IRANIAN JOURNAL OF CATALYSIS

Brønsted acidic ionic liquid ([BMIm]HSO₄) as an efficient catalysts for the one-pot synthesis of 2*H*-indazolo[2,1-*b*]phthalazine-trione derivatives

Esmayeel Abbaspour-Gilandeh^{a,*}, Seyyedeh Cobra Azimi^b

^aYoung Researchers and Elites Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran. ^bYoung Researchers and Elites Club, Rasht Branch, Islamic Azad University, Rasht, Iran.

Received 18 February 2014; received in revised form 20 April 2014; accepted 12 May 2014

ABSTRACT

The Brønsted acidic ionic liquid ($[BMIm]HSO_4$) catalyzed three-component synthesis of 2*H*-indazolo[2,1-*b*]phthalazine-trione derivatives at room temperature. The integrity of the ionic liquid remains reasonably unchanged when it is separated from the reaction mixture by water extraction, as it can be recycled several times without any loss of activity in each of the title syntheses. The products and ionic liquid could be conveniently separated from the reaction mixture, indicating that the whole process was performed as a green chemical transformation. The salient features of this one pot protocol are short reaction times, cleaner reaction profiles and simple workup.

Keywords: Ionic liquid, Reusable catalyst, Phthalazine moiety, Brönsted acid.

1. Introduction

During recent years, ionic liquids (ILs) have attracted increasing interest in the area of organic synthesis particularly by producing an alternative green reaction medium [1]. Recently, the ionic liquids have been found to possess a significant role as catalyst [2]. They can be also used as solvents due to their unique physical and chemical properties such as nonvolatility, non-flammability, thermal stability and controlled miscibility [3-5]. A subdivision of ILs is protic ionic liquids (PILs), which are produced through the combination of a Brönsted acid and a Brönsted base [6]. These acidic ionic liquids have widely been applied in electrochemistry, synthesis of nanostructure materials, reaction media and catalyst.

1-butyl-3-methylimidazolium hydrogensulphate ([BMIm]HSO₄) has not been explored [7] to great extent, in spite the fact that it holds great potential to catalyse various organic reactions. This Brönsted acidic ionic liquid has easily been synthesized and used as an efficient, inexpensive and reusable catalyst in organic synthesis [8-10]. Moreover, the present ionic liquid is halogen free and because of less carbon numbers, this ionic liquid has less toxicity [11].

Therefore, [BMIm]HSO₄ can be introduced as a green ionic liquid. Over the past few decades, a tremendous upsurge of interest has been observed in the synthesis of nitrogen containing heterocyclic compounds, owing to their abundance in nature and essentiality to life [12–16]. Among them, heterocycles containing phthalazine moiety are of interest because they show some pharmacological and biological activities such as Anticonvulsant [17], cardiotonic [18], and vasorelaxant [19].

The synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives have been reported using *p*-TSA [20], ionic liquids [21], ultrasound [22], dodecylphosphonic acid (DPA) [23], heteropoly acids [24], Ce(SO4)₂.4H₂O [25], CAN [26], montmorillonite K-10 [27], N-halosulfonamides [28], TMSC1 [29], silica sulfuric acid [30], phosphomolybdic acid (PMA)–SiO₂ [31], [BMIm]Br [32] and PEG-6000 [33].

In continuation of our interest in finding new environmentally benign methods for the synthesis of various compounds [34-35] and use of various ionic liquids for organic synthesis [36], herein we want to report the rapid and selective synthesis of 2H-indazolo[2,1-*b*]phthalazine-trione in the presence of [BMIm]HSO₄ ionic liquid as a Bronsted acidic ionic liquid (Scheme 1).

^{*}Corresponding author: abbaspour1365@yahoo.com Tel: +984513332238, Fax: +984513363199

Scheme 1. One-pot three-component reaction of dimedone, hydrazine monohydrate, phthalic anhydride and aldehyde catalyzed by [BMIm]HSO₄.

2. Experimental

2.1. Materials and equipments

Chemicals were purchased from Merck and Fluka Chemical Companies and used without further purification. The purity determination of the products was accomplished by TLC on silica gel polygram SIL G/UV 254 plates. All products were confirmed by their m.p., IR, NMR and comparison with data in the pointed references. Melting points were determined on an electrothermal type 9200 melting point apparatus. IR spectra were recorded using a Shimadzu IR-470 spectrometer with KBr plates. In all the cases the ¹HNMR spectra were recorded with Bruker Avance 300 MHz instrument. Chemical shifts are reported in parts per million in DMSO with tetramethylsilane as an internal standard. The ¹³CNMR data were collected on Bruker Avance 75 MHz instrument. Mass spectra were recorded on a shimadzu OP1100EX mass spectrometer operating at an ionization potential of 70 eV.

2.2. General procedure for preparation of [BMIm]HSO₄

The 1-butyl-3-methylimidazolium hydrogen sulfate was synthesized according the reported procedure for 1-hexyl-3-methylimidazolium hydrogen sulfate [HMIm]HSO₄ [40]. The [BMIm]HSO₄ was obtained by a dropwise addition of one equivalent of concentrated sulfuric acid (97%) to a cooled solution of butyl methyl imidazolium chloride (1 eq) in anhydrous methylene chloride. The mixture was refluxed for 48 h and the HCl by-product formed in the reaction was collected by dissolving it in deionized water at 0 °C (the acidity of the aqueous solution was measured by titration with NaOH as a control for completion of the reaction). After completion of the reaction, the solution was cooled to room temperature and dichloromethane was removed in a rotary evaporator. The ionic liquid was dried under high vacuum at 70 °C for 6 h.

2.3. General procedure for separation of [BMIm]HSO4

For this aim, after completion of the reaction (monitored by TLC), water was added to the reaction mixture and then the solid was isolated by filtration.

The IL in water could be recovered easily by evaporation at 80 °C in a vacuum. The recovered IL was washed with diethyl ether and dried at 80°C in a vacuum for 1h.

2.4. General procedure for preparation of phthalazine derivative

A mixture of dimedone (1 mmol), phthalhydrazide (1 mmol), aldehyde (1mmol) and [BMIm]HSO₄ (1 ml) was sealed and stirred at room temperature under solvent-free conditions. The progress of the reaction was monitored by thin-layer chromatography (TLC). After completion of the reaction, the mixture was washed with water (2×15 mL) and then recrystallized from EtOAc/*n*-hexane (1:2) to afford the pure product.

3. Results and Discussion

In order to determine the optimum conditions, we investigated the reaction of dimedone (1 mmol), phthalhydrazide (1 mmol), 2-chlorobenzaldehyde (1 mmol) and [BMIm]HSO₄ (1 ml) at variable temperatures and alternatively in closely related ionic liquids (Table 1). It could be seen that the best result was obtained with 1 mL of [BMIm]HSO₄ at room temperature (Table 1, entry 13). Increase in the reaction temperature did not improve the yield of the product (Table 1, entry 14 and 15). The results show that weak basic ionic liquids such as TMGT and Et₄NBr lead to the products in low yields and the reaction time is longer than acidic ionic liquids. The neutral ionic liquid, [BMIm]BF4, was not as effective as [BMIm]HSO₄, however, it found comparable catalysis activity when contaminated with 20 mol% of *p*-TSA. the results was shown that different ILs exhibit a dramatic difference in the yield of 4a, that is attributed to the tunable physical properties of ionic liquids. Among various other catalysts, [BMIm]BF₄, [BMIm] BF₄ / *p*-TSA, TiCl₄, DBU and K₃PO₄ afforded poor to moderate yields (30-74%), while, KSF, $[HMIm]HSO_4$, $[BMIm]HSO_3$ and $[2-aemim][PF_6]$ gave good yields of the desired products (80-84%). The main disadvantage of some of the used solid catalysts is that the catalysts are destroyed in the workup procedure and cannot be recovered or reused. But [BMIm]HSO₄ catalyst is inexpensive, readily available and reusable.

Abbaspour-Gilandeh/ Iranian Journal of Catalysis 4(3), 2014, 175-180

Entry	Catalyst	Reaction time (min)	Yield(%) ^b
1		200	trace
2	KSF	40	84
3	K ₃ PO ₄	120	72
4	TiCl ₄	25	70
5	DBU	40	74
6	[BMIm]BF ₄	120	41
7	[HMIm]HSO ₄	15	83
8	[BMIm] HSO ₃	120	81
9	TMGT	120	25
10	[BMIm] BF ₄ / <i>p</i> -TSA	25	60
11	$[2-aemim][PF_6]$	25	80
12	Et ₄ NBr	120	trace
13	[BMIm] HSO ₄ (25°C)	5	97
14	[BMIm] HSO ₄ (45°C)	7	85
15	[BMIm] HSO ₄ (65°C)	9	80

Table 1. Influence of different catalysts on the reaction of dimedone, phthalhydrazide, and 2-chlorobenzaldehyde.^a

^aReaction conditions: dimedone (1 mmol), phthalhydrazide (1 mmol), 2-chlorobenzaldehyde (1 mmol) and [BMIm] HSO₄ (1 ml). ^bIsolated yield.

In order to show the merit of the catalyst, we have compared the obtained results in the synthesis of 2Hindazolo[2,1-b]phthalazine-triones catalyzed by [BMIm] HSO₄, with some heterogeneous and homogeneous catalysts, as reported in the literature (Table 2). The harsh reaction coditions, longer reaction times, and lower yields of other methods make our system a better choice.

After optimizing the reaction conditions, a variety of aromatic aldehydes were employed under similar circumstances to evaluate the substrate scope of this reaction. The results were summarized in Table 3. Electronic effects and the nature of substituents on the aromatic ring showed a little effect in terms of the yield and reaction time under the optimized reaction conditions. As shown in Table 3, when halogen substituted aromatic aldehydes such as 2-, 3-, 4-(chloro), 2-, 3-, 4-(bromo), 3-, 4-(flouro) and 2,4-, 2,6-(dichloro) substrates were employed under the reaction conditions excellent yields (91-97%) of the corresponding products were obtained (Table 3, entries 2-11). Aromatic aldehydes possessing electrondonating substituents such as 2-methyl, 4-methyl, 4methoxy and 3,4-dimethoxy have afforded the phthalazine moiety in 90-92% yields (Table 3, entries 12-15 and 22-23). Similarly, electron withdrawing aromatic aldehydes possessing 4-nitro, 2-nitro and 3nitro groups also afforded the refered derivatives in 96%, 95% and 91% yields respectively (Table 3, entries 12-14).

Table 2. Comparison of [BMIm]HSO4 with other catalysts for the synthesis of 13-(2-chlorophenyl)-3,4-dihydro-3,3-dimethyl-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione.

Entry	Catalyst and Conditions	Reaction time (min)	Yield(%)	Ref.
1	<i>p</i> -TSA/Neat/80 °C	15	88	[20]
2	Silica sulfuric acid/Neat/100 °C	10	88	[30]
3	$Ce(SO_4)_2-4H_2O$	8	80	[25]
4	[BMIm]Br/Sonocation/r.t.	10	91	[32]
5	PEG-6000/Neat/reflux	10	87	[32]
6	[BMIm]HSO ₄ /Neat/r.t.	5	96	This work

Table 3. [BMIm]HSO4 catalyzed synthesis of 2H-indazolo[2,1-b]phthalazine-trio	one derivatives	via a one-pot,	three-compone	ent
reaction.				

Entry	Product	Aldehyde	Yield (%) ^a	Reaction time (min)	m.p. (°C) (found)	m.p. (°C) reported	Ref.
1	4a	C ₆ H ₅	94	7	205-207	204-206	[17]
2	4b	$2-Cl-C_6H_4$	97	5	237-239	238-240	[33]
3	4c	3-Cl-C ₆ H ₄	91	6	268-270	270-272	[17]
4	4d	$4-Cl-C_6H_4$	96	6	222-224	223-225	[17]
5	4e	$2-Br-C_6H_4$	94	7	261-263	262-264	[38]
6	4f	$3-Br-C_6H_4$	92	6	266-268	267-269	[38]
7	4g	$4-Br-C_6H_4$	93	7	261-263	262-264	[37]
8	4h	2,4 di-Cl-C ₆ H ₃	92	6	218-220	219-221	[37]
9	4i	2,6 di-Cl-C ₆ H ₃	94	6	261-263	260-262	[33]
10	4j	3-F-C ₆ H ₄	91	5	261-263	271-273)	[38]
11	4k	$4-F-C_6H_4$	97	4	219-221	218-220) ³⁷	[37]
12	41	$2-NO_2-C_6H_4$	95	8	263-265	264-266) ¹⁸	[18]
13	4m	3-NO ₂ -C ₆ H ₄	91	7	202-204	204-206) ¹⁸	[18]
14	4n	$4-NO_2-C_6H_4$	96	8	261-263	262-264) ¹⁷	[17]
15	40	$2-MeO-C_6H_4$	91	7	240-242	242-243) ³²	[32]
16	4p	3-MeO-C ₆ H ₄	92	7	209-211	210-212) ³³	[33]
17	4q	$4-MeO-C_6H_4$	92	8	219-221	220-222) ³⁸	[38]
18	4r	3,4 di-MeO-C ₆ H ₃	90	8	184-186	185-186) ²¹	[21]
19	4s	3,4,5-tri-MeO-C ₆ H ₃	91	8	225-227	232-234) ³⁹	[39]
20	4t	4-OH-3-MeO-C ₆ H ₃	90	6	251-253	250-252) ³⁹	[39]
21	4u	4-CN-C ₆ H ₄	92	6	223-225	224-226) ³³	[33]
22	4v	$4-Me-C_6H_4$	92	7	225-227	227-229) ¹⁷	[17]
23	4w	4-isopropyl-C ₆ H ₄	92	7	225-227	226-228) ³³	[33]
24	4x	C ₆ H ₅ -CO	90	7	227-229	228-230) ³³	[33]
25	4y	2-Naphthyl	90	7	250-252	251-253	[33]

^aIsolated yield.

These results show that the [BMIm]HSO₄ promoted protocol has successfully accommodated wide range of aromatic aldehydes possessing broad array of functional groups and substitution patterns. The formations of products were confirmed by physical and spectroscopic data and are in good agreement with reported one. The simple experimental and product isolation procedure combined with ease of recovery and reusability of ionic liquid is expected to the development of green strategy for the synthesis of phthalazine moiety. Finally, the recovery and reuse of the ionic liquid [BMIm]HSO₄ were studied in the preparation of **4b** as a model. The ionic liquid is recovered from the aqueous extracts of the reaction mixtures by evaporation of water under reduced pressure. The reaction medium can be recycled at least five times without significant decrease of the yields, ranging from 97% to 94%.

Scheme 2. Plausible mechanism for the synthesis of product (4).

According to these observations, А possible mechanism for the formation of 2H-indazolo[2,1-b] phthalazine-trione is shown in Scheme 2. In the first step, via Knoevenagel condensation of dimedone (1) with aromatic aldehyde (3) intermediate (5) was formed. Subsequent Michael-type addition of the phthalhydrazide (2) with intermediate (5) formed another intermediate (6), which underwent intramolecular cyclization to afford the final product (4).

4. Conclusions

In summary, an efficient protocol for the one-pot of 2H-indazolo[2,1-b]phthalazinepreparation derivatives from the 1,6,11(13*H*)-trione threecomponent condensation reaction of dimedone, phthalhydrazide and aldehyde using an environmental friendly and reusable ionic liquids, [BMIm]HSO₄, as catalyst was described. The reactions were carried out under solvent-free conditions with short reaction time and produced the corresponding products in good to excellent yields. The simplicity of the procedure, ecofriendly, non-volatile, easy handling, safety and reusability of catalyst are the advantages of these methods. These methods not only afford the products in excellent yields but also avoid the problems associated with catalyst cost, and pollution.

Acknowledgment

We gratefully acknowledge financial support from the Research Council of Islamic Azad University.

References

- H. Valizadeh, A. Shockravi, Synth. Commun. 39 (2009) 4341-4349.
- [2] H. Zang, M. Wang, B.W. Cheng, J. Song, Ultrason. Sonochem. 16 (2009) 301-303.
- [3] T. Welton, Chem. Rev. 99 (1999) 2071-2084.
- [4] P. Wasserscheid, W. Keim. Angew. Chem. Int. Ed. 39 (2000) 3772-3789.
- [5] J. Dupont, R.F. Souza, P.A.Z. Suarez, Chem. Rev. 19 (2002) 3667-3692.
- [6] T.L. Greaves, C.J. Drummond, Chem. Rev. 108 (2008) 206-237.
- [7] J.A. Whitehead, G.A. Lawrance, A. McCluskey, Green Chem. 6 (2004) 313-315.
- [8] B.S. Suryakant, F.S. Kiran, R.M. Balaji, B.S. Bapurao, S.S. Murlidhar. Bull. Korean Chem. Soc. 30 (2009) 2887-2889.
- [9] S. Jasvinder, G. Neeraj, L.K. Goverdhan, Syn. Commun. 36 (2006) 2893-2900.
- [10] S. Neeraj-Gupta, L.K. Goverdhan, S. Jasvinder. Catal. Commun. 8 (2007) 1323-1328.
- [11] D. Zhao, Y. Liao, Z. Zhang, Clean 35 (2007) 42-48.
- [12] E.C. Franklin, F.W. Bergstrom, Chem. Rev. 16 (1935) 305-361
- [13] F.W. Bergstrom, Chem. Rev. 35 (1944) 77-277.
- [14] F.W. Lichtenthaler, Acc. Chem. Res. 35 (2002) 728-737.
- [15] V.11P. Litvinov, Russ. Chem. Rev. 72 (2003) 69-85.
- [16] Y. Xu, Q.X. Guo, Heterocycles 63 (2004) 903-974.

[17] S. Grasso, G. De-Sarro, N. Micale, M. Zappala, G. Puia, M. Baraldi, C. De-micheli, J. Med. Chem. 43 (2000) 2851-2859.

[18] Y. Nomoto, H. Obase, H. Takai, M. Teranishi, J. Nakamura, K. Kubo, Chem. Pharm. Bull. 38 (1990) 2179-2182.

[19] N. Watanabe, Y. Kabasawa, Y. Takase, M. Matsukura,

K. Miyazaki, H. Ishihara, K. Kodama, H. Adachi, J. Med. Chem. 14 (1998) 3367-3372.

- [20] M. Sayyafi, M. Sayyedhamzeh, H.R. Khavasi, A. Bazgir, Tetrahedron 64 (2008) 2375-2378.
- [21] J.M. Khurana, D. Magoo, Tetrahedron Lett. 50 (2009) 7300-7303.
- [22] G. Shukla, R.K. Verma, G.K. Verma, M.S. Singh, Tetrahedron Lett. 52 (2011) 7195-7198.
- [23] M. Kidwai, A. Jahan, R. Chauhan, N.K. Mishra, Tetrahedron Lett. 53 (2012) 1728-1731.
- [24] R. Fazaeli, H. Aliyan, N. Fazaeli, Open Catal. J. 3 (2010) 14-18.
- [25] E. Mosaddegh, A. Hassankhani, Tetrahedron Lett. 52 (2011) 488-490.
- [26] M. Kidwai, R. Chauhan, A. Jahan, Chin. Sci. Bull. 57 (2012) 2273-2279.
- [27] M.V. Reddy, G.C.S. Reddy, Y.T. Jeong, Tetrahedron 68 (2012) 6820-6828.
- [28] R.G. Vaghei, R.K. Nami, Z.T. Semiromi, M. Amiri, M. Ghavidel, Tetrahedron 67 (2011) 1930-1937.

- [29] L. Nagarapu, R. Bantu, H.B. Mereyala, J. Heterocycl. Chem. 46 (2009) 728-731.
- [30] H.R. Shaterian, M. Ghashang, M. Feyzi, Appl. Catal. A: Gen. 345 (2008) 128-133.
- [31] G. Sabitha, C. Srinivas, A. Raghavendar, J. S. Yadav, Helv. Chim. Acta 93 (2010) 1375-1380.
- [32] M. Shekouhy, A. Hasaninejad, Ultrason. Sonochem. 19 (2012) 307–313.
- [33] A. Hasaninejed, M.R. Kazerooni, A. Zare, Catal. Today 196 (2012) 148-155.
- [34] E. Abbaspour-Gilandeh, S.C. Azimi, K. Rad-Moghadam, A. Mohammadi-Barkchai, Iran. J. Catal. 2 (2013) 91-97.
- [35] E. Abbaspour-Gilandeh, S.C. Azimi, K. Rad-Moghadam, A. Mohammadi-Barkchai, Iran. J. Catal. 1 (2013) 15-20.
- [36] K. Rad-Moghadam, S.C. Azimi, E. Abbaspour-Gilandeh, Tetrahedron Lett. 54 (2013) 4633-4636.
- [37] F. Al-Assar, K.N. Zelenin, E.E. Lesiovskaya, I.P. Bezhan, B.A. Chakchir, Pharm. Chem. J. 36 (2002) 598-603.
- [38] M. Saha, S. Phukan, R. Jamatia, S. Mitra, A.K. Pal, RSC Adv. 3 (2013) 1714–1721.
- [39] H.R. Shaterian, A. Hosseinian, M. Ghashang, Arkivoc. ii (2009) 59-67.
- [40] J. Fraga-Dubreuil, K. Bourahla, M. Rahmouni, J.P. Bazureau, J. Hamelin, Catal. Commun. 3 (2002) 185-190.