013. DOI: https://doi.org/10.1039/C3NR02678G.
- [155] K.V.S. Rao, A. Rachel, M. Subrahmanyam, and P. Boule. *Appl. Catal.*, *B*, 46:77–85, 2003. DOI: https://doi.org/10.1016/S0926-3373(03)00199-1.
- [156] S. Zahmatkesh, A. Bokhari, M. Karimian, M.M.A. Zahra, M. Sillanpää, H. Panchal, A.J. Alrubaie, and Y. Rezakhani. *Environ. Monit. Assess.*, **194**: 1–15, 2022. DOI: https://doi.org/10.1007/s10661-022-10503-z.
- [157] Z. Hu, Y. Zhang, L. Pu, B. Wang, S. Yang, and H. Li. J. Cleaner Prod., 377:134423, 2022. DOI: https://doi.org/10.1016/j.jclepro.2022.134423.
- [158] S. Senobari and A. Nezamzadeh-Ejhieh. J. Mol. Liq., 257:173–183, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.02.096.
- [159] L. Xu, L.-P. Jiang, and J.-J. Zhu. *Nanotechnology*, 20:045605, 2008. DOI: https://doi.org/10.1088/0957-4484/20/4/045605.
- [160] C. Wang, X. Wang, B.-Q. Xu, J. Zhao, B. Mai, G. Sheng, and J. Fu. J. Photochem. Photobiol. A: Chem., 168:47–52, 2004. DOI: https://doi.org/10.1016/j.jphotochem.2004.05.014.
- [161] S. Kaizra, Y. Louafi, B. Bellal, M. Trari, and G. Rekhila. *Mater. Sci. Semicond. Process.*, **30**:554–560, 2015. DOI: https://doi.org/10.1016/j.mssp.2014.10.045.
- [162] Z.U. Khan, M. Moronshing, M. Shestakova, A. Al-Othman, M. Sillanpää, Z. Zhan, B. Song, and Y. Lei. *Desalination*, **548**:116254, 2023. DOI: https://doi.org/10.1016/j.desal.2022.116254.
- [163] M.S. Bashir, C. Zhou, C. Wang, M. Sillanpää, and F. Wang. *Sep. Purif. Technol.*, **304**:122307, 2023. DOI: https://doi.org/10.1016/j.seppur.2022.122307.
- [164] M. Karimi-Shamsabadi, M. Behpour, A.K. Babaheidari, and Z. Saberi. J. Photochem. Photobiol. A: Chem., 346:133–143, 2017. DOI: https://doi.org/10.1016/j.jphotochem.2017.05.038.

- [165] F. Iazdani and A. Nezamzadeh-Ejhieh. Spectrochim. Acta, Part A, 250:119228, 2021. DOI: https://doi.org/10.1016/j.saa.2020.119228.
- [166] N.A. Khan, K. Saeed, I. Khan, T. Gul, M. Sadiq, A. Uddin, and I. Zekker. *Appl. Water Sci.*, **12**: 131, 2022. DOI: https://doi.org/10.1007/s13201-022-01647-x.
- [167] F. Fazlali, A. Mahjoub, and R. Abazari. Solid State Sci., 48:263–269, 2015. DOI: https://doi.org/10.1016/j.solidstatesciences.2015.08.022.
- [168] K. Karthik, М. Shashank, V. Reand T. Tatarchuk. Mol. vathi, Cryst. Cryst., **673**:70–80, 2018. DOI: Liq. https://doi.org/10.1080/15421406.2019.1578495.
- [169] F. Motahari, M.R. Mozdianfard, F. Soofivand, and M. Salavati-Niasari. *RSC Adv.*, 4:27654–27660, 2014. DOI: https://doi.org/10.1039/C4RA02697G.
- [170] M. Ramesh, M.P.C. Rao, S. Anandan, and H. Nagaraja. J. Mater. Res., 33:601–610, 2018. DOI: https://doi.org/10.1557/jmr.2018.30.
- [171] W. Sun, L. Xiao, and X. Wu. J. Alloys Compd, 772:465–471, 2019. DOI: https://doi.org/10.1016/j.jallcom.2018.09.185.
- [172] R. Vahini, P.S. Kumar, and S. Karuthapandian. *Appl. Phys. A*, **122**:744, 2016. DOI: https://doi.org/10.1007/s00339-016-0277-3.
- [173] L. Zhang, L. An, B. Liu, and H. Yang. *Appl. Phys. A*, 104:69, 2011. DOI: https://doi.org/10.1007/s00339-011-6403-3.
- [174] Q. Dong, S. Yin, C. Guo, X. Wu, N. Kumada, T. Takei, A. Miura, Y. Yonesaki, and T. Sato. *Appl. Catal.*, *B*, 147:741–747, 2014. DOI: https://doi.org/10.1016/j.apcatb.2013.10.007.
- [175] K. Hayat, M. Gondal, M.M. Khaled, and S. Ahmed. J. Mol. Catal. A: Chem., 336:64–71, 2011. DOI: https://doi.org/10.1016/j.molcata.2010.12.011.
- [176] C. Pan, R. Ding, Y. Hu, and G. Yang. *Physica E Low Dimens. Syst. Nanostruct.*, **54**:138–143, 2013. DOI: https://doi.org/10.1016/j.physe.2013.05.021.
- [177] S. Shang, K. Xue, D. Chen, and X. Jiao. *CrystEngComm*, **13**:5094–5099, 2011. DOI: https://doi.org/10.1039/C0CE00975J.
- [178] J. Moavi, F. Buazar, and M.H. Sayahi. Sci. Rep., 11: 6296, 2021. DOI: https://doi.org/10.1038/s41598-021-85832-z.
- [179] M.T. Kiani, A. Ramazani, and S.Taghavi Fardood. Appl. Organomet. Chem., 37:e7053, 2023. DOI: https://doi.org/10.1002/aoc.7053.

- [180] M.B. Gawande, A.K. Rathi, P.S. Branco, T. Potewar, A. Velhinho, I.D. Nogueira, A. Tolstogouzov, C.A.A. Ghumman, and O.M. Teodoro. *RSC Adv.*, 3:3611–3617, 2013. DOI: https://doi.org/10.1039/C2RA22511E.
- [181] L. Moradi and Z. Ataei. Green Chem. Lett. Rev., 10:380–386, 2017. DOI: https://doi.org/10.1080/17518253.2017.1390611.
- [182] M. Kataria, S. Pramanik, M. Kumar, and V. Bhalla. *Chem. Commun.*, **51**:1483–1486, 2015. DOI: https://doi.org/10.1039/C4CC09058F.
- [183] S. Swami, N. Devi, A. Agarwala, V. Singh, and R. Shrivastava. *Tetrahedron Lett.*, **57**:1346–1350, 2016. DOI: https://doi.org/10.1016/j.tetlet.2016.02.045.
- [184] M. Abaszadeh, M. Seifi, and A. Asadipour. Synth. React. Inorg. Met.-Org. Chem., 46:512–517, 2016. DOI: https://doi.org/10.1080/15533174.2014.988812.
- [185] A. Ramazani, F. Moradnia, H. Aghahosseini, and I. Abdolmaleki. *Curr. Org. Chem.*, **21**:1612–1625, 2017. DOI: https://doi.org/10.2174/1385272821666170420172606.
- [186] H. Saeidian, Z. Mirjafary, E. Abdolmaleki, and F. Moradnia. *Synlett*, 24:2127–2131, 2013. DOI: https://doi.org/10.1055/s-0033-1339641.
- [187] F. Moradnia, S. Taghavi Fardood, and A. Ramazani. Appl. Organomet. Chem., page e7315, 2023. DOI: https://doi.org/10.1002/aoc.7315.
- [188] C. Hulme and V. Gore. *Curr. Med. Chem.*, **10**:51–80, 2003. DOI: https://doi.org/10.2174/0929867033368600.
- [189] S. Taghavi Fardood, A. Ramazani, M. Ayubi, F. Moradnia, S. Abdpour, and R. Forootan. *Chem. Method.*, 3:519–525, 2019. DOI: https://doi.org/10.33945/SAMI/CHEMM.2019.5.1.
- [190] G. Jayakumar, A.A. Irudayaraj, and A.D. Raj. *Mater. Today: Proc.*, 4:11690–11695, 2017. DOI: https://doi.org/10.1016/j.matpr.2017.09.083.
- [191] A.J. Christy and M. Umadevi. *Mater. Res. Bull.*, **48**:4248–4254, 2013. DOI: https://doi.org/10.1016/j.materresbull.2013.06.072.
- [192] K. Maniammal, G. Madhu, and V. Biju. Nano-Struct. Nano-Objects, 16:266–275, 2018. DOI: https://doi.org/10.1016/j.nanoso.2018.07.007.
- [193] K. Motevalli, Z. Zarghami, and M. Panahi-Kalamuei.
 J. Mater. Sci. Mater. Electron., 27:4794–4799, 2016.
 DOI: https://doi.org/10.1007/s10854-016-4360-5.
- [194] Z. Qing, L. Haixia, L. Huali, L. Yu, Z. Huayong, and L. Tianduo. *Appl. Surf. Sci.*, **328**:525–530, 2015. DOI: https://doi.org/10.1016/j.apsusc.2014.12.077.

- [195] S. Rakshit, S. Chall, S.S. Mati, A. Roychowdhury, S. Moulik, and S.C. Bhattacharya. *RSC Adv.*, 3:6106–6116, 2013. DOI: https://doi.org/10.1039/C3RA21978J.
- [196] M. Ranjbar, M.A. Taher, and A. Sam. J. Mater. Sci. Mater. Electron., 26:8029–8034, 2015. DOI: https://doi.org/10.1007/s10854-015-3458-5.
- [197] Z. Sabouri, A. Akbari, H.A. Hosseini, and M. Darroudi. J. Mol. Struct., 1173:931–936, 2018. DOI: https://doi.org/10.1016/j.molstruc.2018.07.063.
- [198] X. Wan, M. Yuan, S.-I Tie, and S. Lan. *Appl. Surf. Sci.*, **277**:40–46, 2013. DOI: https://doi.org/10.1016/j.apsusc.2013.03.126.
- [199] X. Wang, H. Mao, and Y. Shan. *RSC Adv.*, **4**:35614–35619, 2014. DOI: https://doi.org/10.1039/C4RA04688A.
- [200] Y. Wang, F. Zhang, L. Wei, G. Li, and W. Zhang. *Physica B*, **457**:194–197, 2015. DOI: https://doi.org/10.1016/j.physb.2014.10.014.
- [201] O. Baytar, A. Ekinci, Ö. Şahin, and S. Kutluay. *Mater. Sci. Eng.*, *B*, **296**:116704, 2023. DOI: https://doi.org/10.1016/j.mseb.2023.116704.
- [202] K.S.G. Jagan, S. Surendhiran, S. Savitha, K.S. Balu, M. Karthick, T.M. Naren Vidaarth, A. Karthik, B. Kalpana, and R. Senthilmurugan. *Inorg. Chem. Commun.*, **151**:110618, 2023. DOI: https://doi.org/10.1016/j.inoche.2023.110618.
- [203] N. Sundaresan, S. Ravichandran, and I. kaliappan. *Inorg. Chem. Commun.*, **150**:110489, 2023. DOI: https://doi.org/10.1016/j.inoche.2023.110489.
- [204] T.L. Pushparaj, E.F.I. Raj, E.F.I. Rani, and M.C. Thanu. *Appl. Organomet. Chem.*, **37**:e7285, 2023. DOI: https://doi.org/10.1002/aoc.7285.
- [205] K. Motene, L. Mahlaule-Glory, N. Ngoepe, M. Mathipa, and N. Hintsho-Mbita. *Int. J. Environ. Anal. Chem.*, **103**:1107–1122, 2023. DOI: https://doi.org/10.1080/03067319.2020.1869730.
- [206] A.L. Gajengi and B.M. Bhanage. *Catal. Lett.*, **146**:1341–1347, 2016. DOI: https://doi.org/10.1007/s10562-016-1762-1.
- [207] J.A. Tanna, R.G. Chaudhary, N.V. Gandhare, A.R. Rai, and H.D. Juneja. *Int. J. Scientific Eng. Res.*, 6:93–99, 2015. DOI: https://doi.org/10.13140/RG.2.1.2036.0088.
- [208] H. Sachdeva, D. Dwivedi, R. Bhattacharjee, S. Khaturia, and R. Saroj. J. Chem., 2013:1–10, 2012. DOI: https://doi.org/10.1155/2013/606259.
- [209] P. Khyaliya, A.P. Devi, S. Kumar, R. Kant, and K.L. Ameta. *Chem. Biol. Lett.*, 7:55–62, 2020.

- [210] J. Safaei-Ghomi and S. Paymard-Samani. Chem. Heterocycl. Compd., 50:1567–1574, 2015. DOI: https://doi.org/10.1007/s10593-014-1625-x.
- [211] M. Khashaei, L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, and E. Nozad. *Sci. Rep.*, **12**: 8585, 2022. DOI: https://doi.org/10.1038/s41598-022-12589-4.