IRANIAN JOURNAL OF CATALYSIS

Nano SiO₂/H₂SO₄ as catalyst for the Beckmann rearrangement and deoximation of aldoximes

Marziyeh Bagheri, Mostafa Karimkoshteh*

Department of Chemistry, Faculty of Science, Urmia University, Urmia 57159-165, Iran.

Received 17 November 2012; received in revised form 21 February 2013; accepted 8 May 2013

ABSTRACT

Nano silica- H_2SO_4 is an efficient and mild catalysis system for the regeneration of aldehyde from aldoximes. Ketoximes are converted to amides by Beckmann rearrangement in the presence of nano silica- H_2SO_4 . The reactions are carried out in solvent-free conditions under microwave irradiation (600 W) within 50-120 sec in good yields.

Keywords: Oxime, Nano SiO₂, Amide, Carbonyl compound.

1. Introduction

Oximes are extensively used for purification and characterization of carbonyl compound [1] as well as preparation of amides via the Beckmann rearrangement [2]. The important role of oximes as intermediates in conversion of aldehyde and ketones into the carbonyl compounds [3] and amides [4] has provided motivation to develop several reagents and catalystssuch as Nb₂O₅ [5], Ti/montmorillanite [6], sulfonic acid [7], chlorosulfonic acid [8], cvanuric chloride [9], SOCl₂/ β -cyclodextrin [10], pivaloyl chloride [11] andphosphonate [12]. However, some of these methods suffer from different disadvantages such as tedious work-up procedure, drastic reaction conditions, long reaction times, undesired chemical yields and use of expensive and toxic reagents. Therefore, a milder, more selective, non-hazardous and inexpensive reagent is still required for such transformation.

The coupling of microwave irradiation with the use of catalysts on mineral supported reagents, under solvent-free conditions, provide unique chemical processes with special attributes such as enhanced reaction rates, higher yields, greater selectivity, and ease of manipulation. Microwave irradiation as an unconventional energy source has been widely used to perform many kinds of chemical reactions [13].

Nanoparticles exhibit high catalytic activity and chemical selectivity under mild conditions [14]. As one common type of nanoparticles, silica (SiO₂) particles have been utilized increasingly as catalysts [15,16]. Because of large surface area, nanoSiO₂ show unusual physicochemical properties compared with those bulk particles [17,18]. Through infrared spectroscopy method, SiO₂ nanoparticle exist a large number of hydroxyl groups on its surface, and forms the deviation from the steady state of the silicon oxide structure as shown in Scheme 1 [19].

Various methods for the preparation of nano SiO_2 are employed such as micro emulsion processing, combustion synthesis and sol-gel processing [20].

Hear we wish to report the use of H_2SO_4/n ano silica as an efficient system in the oximes reactions (Scheme 1).

2. Experimental

All microwave assisted reactions were carried out in a Yusch household microwave oven (1000 W). All substrates and reagents were obtained from commercial sources of the highest quality and were used without further purification. Nano SiO_2 is prepared in high purity according to the reported procedures in literature [21]. The products were characterized by comparison of their melting or boiling points with authentic samples. NMR and IR spectra were recorded on 300 MHz

^{*}Corresponding author: E-mail: karimkoshteh@gmail.com

Scheme 1. [18]

Bruker Avance and Thermo Nicolet Nexus 670 FT-IR spectrometer, respectively. The aryl oximes were recrystallized in ethanol/water.

2.1. A typical procedure for the conversion acetophenoneoxime to acetanilide.

A mixture of nano SiO₂ (0.3 g, 5 mmol) and H₂SO₄ (0.196 g, 2 mmol) was ground in a mortar. Then, Acetophenoneoxime (0.135 g, 1 mmol) was added to the mixture and grinding of the reaction mixture was continued for a moment. The mortar was covered with a watch glass and put inside of the oven (60% power amplitude \approx 600W) for 50 sec. The progress of the reaction was monitored by TLC (eluent; CCl₄/Et₂O: 5/2). At the end of the reaction, distilled water (5 ml) was added to the reaction mixture and neutralized with 10 ml of an aqueous solution of sodium hydroxide (5%) and then extracted with diethyl ether (3×5 mL). The extracts were combined and dried over Na₂SO₄. After evaporation of the solvent the acetanilide was obtained, in 95% yield (0.128 g, Table 3: entry 1). white solid, m.p. 113–115°C. IR (KBr, v_{max} , cm⁻¹): 3294 (N-H), 1662 (CONH), 1602, 1551, 1493, 755, 698. ¹HNMR (300 MHz, CDCl₃, ppm) δ : 2.12 (s, 3H), 7.08 (t, 1H, *J* = 8.0 Hz), 7.23 (t, 2H, *J* = 8.0 Hz), 7.52 (d, 2H, *J* = 8.0 Hz), 8.54 (br. s, 1H, NH). ¹³C NMR (75 MHz, CDCl₃, ppm) δ : 168.9 (C=O), 138.1, 128.8, 124.2, 120.2, 24.1 (CH₃).

3. Results and discussion

The literature review shows that the sol-gel process is widely used to produce pure silica particles due to its ability to control the particle size, size distribution and morphology through systematic monitoring of the reaction parameters [22]. So we prepared nanosilica with this method (diagram 1).

We found that H_2SO_4 in the presence of nano SiO_2 dramatically performs deoximation and Beckmann rearrangement of various aldoximes and ketoximes to the corresponding carbonyl and amide compounds under solvent-free conditions (Scheme 2). In order to

Diagram 1. [21]

Entry	Molar ratio Subs./nano SiO ₂ /H ₂ SO ₄	Condition ^b	Time (min)	Solvent	Conversion (%)
1	1/-/1.5	Solvent-free/MW	2	-	0
2	1/3/-	Solvent-free/MW	2	-	0
3	1/3/1.5	R.T.	60	THF	0
4	1/3/1.5	Reflux	60	CH ₃ CN	0
5	1/3/1.5	Reflux	60	H_2O	0
6	1/3/1.5	Solvent-free/oil bath	60	-	10
7	1/3/2	Solvent-free/oil bath	60	-	10
8	1/4/1.5	Solvent-free/oil bath	60	-	10
9	1/3/1.5	Solvent-free/MW	50sec	-	100
10	1/3/1	Solvent-free/MW	50sec	-	98
11	1/3/2	Solvent-free/MW	50sec	-	100
12	1/4/1.5	Solvent-free/MW	50sec	-	100

Table 1. Experimental optimization for the conversion of benzaldehyde oxime to benzaldehyde with nano SiO_2/H_2SO_4 system^a

^a All reactions were carried out with 1 mmol of benzaldehyde oxime:

^b Temperature of oil bath was 70-80 °C and irradiation with microwave (MW) was carried out under 600W power amplitude.

obtain the optimum reaction conditions and showing the influence of the reaction components, we performed benzaldehyde oxime as a model compound with nano SiO₂-H₂SO₄ system under different reaction conditions (Table 1). As the result shown, the solely H₂SO₄ or nano SiO₂ or bulk SiO₂ did not show any efficiency even at the prolonged reaction time (entries 1 and 2). However, by the combination of nano SiO_2 with H_2SO_4 in a molar ratio of 3:1.5, respectively, deoximation of 1 mmol benzaldehyde oxime was carried out perfectly under microwave irradiation (600 W) within 50 sec (entry 9). Versatility of this synthetic protocol for deoximation of various aldoximes was also studied (Tables 2). The results show that all types of aldoximes were deoximated successfully by nano SiO_2/H_2SO_4 system within 40-120 sec to afford the corresponding aldehydes in moderate to excellent vields (54-95%). Furfural oxime and Cinnamaldehyde oxime produced moderate yields of the corresponding products. Further increasing of the reaction time and changing in the molar ratios gave no significant improvement in the yields but rather decomposition occurred (Table 2, entry 7, 8). In continuation of this research program, we found that with nano SiO_2/H_2SO_4 under microwave irradiation (600 W) various ketoximes were converted to secondary amides (Table 3). As it was shown in Table 3, good to excellent yields were obtained for the Beckmann rearrangement of entries 1-8 without any by-product or parent ketone formation. Based on the qualitative analysis by GC-MS, it could be found that their main by-product is the corresponding ketone and only trace amounts of dimericoxime was observed (0.1%). Much better results could be obtained if aryl ketoximes were used. Beckmann rearrangement of benzophenone oxime, a symmetrical oxime, reached to 100% and no byproduct was detected after reaction (Table 3, entry 6). A plausible mechanism for the nano $SiO_2-H_2SO_4$ catalyzed Beckmann rearrangement was illustrated in Scheme 3. The nano SiO_2 -H₂SO₄ facilitates the rearrangement process through co-ordination of its O-H with – OH of oximes, followed by the transfer of R group.

Scheme 2.

Entry	Substrate	Product	Time (s)	Vield (%) ^b	m.p. (°C)	
Liitu y	Substrate	Tioduct	Time (s)	1 Iciu (70)	Obs.	Lit. ^d
1	CH=NOH	СНО	50	94	-	-
2	CH=NOH O ₂ N	СНО О ₂ N	50	93	58	55-56
3	O ₂ N-CH=NOH	O ₂ N-CHO	40	92	108	106
4	Cl-CH=NOH	С1-СНО	50	95	-	-
5	HO-CH=NOH	СНО НО	60	93	99	100-103
6	MeO-CH=NOH	MeO-CHO	50	95	-	-
7	NOH	СНО	120	68	-	-
8	CH=NOH	СНО	90	54	-	-

Table 2. Deoximation of aldoximes with nano SiO₂/H₂SO₄ system^a.

^aAll reactions were carried out with the molar ratio of Subs./nano SiO₂/H₂SO₄ (1:3:1.5) under microwave irradiation (600 W).

^bYields refer to isolated pure products.

^cReactions were carried out under microwave irradiation (500 W).

^dLit. m.p. obtained from ref. 31.

In order to show the efficiency of this deoximation system, we compared our results with those of reported in the literature for Sulfamic acid [23], PTSA-Lewis acid [24], PEG-SO₃H [25], H₃PO₄ [26], (EtO)₂POCI [27], AlCl₃-ZnCl₂/ SiO₂ [28], P₂O₅/SiO₂ [29] and Propylphosphonicanhydride (T₃P) [30]. As

shown in Table 4 nano SiO_2/H_2SO_4 method seems to be convenient with respect to other existing reports and can be used as an alternative, which will avoid tedious purifications or the use of toxic or expensive reagents and has advantages of high conversion, high selectivity and simple work-up procedure.

Scheme 3.

Entry	Substrate	Product	Time	Conversion	Yield	m.p. (°C)	
Liiti y	Substrate	Tioduct	(s)	(%)	$(\%)^{b}$	Obs.	Lit. ^c
1	(C=NOH)CH ₃	NHCOCH ₃	50	~98	95	115	114-15
2	O ₂ N-(C=NOH)CH ₃	O ₂ N-NHCOCH ₃	90	~98	95	213	215
3	H ₃ C-(C=NOH)CH ₃	H ₃ C-V-NHCOCH ₃	90	~98	93	151	148.5
4	Cl-(C=NOH)CH ₃	CI-NHCOCH ₃	90	~98	93	176-77	177-79
5	Ph-(C=NOH)CH ₃	Ph-NHCOCH ₃	90	~98	95	168	172
6	(C=NOH)Ph	NHCOPh	50	100	93	161	163
7	NOH	NH	60	~98	93	98-99	102
8	NOH	O NH	50	~98	96	68-70	71
9	Ph NOH	Ph	50	~98	87	59	61

Table 3. Beakmann rearangment of ketoximes with nano SiO₂/H₂SO₄ system.^a

^aAll reactions were carried out under microwave irradiation (600 W) with the molar ratio of Subs./nano SiO₂/H₂SO₄ (1:5:2). ^bYields refer to isolated pure products.

^cLit. m.p. obtained from ref. 31-35.

Table 4. Comparison of nano SiO₂/H₂SO₄ with other reported reaction systems.

Enters	Sautan [Daf]	Condition -	Time (min) /Yield (%)			
Ешту	System [Ref]		Acetophenone oxime	Cyclohexanone oxime	Benzophenone oxime	
1	Sulfamic acid [23]	CH ₃ CN	360/96	360/40	480/88	
2	PTSA-Lewis acid [24]	CH ₃ CN	300/97	300/40	-	
3	PEG-SO ₃ H [25]	CH ₃ CN	300/87	360/85	300/90	
4	H ₃ PO ₄ [26]	M.W	1/74	1.2/73	3/78	
5	(EtO) ₂ POCl [27]	Toluene	30/91	-	20/91	
6	AlCl ₃ -ZnCl ₂ / SiO ₂ [28]	M.W	11.5/87	-	7/82	
7	P ₂ O ₅ /SiO ₂ [29]	M.W	3/80	3/85	3/95	
8	Propylphosphonic anhydride (T ₃ P) [30]	THF	120/98	90/89	90/93	
9	Nano SiO ₂ /H ₂ SO ₄	M.W	0.5/95	0.5/96	0.5/93	

4. Conclusion

In this paper, we have shown the combination system of nano SiO_2 and H_2SO_4 efficiently catalyzed deoximation of various oximes to the corresponding carbonyl compounds and ketoximes to amides in high yields under solvent-free conditions. Simplicity, excellent yields, mildness and eco-friendly aspects of this synthetic protocol are the advantages which make nano SiO_2/H_2SO_4 system a effective way to the present methodologies in this area.

Acknowledgments

The authors thank Prof. B. Zeynizadeh for inspiration and gratefully acknowledge the financial support of this work by the research council of Urmia University.

Reference

- A.I. Mikhaleva, A.B. Zaitsev, B.A. Trofimov, Russ. Chem. Rev. 75 (2006)797-823.
- [2] L.G. Donaruma, W.Z. Heldt, Org. React. 11 (1960) 1-156.
- [3] T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis, Wiley, New York, 1991.
- [4] S.J. Chen, F. W. Fowler, J. Org. Chem. 35 (1970) 3987-3988.
- [5] M. Anilkumar, W.F. Hoelderic, Catal. Today. 198 (2012) 289-299.
- [6] T. Mitsudome, T. Matsuno, S. sueoka, T. Mizugaki, K. Jitsukawa, Tetrahedron Lett. 53 (2012) 5211-5214.
- [7] K. You, L. Mao, D. Yin, P. Liu, H. Anluo, Catal. Commun. 9 (2008) 1521-1526.
- [8] D. Li, F. Shi, S. Guo, Y. Deng, Tetrahedron Lett. 46 (2005) 671-674.
- [9] C.M. Albaneseb, D. Landinib, Tetrahedron 68 (2012) 1947-1950.
- [10] D. Patil, D. Dalal, Syn.Commun. 43 (2013)118-128.
- [11] R.N. Srinivasa, R.R. Buchi, K. Mukkanti. Tetrahedron Lett. 52 (2011) 4888-4891.
- [12] A.R. Sardarian, Z. Shahsavari-Fard, H.R. Shahsavari and Z. Ebrahimi. Tetrahedron Lett. 48 (2007) 2639-2643.
- [13] G.H. Posner, Angew. Chem. Int. Ed. Engl. 17 (1978) 487-496.
- [14] (a) M. Beller, H. Fischer, K. Kuhlein, C-P. Reisinger, W.A. Hermann, J. Organomet. Chem. 520 (1996) 257-259. (b) M.T. Reetz., G. Lohmer, J. Chem. Soc., Chem. Commun. 1996, 1921-1922.
- [15] X. Luo, C. Zha, B. Luther-Davies, J. Sol-Gel Science and Technology 32 (2004) 297–301.
- [16] H. Izutsu, F. Mizukami, Y. Kiyozuma, K. Maeda, J. Mater. Chem. 7(8) (1997) 1519–1525.

- [17] S.K. Parida, S. Dash, S. Patel, B.K. Mishra, Advances in Colloid and Interface Science 121 (2006) 77–110.
- [18] D.L. Wood, E.M. Rabinovich, Appl. Spectrosc. 43 (1989) 263-267.
- [19] R.D. Anjos, M.R. Ismael, I.R. Oliveria, V.C. Pandolfelli, Ceramic International. 34 (2008) 1-38.
- [20] L.P. Singh, S.K. Agarwal, S.K. Bhattacharyya, U. Sharma, S. Ahalawat, Nanomater. nanotechnol. 1 (2011) 44-51.
- [21] K.C. Chen, T. Tsuchiya, J.D. Mackenzie, J. Non-Crystaline Solids 81 (1986) 227-237.
- [22] I. Abrahman, V. Akumar, J. Nanomaterials (2012) 15-17.
- [23] B. Wang, Y. Gu, C. Luo, T. Yang, L. Yang, J. Suo, Tetrahedron Lett. 45 (2004) 3369–3372.
- [24] L. Xiao, C. Xia. J. Chen, Tetrahedron Lett. 48 (2007) 7218–7221.
- [25] X. Wang, L. Li, Zh. Jun, H. Peng Gong, H. Lin Ye, X. Feng Cao, Chin. Chem.Lett. 20 (2009) 651–655.
- [26] K. Banerjee, A.K. Mitra, Indian J. Chem. 44B (2005) 1876-1879.
- [27] A.R. Sardarian, Z. Shahsavari-Fard, H.R. Shahsavari, Z. Ebrahimi, Tetrahedron Lett. 48 (2007) 2639–2643.
- [28] F.M. Moghaddam, A.A. Rastegar Rad, H. Zali-Boinee, Syn. Commun. 34(2004) 2071–2075.
- [29] H. Eshghi, Z. Gordi, Syn. Commun. 33(2003) 2971– 2978.
- [30] J. K. Augustine, R. Kumar, A. Bombrun, A. B. Mandal, Tetrahedron Lett. 52 (2011) 1074–1077.
- [31] Aldrich Handbook of Fine Chemicals and Laboratory Equipment, (AldrichChem& Co) 2003-2004.
- [32] H. Sharghi, M. Hosseini, Synthesis (2002) 1057-1059.
- [33] D. R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press, 2006.
- [34] B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith, A.R. Tatchell, Qualitative organic analysis; physical constant of organic compounds. In Vogel's Textbook of Practical Org anic Chemistry, 4th ed., Longman: London & New York, 1978, pp. 1113-1222.
- [35] R.C. Weast, J.G. Graffelli, Handbook of Data on Organic Compounds, 2nd ed. 1989.