IRANIAN JOURNAL OF CATALYSIS

Magnetically recoverable nano-crystalline NiFe₂O₄ catalyzed green and sustainable synthesis of functionalized pyrano-pyrazol, pyrano-coumarin, and *4H*-chromene derivatives

Koyel Pradhan*a

Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, India

Received 12 August 2023; received in revised form 24 September 2023; accepted 18 October 2023 (DOI: 10.30495/IJC.2023.1993771.2041)

ABSTRACT

Synthesis of pyrano-pyrazol, pyrano-coumarin, and 4*H*-chromene derivatives has been achieved by the multicomponent reaction of substituted 1,3-diketo compounds, dialkyl acetylene dicarboxylates and alkyl nitrile derivatives in presence of nano-NiFe₂O₄. The nano-NiFe₂O₄ magnetic nanoparticle was prepared by a simple and effective method and characterized by using XRD, HRTEM images, IR, and VSM studies. The green, convenient, and mild protocol provided large access to desired products in almost quantitative yield. High catalytic activity, very low catalyst loading, and high recyclability are the attractive features of the developed protocol. All reactions were easily performed and preceded with high efficiency under very mild conditions avoiding time-consuming, costly catalysts, and tedious workup and purification of process.

Keywords: Nano-NiFe₂O₄, Multicomponent reaction, Pyrano-pyrazol, Pyrano-coumarin and 4H-chromene

1. Introduction

Pyrano-pyrazol derivatives are often part of various naturally occurring compounds with antihyperglycemic [1, 2], antidyslipidemic [3], cytotoxic [4], molluscicidal [5], anti-inflammatory [6], antifungal [7], anticancer [8], and antimalarial [9, 10] properties. These scaffolds have potential applications as cognitive enhancers in neurological diseases, including schizophrenia and myoclonus, as well as for the treatment of Alzheimer's disease [11-14]. The 4H-chromene derivatives are also applied as photoactive materials which can undergo photochemical ring contraction to cyclobutenes from the triplet state [15-17] and are important structural motifs found widely in natural products and pharmaceticals such as coumarins [18], anthraquinones [19], flavonoids [20], heliannuols B, C, and D [21], ricchiocarpin A and ricchiocarpin B [22], lobatrienetriol [23], KW-3635 [24], oxepinamides C [25], janoxepin [26], bauhiniastatin A [27], SV30, HA-14-1 [28, 29] etc. (Fig. 1). Various natural products like calophyllolides, *Corresponding author:

E-mail address: *koyelchem@gmail.com* (**K. Pradhan**)

calanolides, calanone etc. [30] contain pyrano-[3,2-c]coumarin skeletons. Many of them are broadly employed as biodegradable agrochemicals, cosmetics, and pigments [31].

Hence many synthetic chemists have been fascinated by the astonishing biological activity of these heterocyclic scaffolds and tried to develop an easy protocol for their synthesis. Before this work, few other methods have also been developed [32-35] but those have major limitations. In the multicomponent synthesis of these heterocyclic cores, harsh reaction conditions, longer reaction times, and expensive catalysts were applied. In the domain of multicomponent reactions, metalanchored heterogeneous compounds have received immense attention in recent times in view of their benefits and improved efficacy due to their stable active recyclability of the catalyst [36]. sites and Functionalized magnetic nanomaterials have appeared as viable alternatives to conventional materials, as a robust. high-surface-area readily available, heterogeneous catalyst [37-39]. They offer the added benefit of being magnetically separable, thereby excluding the requirement of catalyst filtration after

Fig. 1. 4H-chromenes with biological activities

completion of the reaction. There is an urgent need to develop less expensive and easily available, nonprecious metal catalysts for this multicomponent reaction. Herein, an efficient and green magnetically recoverable nano crystalline NiFe₂O₄ catalyzed methodology is demonstrated for the preparation of desired heterocyclic nucleus by combining the basic units in aqueous media.

2. Experimental

2.1. Preparation of Catalyst

An aqueous solution of Ni(NO₃)₂.4H₂O (0.4M) and Fe(NO₃)₃.9(H₂O) (0.8M) was mixed with 10M aqueous solution of Triton-X. Then, the required amount of 25% NH₄OH was added slowly to the resulted solution with stirring until a green and transparent solution (pH 7.5) was obtained. The solution was boiled to evaporate the water in an oil bath under continuous stirring. The resultant powder was calcined at 700 °C for 10 h with a heating rate of 5 °C per minute to remove the organic molecules and to obtain spinel nano-NFO.

2.2. General procedure for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives

A mixture of substituted hydrazines (1 mmol), ethyl acetoacetate (1 mmol) and NiFe₂O₄ (5 mol %) was stirred for 15 minutes at room temperature. The resulting solid mixture was stirred with dialkyl acetylenedicarboxylates (1 mmol), malononitrile or ethyl cyanoacetate (1 mmol) in 5 ml water at 60 °C for a required period of time (TLC). After completion of the reaction, water was removed under reduced pressure from the reaction mixture and was stirred with 5mL ethanol and the catalyst was recovered by applying an external magnet, leaving the clear reaction mixture. After removing the catalyst the solvent was evaporated under vacuum to give the crude product, which was purified by column chromatography.

2.3. General procedure for the synthesis of pyrano[3,2c]coumarin and 4H-chromene dervatives

A mixture of dimedone or cyclohexane-1,3-dione or 4hvdroxvcoumarin (1)mmol). dialkvl acetylenedicarboxylates (1 mmol) and malononitrile or ethyl cyanoacetate (1 mmol) and NiFe₂O₄ (5 mol %) in 5 ml water was stirred at 60 °C for a required period of time (TLC). After completion of the reaction, water was removed under reduced pressure from the reaction mixture and was stirred with 5mL ethanol and within a few seconds after stirring was stopped, catalyst was deposited on the magnetic bar and removed using an external magnet, leaving the clear reaction mixture. After removing the catalyst the solvent was evaporated under vacuum to give the crude product, which was purified by column chromatography.

2.4. General procedure for the synthesis of alkyl-1,4dihydropyrano[2,3-c]pyrazole-3-carboxylate derivatives:

A mixture of phenylhydrazine (1 mmol), dimethyl acetylenedicarboxylates (2 mmol), malononitrile (1 mmol), and NiFe₂O₄ (5 mol%) was stirred in 5 ml water at 60 °C for a required period of time (TLC). After completion of the reaction, water was removed under reduced pressure from the reaction mixture and was stirred with 5ml ethanol, and within a few seconds after stirring was stopped, the catalyst was deposited on the magnetic bar and removed using an external magnet, leaving the clear reaction mixture. After removing the catalyst the solvent was evaporated under vacuum to give the crude product, which was purified by column chromatography.

3. Results and Discussion

The crystalline phase of prepared [40-44] NiFe₂O₄ nanoparticle (NFO nanoparticle) was identified at room temperature using Cu-K α radiation ($\lambda = 1.54$ Å). The XRD pattern of NFO nanoparticle [45, 46] shown in **Fig. 2** describes many strong and sharp peaks indicating face-centered cubic nickel ferrite phase with lattice constant a= 0.8335 nm. All the characteristic peaks of NFO are clearly observed: 30.29° (220), 35.7° (311), 37.31° (222), 43.36° (400), 53.80° (422), 57.36° (511),

 62.92° (440) and 74.64° (533) which corresponds to standard diffraction data of NFO (JCPDS No. 74–2081). The XRD pattern indicates the absence of any traces of iron oxide (Fe₂O₃, Fe₃O₄), nickel oxide (NiO), and very high purity of NiFe₂O₄ nanoparticle. The average sizes of the NFO nanoparticle calculated by the Debye– Scherrer formulae (equation 1) applying the (440) peak of the XRD pattern are 33 and 38 nm respectively.

$$d = \frac{K\lambda}{\beta\cos\theta} \tag{1}$$

Where β represents the breadth of the diffraction line at its half intensity maximum; K is the so-called shape factor which with a value of about 0.9, and λ is the X-ray wavelength used in the XRD.

The size and morphology of the synthesized catalysts were determined by UHR-FEG-TEM. The UHR-FEG-TEM image depicts that the nano-catalyst has a nearly hexagonal morphology (**Fig. 3**). The average size was about 33 ± 5 nm from the TEM micrograph measurements which is in good agreement with XRD data. **Fig. 4a** and **Fig. 4b** display the HRTEM image and corresponding SAED pattern of a single nanocrystal.

Fig. 2: XRD pattern of the synthesized NiFe₂O₄ nanoparticle

Fig. 3. TEM image of hexagonal NiFe₂O₄ nanoparticle

Fig. 4. (a) The HRTEM image and (b) corresponding SAED pattern of a single nanocrystal

The FT-IR spectrum of prepared NiFe₂O₄ nano-crystals clearly demonstrates the presence of the peak (579 cm⁻¹) for the metal-oxygen stretching vibration as shown in **Fig. 5**. The field dependence of magnetization of synthesized spinel nickel ferrite was measured using a vibrating sample magnetometer at 300 K with an applied field -17.5 kOe \leq H \leq 17.5 kOe. NiFe₂O₄ prepared by hydrothermal method shows a ferromagnetic behavior as demonstrated in **Fig. 6**.

To design the synthetic protocol, an one pot fourcomponent coupling reaction of substituted hydrazines (I), ethyl acetoacetate (II), dialkyl acetylene dicarboxylates (III), and malononitrile or ethyl cyanoacetate (IV) was assumed as a model reaction to get dihydropyrano[2,3-c]pyrazol core (Scheme 1).

Keeping in mind the greener aspects of the ongoing scheme, the search for a proper recoverable and reusable catalyst which can be used in water solvent was the initial goal. As a continuation of my previous research on nano-catalysts, various nano metal oxides like nano ZnO, nano Al₂O₃, nano SiO₂, nano CuO, nano Fe₂O₃,

and nano NiO were tested for their activity on the model reaction of phenylhydrazines, ethyl acetoacetate, diethyl acetylenedicarboxylates and malononitrile (Scheme 2). Table 1, entry 1 showed that without catalyst the reaction fails to give any product even after 48 hours. With nano ZnO, nano Al₂O₃, nano SiO₂, and nano CuO, the yield of the reaction was not so satisfactory (Table 1, entries 2, 3, 4, 5). Entries 6 and 7 in Table 1 clearly showed that nano Fe₂O₃ and nano NiO were able to produce superior vield of the desired dihydropyrano[2,3-*c*]pyrazol derivative. Thus, а catalyst containing both Fe³⁺ and Ni²⁺ metal ions will probably provide a higher amount of product. Hence 5 mol% NiFe₂O₄ magnetic nanoparticle was administered for the MCR and as expected, an excellent result was obtained at 60 °C in aqueous media (Table 1, entry 8). Several solvents were also screened to test their efficiency at 60 °C and the results are summarized in Table 1 (entries 9, 10, and 11). It is noteworthy to mention that the polar solvents afforded better yield than nonpolar ones and the best result was obtained in an aqueous medium.

Fig. 5. FT-IR spectrum of prepared NiFe₂O₄ nano-crystals

Fig. 6. Field dependence magnetization of the as-prepared nano nickel ferrites

Scheme 1. Retrosynthetic analysis of dihydropyrano[2,3-c] pyrazol scaffold

Scheme 2. Synthesis of dihydropyrano[2,3-*c*]pyrazol derivative

Table 1. Optimization of reaction conditions for the synthesis^a of dihydropyrano[2,3-c] pyrazol derivative 5a

Entry Catalyst		Solvent	Time (h)	Yield ^b %	
1	-	Water	48	0	
2	Nano ZnO	Water	10	15	
3	Nano Al ₂ O ₃	Water	10	15	
4	Nano SiO ₂	Water	8	20	
5	Nano CuO	Water	8	35	
6	Nano Fe ₂ O ₃	Water	4	65	
7	Nano NiO	Water	4	45	
8	Nano NiFe ₂ O ₄	Water	1	95	
9	Nano NiFe ₂ O ₄	Toluene	3	48	
10	Nano NiFe ₂ O ₄	Dichloromethane	3	76	
11	Nano NiFe ₂ O ₄	Ethanol	2	88	

^a All reactions were carried out with 1 mmol of each reactant in 5 ml solvent and 5 mol % of specified catalyst at 60 °C

^b Yield of isolated products

With this standardized protocol, a wide variety of dihydropyrano[2,3-c]pyrazol derivatives were synthesized using differently substituted starting materials (Table 2). This developed methodology was applied for the reaction of various hydrazine derivatives with diverse electronic environments. As demonstrated in **Table 2**, the nano-crystalline NiFe₂O₄ catalyzed tandem provided four-component synthesis dihydropyrano[2,3-*c*]pyrazol derivatives in almost quantitative yield.

On the basis of experimental data and literature survey, the product formation may be rationalized by the initial generation of pyrazolone intermediate (A) through Lewis acidic Fe³⁺ (active catalyst of nano-NiFe₂O₄)-promoted reaction of phenylhydrazine and ethyl acetoacetate (**Scheme 3**). Subsequently, Ni²⁺ (active catalyst of nano-NiFe₂O₄) catalyze the Michael addition reaction between dialkyl acetylenedicarboxylate and alkyl nitrile derivatives to form the intermediate B. Next, the π electron cloud of intermediate B is polarized by Ni²⁺, and its β position is attacked by the pyrazolone intermediate (A) to produce enolate type intermediate C.

Finally, upon intramolecular electrophilic cyclization of C in the presence of Lewis acidic Fe^{3+} produces the desired pyran rings. Both the metal ions (Ni²⁺ and Fe³⁺) in nano-NiFe₂O₄ are necessary for the very high activity. However, the catalyst screening study (**Table 1**) indicates that Fe^{3+} has a greater influence in this reaction. The strong Lewis acidic Fe^{3+} efficiently catalyzed condensation and intramolecular cyclization step.

The four-component reaction passes through the formation of pyrazolone intermediate which can be viewed as an active methylene compound. Hence scope of this methodology was further extended by using other active methylene compounds like dimedone, cyclohexane-1,3-dione and 4-hydroxycoumarin in place of pyarazolone intermediate. In this case, the protocol turned out to be a three-component synthesis of multifunctionalized pyrano[3,2-*c*]coumarin and 4*H*chromene derivatives with excellent yield (Table 3).

Table 2. Four component synthesis of 3-methyl-1,4-dihydropyrano[2,3-*c*]pyrazole derivatives

K. Pradhan / Iran. J. Catal. 13 (4), 2023, 487-497

Scheme 3. The proposed mechanisms for the formation of the products

Table 3. Synthesis of pyrano[3,2-c]coumarin and 4H-chromene derivatives

Interestingly, in the presence of nano NiFe₂O₄, the reaction of phenyl hydrazine, two equivalent dimethyl acetylenedicarboxylates, and malononitrile provided

new dihydropyrano[2,3-c]pyrazol **8** in 45 % yield (**Scheme 4**).

Scheme 4: Synthesis of alkyl-1,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate

A heterogeneous catalyst is more attractive towards chemists when it is easily recovered and re-used. The reusability study of the nano-NiFe₂O₄ catalyst was performed for the synthesis of **7a** (Scheme 5).

The recycling of the catalyst was achieved by magnetic separation followed by washing with ethanol and finally drying before reuse. No significant loss of catalyst performance was observed after five rounds of use of catalyst due to insignificant catalyst leaching (**Fig. 7**).

The FT-IR spectra (**Fig. 8**) and X-ray diffraction (XRD) patterns (**Fig. 9**) indicated that the crystal structure of the nano-NiFe₂O₄ was unharmed after the fifth runs, which not only enlightened the excellent reusability but

Scheme 5. Model reaction for recyclability study

Fig. 7. Recyclability study of nano-NiFe₂O₄ catalyst

also reconfirmed the high chemical stability of this catalyst. The nano $NiFe_2O_4$ showed greater catalytic performance and recyclability in the multicomponent reaction between cyclic-1,3-dikotone, diethyl acetylenedicarboxylate, and malononitrile compared to

the previously reported catalyst system (**Table 4**). Very low catalyst loading of nano NiFe₂O₄ demonstrates very high activity in this reaction. The catalyst displayed excellent recyclability compared to other reported catalyst systems.

Fig. 8. FT-IR spectra of nano-NiFe₂O₄ after 5th catalytic cycle

Fig. 9. XRD) pattern of nano-NiFe₂O₄ after the 5th catalytic cycle

Table 4. Comparad	ive study of the efficience	icy of catalyst	3		
Catalyst	Catalyst loading	Time	Reusability	Yield (%)	References
	(mol%)				
CH ₃ NH ₂	30	30 min	No Reusability	81	24a
Na ₂ CO ₃	20	2.5 h	No Reusability	81	24b
nano-NiFe2O4	5	1 h	Recycled five cycles	93	This work

Table 4. Comparative study of the efficiency of catalysts

4. Conclusions

Overall, a sustainable green efficient protocol for the synthesis of dihydropyrano[2,3-*c*]pyrazol, pyrano[3,2-*c*]coumarin, and 4*H*-chromene scaffolds from easily accessible reactants by one-pot four- and three-component reaction has been achieved. The problem of removal of conventional catalysts can also be solved by using magnetically separable nano NiFe₂O₄. The catalyst is highly stable in aqueous media at 60 °C and a very small change of activity was observed after the fifth cycle of use of the catalyst. Hope this methodology will extend the scope of synthesis of this wide spectrum of novel compounds.

Acknowledgements

I gratefully acknowledge the financial support from Gobardanga Hindu College.

References

[1] F.M. Abdelrazek, P. Metz, O. Kataeva, A. Jaeger, S.F. El-Mahrouky, Arch. Pharm. 340 (2007) 543-548.

[2] N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G.S. Robertson, A.E. Surgenor, Bioorg. Med. Chem. 14 (2006) 4792-4802.

[3] A. Kumar, R.A. Maurya, S.A. Sharma, P. Ahmad, A.B. Singh, G. Bhatia, A.K. Srivastava, Bioorg. Med. Chem. Lett. 19 (2009) 6447-6451.

[4] T. Raj, R.K. Bhatia, A. Kapur, M. Sharma, A.K. Saxena, M.P.S. Ishar, Eur. J. Med. Chem. 45 (2010) 790-794.

[5] F.M. Abdelrazek, P. Metz, E.K. Farrag, Arch. Pharm. 337 (2004) 482-485.

[6] T. Symeonidis, K.C. Fylaktakidou, D.J. Hadjipavlou-Litina, K.E. Litinas, Eur. J. Med. Chem. 44 (2009) 5012-5017.

[7] T. Raj, R.K. Bhatia, R.K. Sharma, V. Gupta, D. Sharma, M.P.S. Ishara, Eur. J. Med. Chem. 44, (2009) 3209-3216.

[8] M. Ough, A. Lewis, E.A. Bey, J. Gao, J.M. Ritchie,W. Bornmann, D.A. Boothman, L.W. Oberley, J.J. Cullen, Cancer Biol. Ther. 4 (2005) 102-109.

[9] V.F. De Andrade-Neto, M.O.F. Goulart, J.F. Da Silva Filho, M.J. Da Silva, M.D.C.F.R. Pinto, A.V. Pinto, M.G. Zalis, K.H. Carvalho, A.U. Krettli, Bioorg. Med. Chem. Lett. 14 (2004) 1145-1149.

[10] E. Pérez-Sacau, A. Estévez-Braun, Á.G. Ravelo, D.G. Yapu, A.G. Turba, Chem. Biodivers. 2 (2005) 264-274.

[11] Z. Dong, X. Liu, J. Feng, M. Wang, L. Lin, X. Feng, Eur. J. Org. Chem. 1 (2011) 137-142.

[12] E.Y. Schmidt, B.A. Trofimov, N.V. Zorina, A.I. Mikhaleva, I.A. Ushakov, E.V. Skital'tseva, O.N. Kazheva, G.G. Alexandrov, O.A. Dyachenko, Eur. J. Org. Chem. 35 (2010) 6727-6730.

[13] D. Moon, M. Kim, S. Kang, Y. Choi, S. Park, G. Kim, Cancer Lett. 292 (2010) 111-115. [14] S. Hatakeyama, N. Ochi, H. Numata, S. Takano, J. Chem. Soc. Chem. Commun. 17 (1988) 1202-1204.

[15] N.S. Babu, N. Pasha, K.T.V. Rao, P.S.S. Prasad, N. Lingaiah, Tetrahedron Lett. 49 (2008) 2730-2733.

[16] A. Gaplovsky, J. Donovalova, M. Lacova, R. Mracnova, H.M. El-Shaaer, J. Photochem. Photobiol. A Chem. 1-2 (2000) 61-65.

[17] D. Armesto, W.M. Horspool, N. Martin, A. Ramos,C. Seoane, J. Org. Chem. 54 (1989) 3069-3072.

[18] K.C. Nicolaou, J.A. Pfefferkorn, G.Q. Cao, Angew. Chem., Int. Ed. 39 (2000) 734–739.

[19] I.E. Soria-Mercado, A. Prieto-Davo, P.R. Jensen, W. Fenical, J. Nat. Prod. 68 (2005) 904–910.

[20] Y. Moumou, J. Vasseur, F. Trotin, J. Dubois, Phytochemical 62 (1992) 265–278.

[21] F.A. Macias, J.M.G. Molinillo, R.M. Varela, A. Torres, F.R. Fronczek, J. Org. Chem. 59 (1994) 8261–8268.

[22] G. Wurzel, H. Becker, T. Eicher, K. Tiefensee, Planta Med. 31 (1990) 1239–1241.

[23] R.A. Edrada, P. Proksch, V. Wray, L. Witte, L. Van Ofwegen, J. Nat. Prod. 61 (1998) 358–361.

[24] I. Miki, N. Kishibayashi, H. Nonaka, E. Ohshima, H. Takami, H. Obase, A. Ishii, Jpn. J. Pharmacol. 59 (1992) 357–364.

[25] X.H. Lu, Q.W. Shi, Z.H. Zheng, A.B. Ke, H. Zhang, C.H. Huo, Y. Ma, X. Ren, Y.Y. Li, J. Lin, Q. Jiang, Y.C. Gu, H. Kiyota, Eur. J. Org. Chem. (2011) 802–807.

[26] K. Sprogoe, S. Manniche, T.O. Larsen, C. Christophersen, Tetrahedron 61 (2005) 8718–8721.

[27] V.K. Tandon, H.K. Maurya, B. Kumar, V.J. Ram, Synlett 18 (2009) 2992–2996.

[28] M.N. Erichsen, T.H.V. Huynh, B. Abrahamsen, J.F. Bastlund, C. Bundgaard, O. Monrad, A.B. Jensen, C.W. Nielsen, K. Frydenvang, A.A. Jensen, L. Bunch, J. Med. Chem. 53 (2010) 7180-7191.

[29] W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, C.C. Grundy, D. Labreque, M. Bubenick, G. Attardo, R. Denis, S. Lamothe, H. Gourdeau, B. Tseng, S. Kasibhatla, S.X. Cai, J. Med. Chem. 51 (2008) 417-423.

[30] M. Rueping, E. Sugiono, E. Merino, Chem. Eur. J. 14 (2008) 6329-6332.

[31] A. InWeissberger, E. C. Taylor, in: G.P. Ellis (Eds.), The Chemistry of Heterocyclic Compounds Chromenes, Chromanes and Chromones, John Wiley: New York, 1977, pp 11-139.

[32] M. Boominathan, M. Nagaraj, S. Muthusubramanian, R. V. Krishnakumar, Tetrahedron 67 (2011) 6057-6064.

[33] B. Kazemi, S. Javanshir, A. Maleki, M. Safari, H.R. Khavasi, Tetrahedron Lett. 53 (2012) 6977–6981.

[34] P. Prasanna, S. Perumal, J.C. Menéndez, Green Chem.15 (2013)1292-1299.

[35] P. Borah, P.S. Naidu, S. Majumder, P.J. Bhuyan, RSC Adv. 3 (2013) 20450-20455.

[36] B.C. Gates, Chem. Rev. 95 (1995) 511-522.

[37] A. Hu, G. Yee, T. W. Lin, J. Am. Chem. Soc.127 (2005) 12486-12487.

[38] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, J. Am. Chem. Soc. 128 (2006) 5279-5282.

[39] C.O. Dalaigh, S.A. Corr, Y. Gunko, S.J. Connon, Angew. Chem., Int. Ed. 23 (2007) 4407-4410.

[40] S. Paul, K. Pradhan, S. Ghosh, S.K. De, A.R. Das, Adv. Synth. Catal. 356 (2014) 1301-1316.

[41] K. Faungnawakij, R. Kikuchi, N. Shimoda, T. Fukunaga, Eguchi, Angew. Chem. Int. Ed. 47 (2008) 9314-9317.

[42] C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122 (2000) 6263-6267.

[43] S. Verma, P.A. Joy, Y.B. Khollam, H.S. Potdar, S.B. Deshpande, Mater. Lett. 58 (2004) 1092-1095.

[44] D. Fino, N. Russo, G. Saracco, V. Specchia, Catal. Today 117 (2006) 559-563.

[45] S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, J. Mol. Struct. 1076 (2014) 55-62.

[46] K. Maaz, S. Karim, A. Mumtaz, S.K. Hasanain, J. Liu, J. L. Duan, J. Magn. Magn. Mater. 322 (2010) 2199-2202.