IRANIAN JOURNAL OF CATALYSIS

Vitamin B₁₂ used as effective biocatalyst for the synthesis of pyrano[2,3*c*]cromenes and pyrano[2,3-*d*]pyrimidines

Ghasem Marandi^a*, Reyhaneh Nadernia^b, Nourallah Hazeri^b, Malek Taher Maghsoodlou^b

a) Organic Chemistry Department, Faculty of Chemistry, Urmia University, Urmia, Iran
b) Chemistry Department, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

Received 18 August 2021; received in revised form 11 January 2022; accepted 17 February 2022

ABSTRACT

Synthesis of organic compounds using some natural compounds as catalysts has gained more attention in recent decades. With respect to the importance of these procedures, the synthesis of 3,4-dihydropyrano[2,3-*c*]chromene and pyrano[2,3-*d*]pyrimidine derivatives using vitamin B_{12} by a one-pot reaction of malononitrile, benzaldehydes and 4-hydroxycumarine or 1,3-dimethylbarbituric acid is reported.

Keywords: Vitamin B₁₂; Aldehydes; Pyrano[2,3-c]chromene; Pyrano[2,3-d]pyrimidine; Biocatalyst; Green route

1. Introduction

Nowadays, the investigation on development of new efficient eco-friendly routes for the synthesis of organic compounds with high applications in medicine and material science is a main goal [1-4]. Vitamin B_{12} acts not only as a co-enzyme in a series of biochemical transformations but also is used as catalyst in chemical reactions for some proposes such as hydrogenation, reductive elimination, rearrangement and oxidation [5,6].

Because of the solubility in water, Vitamin B_{12} can be used as eco-friendly catalyst for the synthesis of new organic compounds [7-10]. Heterocyclic scaffolds bearing nitrogen and oxygen atoms such as chromene, pyrimidine, pyran and their other derivatives with fused rings have a key role in pharmaceutical and biochemical sciences [11-18]. There are many different synthetic procedures for generation of chromene, pyrane and their derivatives, but some of them are bearing some difficulties [19, 20]. One of the most interesting procedures to synthesize heterocyclic scaffolds such as chromene and pyrane derivatives is the use of multicomponent reactions (MCRs).

*Corresponding author: E-mail address: *marandi_gh@yahoo.com* (**G. Marandi**) Compared to other methods, multi-component reactions have advantages such as low solvent utilization, high efficiency, green protocol, short time

one-pot, and so on [21-25]. In continuation of our investigation on the synthesis of heterocyclic systems and development of efficient routs with mild conditions and eco-friendly catalyst [26], we have applied Vitamin B12 as a water soluble catalyst for the one-pot synthesis of heterocyclic scaffolds.

2.Experimental

2.1. Materials and methods

Melting points for synthesized compounds were measured using an Electrothermal 9100 apparatus and the IR spectra of the all compounds were recorded on a FT/IR Perkin Elmer Spectrum Two spectrometer. Further consideration on the structure of achieved molecules was conducted with ¹H and ¹³CNMR spectroscopy. The spectra were obtained with a BRUKER DRX-300 AVANCE instruments using DMSO- d_6 as a solvent and TMS as an internal standard at 300 and 75.6 MHz, respectively. Elemental analyses for C, H and N were performed using a Heraeus CHN-O-Rapid analyzer. In addition, the mass spectra were recorded on an Agilent Technologies (HP) MS Model: 5975C VL MSD mass spectrometer operating at an

ionization potential of 70 eV. All the chemicals were purchased from Fluka, Merck and Sigma-Aldrich companies and were used without any further purification.

2.2.General Procedure for the Synthesis of 2-amino-4-(3-bromophenyl)-5-oxo-4H,5H-pyrano[3,2c]chromene-3-carbonitriles (Exemplified by 4g)

То a magnetically stirred solution of 3bromobenzaldehyde (1 mmol) and malononitrile (1 mmol) in the presence of concentrated vitamin B_{12} $(7.35 \times 10^{-5} \text{ mol}\%)$ as a catalyst in EtOH/H₂O (1:1) mixture (5 mL), a mixture of 4-hydroxycumarine (1 mmol) in EtOH/H₂O (1:1) mixture (0.5 mL) was added dropwise and kept in 5 min at room temperature. After the addition of 4-hydroxycumarine, the reaction mixture was heated to 50 °C. The progress of the reaction was monitored by TLC and after completion of the reaction, the mixture was cooled to room temperature and the resulting precipitate was filtered and washed with (3×2) mL) of ethanol. The crude product has been recrystallized from ethanol (5 mL) to afford the pure compound 4g.

2-Amino-4,5-dihydro-4-(3-bromophenyl)-5oxopyrano[3,2-c]chromene-3-carbonitrile (4g)

Pale white solid; M.p.: 252-254 °C; IR (KBr) υ : 3400 and 3327 (NH₂), 2202 (CN), 1707, 1672 (CO) cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ : 4.51 (s, 1H, CH), 7.30-7.92 (m, 8H, Ar and NH₂). ¹³C NMR (100 MHz, DMSO-d₆) δ : 37.1, 57.8, 103.7, 113.5, 117.1, 119.6, 122.2, 123.1, 125.2, 127.4, 130.6, 131.0, 131.2, 133.5, 145.5, 152.7, 154.2, 158.4, 160.1. MS (*m*/*z*, %): 395 (M⁺+2, 62), 350.2 (M⁺, 65), 316. (22), 283 (18), 249 (38), 239 (100), 118 (33), 92 (15), 66 (7). Anal. Calcd for C₁₉H₁₁BrN₂O₃ (395.21) C, 57.74; H, 2.81; N, 7.09. Found: C, 57.92; H, 2.89; N, 7.16%.

2-Amino-4,5-dihydro-4-(3-fluorophenyl)-5oxopyrano[3,2-c]chromene-3-carbonitrile (4m)

Pale white solid; M.p.: 236-238 °C; IR (KBr) v: 3393 and 3325 (NH₂), 2199 (CN), 1703, 1675 (CO) cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ : 4.52 (s, 1H, CH), 7.06-7.92 (m, 10H, Ar and NH₂). ¹³C NMR (100 MHz, DMSO-d₆) δ : 37.1, 57.9, 103.7, 113.5, 114.3, 114.6, 114.9, 115.2, 117.1, 119.6, 123.0, 124.3, 125.1, 130.8, 130.9, 133.5, 146.7, 146.8, 152.8, 154.2, 158.4, 160.1, 161.1, 164.3. MS (*m*/*z*, %): 334 (M⁺, 5), 318 (9), 290 (24), 225 (39), 183 (19), 238 (100), 158 (9) 66 (11). Anal. Calcd for C₁₉H₁₁FN₂O₃ (334.31) C, 68.26; H, 3.32; N, 8.38. Found: C, 68.35; H, 3.27; N, 8.43%.

2.3.General Procedure for the Synthesis of 7-amino-1,3-dimethyl-5-(3-nitrophenyl)-2,4-dioxo-1,3,4,5tetrahydro-2H-pyrano[2,3-d]pyrimidine-6carbonitriles (Exemplified by 6g)

magnetically То а stirred solution of 3nitrobenzaldehyde (1 mmol) and malononitrile (1 mmol) in the presence of concentrated vitamin B_{12} $(7.35 \times 10^{-5} \text{ mol}\%)$ as a catalyst in EtOH/H₂O (1:1) mixture (5 mL), a mixture of 1,3-dimethylbarbituric acid (1 mmol) in EtOH/H₂O (1:1) mixture (0.5 mL) was added dropwise and kept in 5 min at room temperature. After the addition of 1,3-dimethylbarbituric acid, the reaction mixture was heated to 60 °C. The progress of the reaction was monitored by TLC and after completion of the reaction, the mixture was cooled to room temperature and the resulting precipitate was filtered and washed with $(3 \times 2 \text{ mL})$ of ethanol. The crude product has been recrystallized from ethanol (5 mL) to afford the pure compound **6g**.

7-Amino-1,3-dimethyl-5-(3-nitrophenyl)-2,4-dioxo-2,3,4,5-tetra-hydro-1H-pyrano[2,3-d]pyrimidine-6carbonitrile (6g)

Light yellow solid; M.p.: 204-207 °C; IR (KBr) υ : 3364 and 3337, (NH₂), 2201 (CN), 1726, 1698 and 1683 (CO) cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ : 3.09 and 3.39 (6H, 2s, 2 NCH₃), 4.60 (1H, s, CH), 7.51 (2H, brs, NH₂), 7.60 (1H, t, Ar), 7.78 (1H, d, Ar), 8.08-8.13 (2H, m, Ar).

3. Results and Discussion

It has been found that the reaction of benzaldehyde **1**, malononitrile **2** and 4-hydroxycumarine **3** in the presence of catalytic amounts of vitamin B_{12} in the mixture of EtOH/H₂O (1:1) leads to 2-amino-4-phenyl-5-oxo-4*H*,5*H*-pyrano[3,2-*c*]chromene-3-carbonitrile **4** in good yields (**Scheme 1**).

Synthesis of pyrano[3,2-c]chromenes has been reported in many reports under different conditions, but in the current work, vitamin B₁₂ has been used as a natural biocatalyst for synthesis of pyrano[3,2-c]chromene derivatives.

The reaction was performed with no catalyst and the reaction did not show acceptable results. In the presence of vitamin B_{12} , the reaction of benzaldehyde **1a**, malononitrile **2** and 4-hydroxycumarine **3** produced pyrano[3,2-*c*]chromene **4a** in short reaction time with high yield.

At the first step, the reaction was carried out in H_2O , EtOH and mixture of EtOH/ H_2O with various proportions to realize the most appropriate solvent for this reaction. Among the mentioned solvents, a mixture of $EtOH/H_2O$ with (1:1) proportion was selected as the best solvent through its high efficiency. The results are shown in **Table 1**.

After solvent optimization, to find the best reaction conditions and to evaluate the catalytic efficiency of vitamin B_{12} , a model study was conducted for the synthesis of 2-amino-4-phenyl-5-oxo-4*H*,5*H*-pyrano[3,2-*c*]chromene-3-carbonitrile **4a** (**Table 2**). Under the optimized reaction conditions, a number of 2-amino-4-phenyl-5-oxo-4*H*,5*H*-pyrano[3,2-*c*]chromene-3-carbonitriles, shown in **Table 3**, were synthesized.

(i) Reaction Conditions: benzaldehyde (1, 1 mmol), malononitrile (2, 1 mmol), 4-hydroxycumarine (3, 1mmol), vitamin B12 (7.35×10-5 mol%) as catalyst in EtOH/H2O (1:1) mixture (5 mL) at 50 °C.

Scheme 1. S	synthesis of	2-amino-4-(ar	ryl)-5-oxo-4	4 <i>H</i> ,5 <i>H</i> -pyran	o[3,2-c]chrome	ene-3-carbonitrile de	rivatives.
			J /	· · · · ·	· L· / · J· · · ·		

Entry	Solvent	Temperature (°C)	Time (min)	Yield (%) ^a
1	H ₂ O	50	60	71
2	EtOH/H ₂ O (1:1) ^b	50	20	90
3	EtOH/H2O (1:2)	50	40	88
4	EtOH/H ₂ O (3:1)	50	45	85
5	EtOH/H ₂ O (1:3)	50	45	86
6	EtOH	50	60	82

Table 1. Optimization of solvent in synthesis of 4a

^a Isolated yield; ^b Selected solvent with high performance in the reaction.

Entry	Solvent	Catalyst (mol%)	Temperature (°C) ^a	Time (min)	Yield (%) ^b
1	EtOH/H ₂ O (1:1)	4.90×10 ⁻⁵	50	60	86
2	EtOH/H ₂ O (1:1)	7.35×10 ⁻⁵	50	40	90
3	EtOH/H ₂ O (1:1)	9.80×10 ⁻⁵	50	45	84
4	EtOH/H ₂ O (1:1)	12.25×10 ⁻⁵	50	50	84

Table 2. Optimization of catalyst loading in synthesis of 4a

^a Selected temperature; ^b Isolated yield.

Table 3. Synthesis of 2-	amino-4-(aryl)-5-oxo-4H,5	5 <i>H</i> -pyrano[3,2- <i>c</i>]chrome	ene-3-carbonitriles	with optimized	conditions for
selected aldehydes in the	presence of vitamin B12 at	50 °C.			

	CHO Ar + CN 1 2	+ 0H 3	Vitamin B ₁₂ EtOH/H ₂ O, 50 °C (1:1)	O Ar 4a-p	NH ₂ `CN
Entry	Ar	Time (min)	Yield (%) ^a	M.p. (°C)	M.p. [Ref.] ^b
4a	C ₆ H ₅	20	90	254-257	256-258 [27]
4b	$4-MeC_6H_4$	30	87	257-259	258-260 [28]
4c	$3,4-(Me)_2C_6H_4$	35	84	233-235	231-232 [29]
4d	$3-HOC_6H_4$	15	93	265-268	268-270 [30]
4e	4-OMeC ₆ H ₄	40	90	244-247	247-249 [30]
4f	$4-BrC_6H_4$	20	82	252-255	254-256 [31]
4g	$3-BrC_6H_4$	12	86	252-254°	
4h	4-C1C ₆ H ₃	25	87	262-264	263-265 [32]
4i	2-C1C ₆ H ₄	25	97	263-265	266-268 [33]
4j	3-C1C ₆ H ₄	15	81	240-243	240-242 [31]
4k	$2,6-(Cl)_2C_6H_4$	30	88	297-299	300-301 [34]
41	$4-FC_6H_4$	35	82	261-264	262-263 [31]
4m	3-FC ₆ H ₄	20	79	236-238°	
4n	4-CNC ₆ H ₃	10	91	279-282	281-283 [30]
4o	$3-NO_2C_6H_4$	25	98	255-257	257-258 [35]
4p	$2-NO_2C_6H_4$	10	86	254-256	257-259 [30]

^a Isolated yield; ^b Reported melting points; ^c New compound.

Because of the nature of vitamin B_{12} structure shown in **Fig. 1**, this molecule is able to give hydrogen bonding with some functional groups of other molecules to have a catalyst role.

An illustrative mechanism for the synthesis of 2-amino-4-(3-nitrophenyl)-5-oxo-4*H*,5*H*-pyrano[3,2-

c]chromene-3-carbonitriles **4** is shown in **Scheme 2**. At first step in mechanism, the activation of arylaldehyde toward the synthesis of dicyanoalkene **A** as a conjugated electron deficient system can be completed which can be attacked by nucleophilic systems such as enol system (**3**) to obtain compound **B**. Then, the intramolecular attack of oxygen atom on active nitrile group leading to pyran ring synthesis can be converted to final compound **4** by a 1,3-proton shift.

The **Scheme 2** indicates a proposed mechanism for the synthesis of compounds **4** and **6** concomitantly. All synthesized compounds have stable structures which have been proved by spectroscopic data.

Fig. 1. Chemical structure of vitamin B₁₂

To confirm the catalysis effect on the synthesis of heterocyclic systems, another reaction was performed in according to undergoes reaction. The reaction of benzaldehyde **1**, malononitrile **2** and 1,3-dimethylbarbituric acid **3** in the presence of vitamin B₁₂ as a catalyst led to 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2*H*-pyrano[2,3-*d*]pyrimidine-6-carbonitrile **6** in high yields (**Scheme 3**).

For the selection of best solvent, the procedure was the same as the synthesis of compound **4** and a mixture of EtOH/H₂O with (1:1) proportion has been selected as a solvent for synthesis of 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2*H*-pyrano[2,3-d]pyrimidine -6-carbonitriles **6** (see **Table 4**).

After the solvent optimization, to find the best reaction conditions and to evaluate the catalytic efficiency of vitamin B_{12} , a model study was conducted for the

synthesis of 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2*H*-pyrano[2,3-*d*]pyrimidine -6carbonitriles **6** (**Table 5**). As shown in **Table 5**, unlike reaction for the synthesis of compound **4**, the reaction performance is better at 60 °C for the synthesis of compound **6**.

Reaction with some aldehydes bearing electron donating and withdrawing groups for the synthesis of 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-

tetrahydro-2*H*-pyrano[2,3-*d*]pyrimidine-6-carbonitriles **6** was carried out and the results were summarized in **Table 6**.

Some methods for the synthesis of compounds 4 and 6 have been shown in the **Table 7**. As shown in the **Table 7**, the current work has many advantages in comparison to reported procedures such as non-toxic, short reaction time, and easy workup.

Scheme 2. Proposed mechanism for Synthesis of 2-amino-4-(aryl)-5-oxo-4*H*,5*H*-pyrano[3,2-*c*]chromene-3-carbonitriles **4** or 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2*H*-pyrano[2,3-*d*]pyrimidine-6-carbonitriles **6**.

 $\begin{array}{l} {\sf Ar:} \ {\sf C}_6{\sf H}_5, \ 4\text{-}{\sf ClC}_6{\sf H}_4, \ 4\text{-}{\sf FC}_6{\sf H}_4, \ 4\text{-}{\sf BrC}_6{\sf H}_4, \ 4\text{-}{\sf CNC}_6{\sf H}_4, \\ {\sf 4\text{-}{\sf OMeC}_6{\sf H}_4, \ 2\text{-}{\sf NO}_2{\sf C}_6{\sf H}_4, 3\text{-}{\sf NO}_2{\sf C}_6{\sf H}_4, \end{array}$

(i) Reaction Conditions: benzaldehyde (1, 1 mmol), malononitrile (2, 1 mmol), 1,3-dimethybarbituric acid (5, 1mmol), vitamin B12 (7.35×10-5 mol%) as catalyst in EtOH/H2O (1:1) mixture (5 mL) at 60 °C.

Scheme 3. Synthesis of 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2*H*-pyrano[2,3-*d*]pyrimidine-6-carbonitriles.

Entry	Solvent	Time (min)	Yield (%) ^a
1	H ₂ O	60	79
2	EtOH/H ₂ O (1:1) ^b	15	96
3	EtOH/H ₂ O (1:2)	15	94
4	EtOH/H ₂ O (3:1)	30	90
5	EtOH/H ₂ O (1:3)	30	94
6	EtOH	60	88

Table 4. Optimization of solvent in synthesis of 6a

^a Isolated yield; ^b Selected solvent with high performance in the reaction.

Table 5. Optimization of catalyst loading in synthesis of 6a

Entry	Solvent	Catalyst (mol%)	Temperature (°C) ^a	Time (min)	Yield (%) ^b
1	EtOH/H ₂ O (1:1)	4.90×10 ⁻⁵	60	45	94
2	EtOH/H ₂ O (1:1)	7.35×10 ⁻⁵	60	30	96
3	EtOH/H ₂ O (1:1)	9.80×10 ⁻⁵	60	35	87
4	EtOH/H ₂ O (1:1)	12.25×10 ⁻⁵	60	35	79

^a Selected temperature; ^b Isolated yield.

Table 6. Synthesis of 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2*H*-pyrano[2,3-*d*]pyrimidine -6-carbonitriles with optimized conditions for selected aldehydes in the presence of vitamin B_{12} at 60 °C.

	CHO Ar + CN 1 2	H ₃ C _N + • • • • • • • •	Vitamin B ₁₂ → EtOH/H ₂ O, 60 °C H ₃ ((1:1)	$C = \begin{bmatrix} CH_3 \\ N \\ N \\ C \end{bmatrix} = \begin{bmatrix} CH_3 \\ N \\ C \end{bmatrix} = \begin{bmatrix} CH_3 \\ O \\ Ar \end{bmatrix}$	H ₂ N
Entry	Ar	Time (min)	Yield (%) ^a	M.p. (°C)	M.p. [Ref.] ^b
6a	C ₆ H ₅	20	90	220-223	219-222 [36]
6b	4-OMeC ₆ H ₄	30	96	223-225	225-227 [37]
6с	$4-BrC_6H_4$	15	94	234-236	235-237 [38]
6d	$4-C1C_6H_4$	20	83	236-238	234-237 [39]
6e	$4-FC_6H_4$	25	79	227-230	230-232 [40]
6f	$4-CNC_6H_4$	10	93	203-205	202-204 [3]
6g	$3-NO_2C_6H_4$	20	87	204-207	204 [41]
6h	$2-NO_2C_6H_4$	10	97	207-209	208-209 [42]

^a Isolated yield; ^b Reported melting points.

	$ \begin{array}{c} CHO\\ Ar\\ T\\ T\\T\\ T\\ T\\ T\\ T\\ T\\ T\\ T\\ T\\ T\\ $	$\begin{array}{c} OH \\ \hline \\ 3 \\ or \\ OH \\ \hline \hline \\ OH \\ \hline \hline OH \\ \hline \\ OH \\ \hline \hline OH \\ \hline \hline OH \\ \hline \hline OH $		Ar = CN $Ar = CN$ Ar Ar Ar Ar	
Entry ^a	Catalyst	Conditions	Time (min)	Yield (%)	[Ref.]
1	Method A: diammonium hydrogen phosphate Method B: (<i>S</i>)-proline	Method A: H ₂ O, EtOH (1:1), r.t Method B: H ₂ O, EtOH (1:1), reflux	120	Method A: 81-95 Method B: 72-88	[27]
2	Nano aluminum hydroxide	EtOH, 78 °C	120	48	[43]
3	4-(dimethylamino)pyridine	EtOH, reflux	90-300	64-94	[28]
4	KF-Montmorillonite	DMF, 90 °C	360-660	80-94	[29]
5	Fe ₃ O ₄ @SiO ₂ -imid-PMA	H ₂ O, reflux	6-12	88-97	[30]
6	Vitamin B ₁₂	EtOH,H ₂ O (1:1), 50 °C	10-40	79-98	Current work
7	SBA-Pr-SO ₃ H	Solventless, 140 °C	5-45	30-90	[36]
8	L-Proline	H ₂ O:EtOH, r.t	30-90	68-86	[44]
10	Fe ₃ O ₄ @SiO ₂ -Propyl-Pip- SO ₃ H.HSO ₄	H ₂ O, 60 °C	10-35	92-98	[45]
11	Vitamin B ₁₂	EtOH,H2O (1:1), 60 °C	10-30	83-97	Current work

^a Entry 1-6 refers to the synthesis of 2-amino-4-(3-nitrophenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitriles and entry 7-11 refers to the synthesis of 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine -6-carbonitriles.

4. Conclusions

In conclusion, we demonstrate the use of vitamin B_{12} as an eco-friendly nontoxic catalyst by a three-component condensation reaction for the synthesis of 2-amino-4-(aryl)-5-oxo-4H,5H-pyrano[3,2-*c*]chromene-3-

carbonitriles **4** and 7-amino-1,3-dimethyl-5-(aryl)-2,4-dioxo-1,3,4,5-tetrahydro-2*H*-pyrano[2,3-*d*]pyrimidine-6-carbonitriles.

Acknowledgements

We gratefully acknowledge financial support from the Research Council of the University of Sistan and Baluchestan.

References

- M.B. Deshmukh, S.S. Patil, S.D. Jadhav, P.B. Pawar, Synth. Commun. 42 (2012) 1177–1183.
- [2] N. Firoozeh, S. Rezazadeh, C. Izanloo C, J. Mex. Chem. Soc. 61 (2017) 241-249.
- [3] G. Brahmachari, B. Banerjee, ACS Sustainable Chem. Eng. 2 (2014) 411-422.
- [4] M. Dodangeh, M.T. Maghsoodlou, M. Kangani, F. Paymozd, N. Hazeri, J. Nutr. Food. Sci. 1 (2016) 1-7.
- [5] Z. Petrović, B. Mojsilović, Z.M. Bugarčić, J. Mol. Catal. A: Chem. 170 (2001) 267–269.
- [6] K.E. Helliwell, G.L.Wheeler, K.C. Leptos, R.E. Goldstein, A.G. Smith, Mol. Biol. Evol. 28 (2011) 2921– 2933.
- [7] H. Shimakoshi, Y. Hisaeda, TCIMAIL 138 (2009) 2-11.
- [8] K.W. Daisley, Limnol. Oceanogr. 14 (1969) 224-228.
- [9] B.M.M. Salih, S. Satyanarayana, Afr. J. Pure Appl. Chem. 3 (2009) 170-176.
- [10] K. Taharaa, K. Hisaeda, Green Chem. 13 (2011) 558-561.
- [11] D.C. Heber, C.C. Heers, U.C. Ravens, Die Pharmazie 48 (1993) 537-541.
- [12] J.C. Davoll, J.C. Clarke, F.E.C. Eislager, J. Med. Chem. 15 (1972) 837-839.
- [13] A.H. Shamroukh, M.E.A. Zaki, E.M.H. Morsy, F.M.E. Abdel Motti, F.M. Abdel Megeid, Arch. Pharm. 340 (2007) 236-243.
- [14] L.R. Bennett, C.J. Blankely, R.W. Fleming, R.D. Smith, T.D. Tessman, J. Med. Chem. 24 (1981) 382-389.
- [15] A.D.C. Broom, J.L.C. Shim, G.L.C. Anderson, J. Org. Chem. 41 (1976) 1095-1099.
- [16] S. Wisen, J. Androsavich, C.G. Evans, L. Chang, J.E. Gestwi Cki, Bioorg. Med. Chem. Lett. 18 (2008) 60–65.

- [17] N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G.S. Robertson, A.E. Surgenor, Bioorg. Med. Chem. 14 (2006) 4792–802
- [18] C. Biot, G. Glorian, L.A. Maciejewski, J.S. Brocard, O. Domarle, G. Blampain, P. Blampain, A.J. Georges, H. Abessolo, D. Dive, J. Lebibi, J. Med. Chem. 40 (1997) 3715–3718.
- [19] N. Seyyedi, F. Shirini, M. Safarpoor, N. Langarudi, RSC Adv. 6 (2016) 44630–44640.
- [20] D.S. Patel, J.R. Avalani, D.K. Raval, J. Saudi Chem. Soc. 20 (2016) S401–S405.
- [21] N. Nikoorazm, P. Moradi, N. Noori, J. Porous Mater. 27 (2020) 1159-1169.
- [22] P. Moradi, M. Hajjami, New J. Chem. 45 (2021) 2981-2994.
- [23] N. Nikoorazm, B. Tahmasbi, S. Gholami, P. Moradi, App. Organomet. Chem. 34 (2020) e5919.
- [24] B. Atashkar, A. Rostami, H. Gholami, B. Tahmasbi, Res. Chem. Intermed. 41 (2015) 3675-3681.
- [25] A. Ghorbani-Choghamarani, P. Moradi, B. Tahmasbi, Polyhedron 163 (2019) 98–107.
- [26] M. Lashkari, F. Mohamadpour, M.T. Maghsoodlou, R. Heydari, N. Hazeri, Polycycl. Aromat. Comp. (2020) https://doi.org/10.1080/10406638.2020.1781205.
- [27] S. Abdolmohammadi, S. Balalaie, Tetrahedron Lett. 48 (2007) 3299–3303.
- [28] A.T. Khan, M. Lal, S. Ali, M.M. Khan, Tetrahedron Lett. 52 (2011) 5327–5332.
- [29] D.Q. Shia, N. Wub, Q.Y. Zhuang, J. Chem. Res. (2008) 542-545.
- [30] M. Esmaeilpour, J. Javidi, F. Dehghani, F.A. Nowroozi Dodeji, RSC Adv. 5 (2015) 26625–26633.
- [31] J.M. Khurana, B. Nand, P. Saluja, Tetrahedron 66 (2010) 5637-5641.
- [32] G. Mohammadi Ziarani, A. Abbasi, A. Badiei, Z. Aslani, E-Journal of Chemistry 8 (2011) 293-299.
- [33] J. Wanga, D. Shi, Q. Zhuanga, X. Wanga, H. Hud, J. Chem. Res. (2004) 818-820.
- [34] G. Mohammadi Ziarani, A. Badiei, A. Azizi, M. Zarabadi, Iran. J. Chem. Chem. Eng. 30 (2011) 59-65.
- [35] M. Khoobi, L. Ma'mani, F. Rezazadeh, Z. Zareie, A. Foroumadi, A. Ramazani, A. Shafiee, J. Mo.l Catal. A: Chem. 359 (2012) 74-80.
- [36] M.N. Elinson, F.V. Ryzhkov, V.M. Merkulova, A.I. Ilovaisky, G.I. Nikishin, Heterocycl. Commun. 20 (2014) 281-284.
- [37] F. Seeliger, S. Berger, G.Y. Remennikov, K. Polborn, H. Mayr, J. Org. Chem. 72 (2007) 9170-9180.

- [38] H.H. Zoorob, M.A. Elzahab, M. Abdel-Mogib, M.A. Ismail, M. Abdel-Hamid, Arzneim. Forsch Drug Res. 47 (1997) 958-962.
- [39] Y. Gao, S. Tu, T. Li, X. Zhang, S. Zhu, F. Fang, D. Shi, Synth. Commun. 34 (2004) 1295-1299.
- [40] D. Azarifar, R. Nejat-Yami, F. Fatemeh Sameri, Z. Akrami, Lett. Org. Chem. 9 (2012) 435-439.
- [41] A. Khazaei, A. Ranjbaran, F. Abbasi, M. Khazaei, A.R. Moosavi-Zare, RSC Adv. 5 (2015) 13643-13647.
- [42] C. Wang, J.J. Ma, X. Zhou, X.H. Zang, Z. Wang, Y.J. Gao, P.L. Cui, Synth. Commun. 35 (2005) 2759-2764.
- [43] H. J. Wang, J. Lu, Z. H. Zhang, Monatsh. Chem. 141 (2010) 1107–1112.
- [44] M. Bararjanian, S. Balalaie, B. Movassagh, A. M. Amani, J. Iranian Chem. Soc. 6 (2009) 436–442.
- [45] M. Pourghasemi-Lati, F. Shirini, M. Alinia-Asli, M. R. Rezvani, Appl. Organomet. Chem. 32 (2018) e4605.