IRANIAN JOURNAL OF CATALYSIS

Trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane/HOAc/KI system as a new and mild catalyst for efficient synthesis of 1*H*-benzimidazoles and 1*H*-benzothiazoles in water

Kaveh Khosravi^{*a}, Akbar Mobinikhaledi^a, Samira Kazemi^a, Davood Azarifar^b, Payam Rahmani^b

^aDepartment of Chemistry, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran. ^bDepartment of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683 Iran.

Received 03 November 2013; received in revised form 23 December 2013; accepted 29 December 2013

ABSTRACT

An efficient method has been developed for the catalysis of condensation of 1,2-phenylenediamines and 2-aminothiophenoles with different aldehydes into their corresponding 2-aryl-1H-benzimidazoles and 2-aryl-1H-benzothiazoles under mild condition. In this method, trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane (DHPDMDO)/HOAc/KI system was used as a novel and effective oxidant in water at room temperature with excellent results.

Keywords: 2-Aryl-1-arylmethyl-1H-benzimidazoles, 2-Aryl-1H-benzothiazoles, Condensation, Trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane (DHPDMDO), KI, Aldehydes.

1. Introduction

Benzimidazoles and benzothiazoles rings have been extensively employed in pharmaceutical industries [1-4]. Benzimidazole derivatives exhibit significant activity against several viruses such as HIV [5], herpes (HSV-1) [6], RNA [7], influenza [8] and human (HCMV) cytomegalovirus [5]. Also. Bisbenzimidazoles are being interested as DNA minor groove binding agents with antitumor activity [9] and also, can be used as ligands for modeling biological system [10]. Benzothiazoles derivatives are widely found in bioorganic and medicinal chemistry with applications in drug discovery and developments. They have been applied for treatment of autoimmune and inflammatory diseases [11], in prevention of solid transplant rejection, epilepsy organ [12-14]. amyotrophic lateral sclerosis [15], analgesim [16], tuberculosis [17], viral infection [18] and cancer [19, 20]. In addition, they have been applied in industry as antioxidants [21], vulcanization accelerators [22] and Dopant in a light emitting organic as а electroluminescent device [23]. Therefore, several attempts for synthesis of benzimidazoles and benzothiazoles have been reported. One of reported methods for preparation of benzimidazoles is the

condensation of 1,2-phenylenediamines with carboxylic acids or their derivatives in the presence of strong acids such as poly phosphoric acid [24], or other mineral acids [24], PS-PPH₃/CCl₃CN [25], and the thermal or acid promoted cyclization of N-(N-arylbenzimidoyl)-1,4-benzoquinones [26].

In the other reported methods, benzimidazoles have synthesized by condensation of 1.2been phenylendiamines with deferent aldehydes under oxidative conditions including using of lewis acids such as Sc(OTf)₃ [27], Yb(OTf)₃ [28], In(OTf)₃ [29], oxalic acid [30], proline [31], H₂O₂/HCl system [32], p-toluene sulfonic acid-silica gel [33] and Caro's acid silica gel (CA-SiO₂) [34]. For preparation of benzothiazoles many reports are available. Among these reports, the most popular approach generally involves condensation dehydrogenation of 2aminothiophenols with carboxylic acids [35], or condensation with aldehydes under oxidative conditions [36]. Unfortunately, most of these procedures have many defects and limitations such as harsh reaction conditions, high reaction temperature, prolonged reaction times, requirement of excess of reagents, tedious work up procedures, low yields, using of costly, toxic or air sensitive catalysts, etc. Consequently, still, there is an important need to develop simple, mild, rapid and inexpensive procedures and/or further work on technical important.

^{*}Corresponding author: E-mail: k-khosravi@araku.ac.ir Tel: +98-086-32777400–4, Fax: +98-086-32774031

Recently, *gem*-dihydroperoxides have received attention as new, effective and strong oxygen transfer oxidants [37]. Therefore, we have synthesized the trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane (DHPDMDO) as a new and powerful oxidant and has

used in many organic syntheses [38]. Thus, along with our interest in application of DHPDMDO, we used of DHPDMDO for in situ generation of I⁺ from KI for catalysis of synthesis of 2-aryl-1-arylmethyl-1*H*benzimidazoles and 2-aryl-1*H*-benzothiazoles in mild condition.

2. Experimental

2.1. Preparation of DHPDMDO

To a stirred solution of acetyl acetone (1 mmol) in CH₃CN (4 mL) was added silica sulfuric acid (SSA) (100 mg) and stirring of the reaction mixture was continued for 5 min at room temperature. Then, aqueous 30 % H₂O₂ (5 mmol) was added to the reaction mixture and stirred for 30 min at room temperature. After completion of the reaction as monitored by TLC, the resulting mixture was filtered and washed with EtOAc (2×5 mL) to separate the solid catalyst. The combined filtrates were diluted with water (5 mL) and extracted with EtOAc (3×5 mL). The organic layer was separated, dried over anhydrous Mg₂SO₄ and evaporated under reduced pressure to give almost pure white crystalline product 1 (Scheme 1).

2.2. General procedure for synthesis of 2-aryl-1arylmethyl-1H-benzimidazoles

To a mixture of 1,2-phenylenediamines (1 mmol, 0.1081 g), HOAc (0.2 mmol, 0.012 mL) and aldehyde (2.2 mmol) in water (5 mL), DHPDMDO (1 mmol, 0.166 g) was added. Then KI (2 mmol, 0.332 g) was added to it and stirred for proper time at room temperature. The progress of reaction was followed by TLC. After completion of reaction, excess of peroxides and I⁺ have been quenched with 1 mL of Na₂SO₃ solution (3 M) and stirred for 15 minutes. Then 15 mL of water was added. The solids was filtrated and dried for obtain corresponding 2-aryl-1-arylmethyl-1*H*-benzimidazoles. For more purification, the products were recrystallized in ethanol %96.

2.3. General procedure for synthesis of 2-aryl-1Hbenzothiazoles

To mixture of 2-aminothiophenol (1 mmol, 0.1251 g) and HOAc (0.2 mmol, 0.012 mL) in water (5 mL) was added aldehydes (1 mmol). Then DHPDMDO (0.5 mmol, 0.083 g) and KI (1.3 mmol, 0.216 g) was added and stirred for proper time. The progress of reaction was followed by TLC. After completion of reaction, solution was quenched with 1 mL of Na_2SO_3 and then

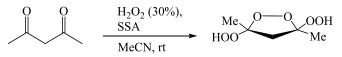
stirred for 15 minutes. Then 15 mL of water was added and processed solids were filtrated as the products. For more purification, the products were recrystallized in ethanol %96.

Selected spectral data:

DHPDMDO:

White crystall, m.p.: 98-100 °C; IR (KBr): $\bar{\nu}$ =: 3389 (w), 1433, 1380, 1333, 1173, 848, 790, 470. ¹HNMR (90 MHz, CDCl₃): δ = 1.59 (s, 6H, CH₃), 2.67 (s, 2H, CH₂), 8.43 (bs, 2H, OOH). ¹³CNMR (22.5 MHz, D₂O): δ = 16.5 (CH₃), 50.7 (CH₂), 112.7 (C-3, C-5); Elemental analalysis: Calcd for C₅H₁₀O₆: C 36.14; H 6.02; Found: C 36.08; H 5.87 %.

2-(4-Bipheny)benzothiazole (3p):

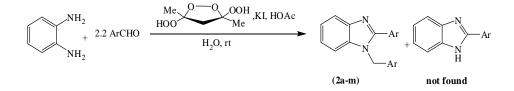

m.p.: 193-196 °C; IR (KBr): $\bar{\nu} = 3058, 3045, 1602, 1556, 1519, 1482, 1434, 1226, 965, 839; ^1HNMR (200 MHz, DMSO-d_6): <math>\delta = 7.25 \cdot 7.48$ (m, 5H), 7.64-7.74 (m, 4H), 8.07-8.18 (m, 4H); ¹³CNMR (50 MHz, DMSO-d_6): $\delta = 122.1, 123.6, 125.6, 126.8, 127.5, 128.1, 128.4, 129.4, 132.9, 135.5, 140.5, 144.1, 154.6, 168.1; Elemental analalysis: Calcd for C₁₉H₁₃NS: C 79.41; H 4.56; N 4.87; S 11.16. Found: C 79.42; H 4.72; N 4.79; S 10.90.$

2-Ethylbenzothiazole (**3q**):

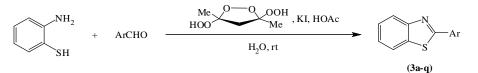
Colourless liquid, IR (KBr): $\bar{\nu} = 3056, 3025, 2924, 2920, 2850, 1597, 1561, 1497, 1309, 1293, 1093, 1061, 830; ¹HNMR (DMSO-d₆, 200 MHz) <math>\delta = 1.43$ (t, 3H), 3.10 (q, 2H), 7.28 (t, 1H,), 7.40 (t, 1H,), 7.78 (d, 1H), 7.96 (d, 1H); ¹³CNMR (50 MHz, DMSO-d₆): $\delta = 12.8, 26.6, 123.1, 123.5, 125.3, 126.1, 135.8, 154.5, 169.3; Elemental analalysis: Calcd for C₉H₉NS: C 66.22; H 5.56; N 8.58; S 19.64. Found: C 66.46; H 5.67; N 8.90; S 18.60.$

3. Results and Discussion

In line with our work in synthesis and application of gem-dihydroperoxides [38,39], we have synthesized DHPDMO and used it as a new, solid and powerful oxidant in organic synthesis [38,39]. DHPDMO is prepared easily from acetyl acetone and aqueous hydrogen peroxide in the presence of Silica sulfuric acid (SSA) [39] (Scheme 1) and characterized by ¹H and ¹³CNMR, IR spectroscopy and CHN analysis. Also, the amount of peroxides can be determined by iodometric or permanganometric titrations.



Scheme 1. The synthesis of trans-3,5-dihydroperoxy-3,5dimethyl-1,2-dioxolane (DHPDMDO).


In this work, we wish to report the use of DHPDMO/HOAc/KI system to catalyze one-pot oxidative cyclocondensation of 1,2-phenylenediamines and 2-aminothiophenols with different aldehydes in excellent yields for the first time in water as a solvent at room temperature (Schemes 2 and 3). In condensation of 1,2-phenylendiamines with aldehydes, however, two compounds potentially could be achieved, (Scheme 2) but 2-aryl-1-arylmethyl-1*H*-benzimidazoles is obtained as the only product in the optimized condition (solvent, amount of oxidant, amount of HOAc, Table 1).

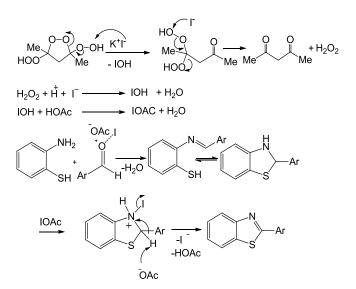
Also, we have used propanal as the aliphatic aldehyde for synthesis of benzothiazoles. It has been observed that the yields for aliphatic aldehydes are less than aromatic aldehydes (Table 2, entry 3q).

It is notable that addition of catalytic amount of HOAc clearly decreases the times of reactions and as shown in Scheme 4, this is deduced from formation of IOAc that is more active than IOH. The produced IOAc acts as a Lewis acid which activates the carbonyl group of aldehyde for nucleophilic attack of nitrogen atom. Finally, after cyclization, the I⁺ coordinates to nitrogen atom and makes the hydrogen of α -carbon more acidic,

Scheme 2. Synthesis of 2-aryl-1-arylmetyl-1H-benzimidazoles.

Scheme 3. Synthesis of 2-aryl-1H-benzothiazoles.

Table 1. Screening the reaction in synthesis of 2-phenylbenzo[d]thiazole.^a


Entry	Amount of DHPDMDO (mmol)	Amount of HOAc (mmol)	Solvent	Time (min)	Yield $(\%)^{b}$
1	1	-	MeCN	25	92
2	1	-	EtOH	24	82
3	1	-	H_2O	40	91
4	1	-	THF	25	90
5	1	-	CH_2Cl_2	120	70
6	-	-	H_2O	120	-
7	0.3	-	H_2O	45	56
8	0.5	-	H_2O	30	87
9	1.3	-	H_2O	21	85
10	1.5	-	H_2O	25	74
11	1	0.1	H_2O	30	90
12	1	0.2	H_2O	22	91
13	1	0.3	H_2O	22	90

^a Conditions:2-aminothiophenol (1 mmol), solvent (5 ml), benzaldehyde (1 mmol), KI (1.3 mmol).

^b Isolated yield.

therefore, this acidic hydrogen is removed by 'OAc as a base, and the I acts as a good living group and eventually the product is aromatized. The mechanism for synthesis of 2-aryl-1-arylmetrhyl-1*H*-benzimidazoles is similar. In addition, Aldehydes with both electron-withdrawing and electron-releasing groups reacted and corresponding 2-aryl-1-arylmethyl-1*H*benzimidazoles and 2-aryl-1*H*-benzothiazoles were achieved in excellent yields and good purity (Table 1 and 3). As in synthesis of 2-aryl-1-arylmethyl-1*H*benzimidazoles 2.2 mmol aldehydes and 1 mmol DHPDMDO have been used.

Finally, this method has been compared with some other methods (Table 4). The advantages of this method over the reported ones are: the products were obtained in high yield and purity, work-up of products was carried out in water (aqueous work-up) which is very attractive in green chemistry, acetylacetone and

Scheme 4. Mechanism for synthesis of 2-aryl-1-*H*-benzothiazoles

Table 2. Synthesis of different 2-aryl-1H-benziothiazoles in optimiz	ed conditions.
--	----------------

Product ^a	Ar	Time (min)	Yield (%) ^b	m.p. (°C)		
Product				Found	Reported [40b]	
3a	C ₆ H ₅	22	91	111-113	110-112	
3b	$4-\text{MeC}_6\text{H}_5$	21	86	86-88	85-87	
3c	$2-MeC_6H_5$	23	87	53-55	52-54	
3d	2- MeOC ₆ H ₅	30	83	102-104	99-102	
3e	4- MeOC ₆ H ₅	25	85	122-124	119-121	
3f	$2-ClC_6H_5$	30	83	83-85	81-83	
3g	$4-ClC_6H_5$	23	85	115-117	116-117	
3h	$2-OHC_6H_5$	26	82	126-128	122-124	
3i	$4-OHC_6H_5$	30	81	230-232	227-228	
3ј	$2-NO_2C_6H_5$	23	82	130-132	133-135	
3k	$3-NO_2C_6H_5$	22	84	181-183	182-184	
31	$4-BrC_6H_5$	22	87	132-134	129-131	
3m	$4-FC_6H_5$	24	85	95-97	98-100	
3n	$4-CNC_6H_5$	25	86	162-164	165-166	
30	2-Furyl	40	77	101-103	100-103	
3p	4-phenylC ₆ H ₄	50	70	194-196	-	
3q	Ethyl	20	67	oil	-	

^a All the isolated products were characterized on the basis of their physical properties and IR, ¹H NMR and ¹³C NMR spectral analysis and by direct comparison with authentic materials.

^b Isolated yield

Due du et ^a	Ar	Time (min)	Yield (%) ^b	m.p. (°C)		
Product ^a			Y leid (%)	Found	Reported [40a]	
2a	C_6H_5	29	92	131-133	132-134	
2b	$4-\text{MeC}_6\text{H}_5$	45	88	126-128	126-128	
2c	4-MeOC ₆ H ₅	38	83	131-133	130-131	
2d	2- MeOC ₆ H ₅	40	80	152-154	154-155	
2e	$2-ClC_6H_5$	42	80	154-156	158-159	
2f	$4-ClC_6H_5$	36	84	141-143	138-140	
2g	$2-OHC_6H_5$	52	75	204-206	205-208	
2h	$4-OHC_6H_5$	47	78	246-248	250-253	
2i	$2-NO_2C_6H_5$	43	80	172-174	169-170	
2j	$4-NO_2C_6H_5$	44	83	121-123	119-120	
2k	4-CNC ₆ H ₅	40	83	191-193	190-191	
21	$4-N(Me)_2C_6H_5$	35	90	251-253	254-256	
2m	2-furyl	50	76	96-98	96-98	

Table 3. Synthesis of different 2-aryl-1-arylmethyl-1H-benzimidazoles in optimized conditions.

^aAll the isolated products were characterized on the basis of their physical properties and IR, ¹H NMR and ¹³C NMR spectral analysis and by direct comparison with authentic materials.

^b Isolated yield

KI are soluble in water and were separated from products easily and no toxic organic solvent was used, toxic metals and other toxic materials such as molecular iodine were eliminated in this procedure and no by-product was observed.

4. Conclusion

A mild an convenient method has been developed for the condensation of 1,2-phenylenediamines and 2aminothiophenoles with different aldehydes into their corresponding 2-aryl-1H-benzimidazoles and 2-aryl-1H-benzothiazoles. This procedure is effective, rapid, inexpensive and nearly clean and the products were obtained in high yield and purity after an easy workup.

Acknowledgment

We are grateful to Arak University Research Councils for supporting this work.

Table 4. Con	mparison of some re	ported methods for synthes	sis of 2-phenylbenzo[d]thia	zole with current work.
--------------	---------------------	----------------------------	-----------------------------	-------------------------

Method	Conditions	Time(h)	Yield (%)	Ref.
This work	r.t.	0.36	91	This work
[pmIm]Br	Conventional heating	6	90	[41a]
I_2	DMF/100 °C	0.42	88	[41b]
$Cu_{3/2}PMo_{12}O_{40}/SiO_2$	1,4-dioxan/Reflux	0.25	85	[41c]
p-TsOH	MW	0.033	65	[41d]
Shirasagi KL	Xylene/50 °C	3	79	[41e]

References

- D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev., 103 (2003) 893-930.
- [2] W.A. Denny, G.W. Rewcastle, B.C. Baguley, J. Med. Chem., 33 (1990) 814-819.
- [3] Hutchinson, M.S. Chua, H.L. Browne, V. Trapani, T.D. Bradshaw, A.D. Westwell, M.F.G. Stevens, J. Med. Chem., 44 (2001) 1446-1455.
- [4] P.G. Palmer, R.B. Trigg, J.V. Warrington, J. Med. Chem., 14 (1971) 248-251.
- [5] A.R. Porcari, R.V. Devivar, L.S. Kucera, J.C. Drach, L.B. Townsend, J. Med. Chem., 41 (1998) 1252-1262.
- [6] M.T. Migawa, J.L. Giradet, J.A. Walker II, G.W. Koszalka, S.D. Chamberlain, J.C. Drach, L.B. Townsend, J. Med. Chem., 41 (1998) 1242-1251.
- [7] I. Tamm, P.B. Sehgal, Adv. Virus Res., 22 (1978) 187-258.
- [8] I. Tamm, Science, 120 (1954) 847-848.
- [9] J. Mann, A. Baron, Y. Opoku-Boahen, E. Johansson, G. Parkinson, L.R. Kelland, S. Neidle, J. Med. Chem., 44 (2001) 138-144.
- [10] Y. Bai, J. Lu, Z. Shi, B. Yang, Synlett, (2001) 544-546.
- [11] T.D. Bradshaw, A.D. Westwell, Cur. Med. Chem., 11 (2004) 1009-1021.
- [12] S.J. Hays, M.J. Rice, D.F. Ortwine, G. Johnson, R.D. Schwarz, D.K. Boyd, L.F. Copeland, M.G. Vartanian, P.A. Boxer, J. Pharm. Sci., 83 (1994) 1425-1432.
- [13] C.J. Paget, K. Kisner, R.L. Stone, D.C. DeLong, J. Med. Chem., 12 (1969) 1010-1015.
- [14] S. Ivanov, V.S. Yuritsyn, Chem. Abstr., 74 (1971) 124487m.
- [15] C. Monsanto, Chem. Abstr., 68 (1968) 96660t.
- [16] D.W. Hein, R.J. Alheim, J.J. Leavitt, J. Am. Chem. Soc., 79 (1957) 427-429.
- [17] Y. Kanaoka, T. Hamada, O. Yonemitsu, Chem. Pharm. Bull., 18 (1970) 587-590.
- [18] D.L. Boger, J. Org. Chem., 43 (1978) 2296-2297.
- [19] R.N. Nadaf, S.A. Siddiqui, T. Daniel, R.J. Lahoti, K.V. Srinivasan, J. Mol. Catal. A.: Chem., 214 (2004) 155-160.
- [20] D. Alagille, R.M. Baldwin, G.D. Tamagnan, Tetrahedron Lett., 46 (2005) 1349-1351.
- [21] A. Osuka, Y. Uno, H. Horiuchi, H. Suzuki, Synthesis, (1984) 145-146.
- [22] R.J. Perry, B.D. Wilson, R.J. Miller, J. Org. Chem., 57 (1992) 2883-2887.

- [23] C. Benedi, F. Bravo, P. Uriz, E. Fernandez, C. Claver, S. Castillon, Tetrahedron Lett., 44 (2003) 6073-6077.
- [24] M.R. Grimmett, (Eds.), Imidazoles and their benzo derivatives, In Comprehensive Heterocycyclic Chemistry, A.R. Katritzky, C.W. Rees, Pergamon, Oxford, Vol. 5, 1984, pp. 457-487.
- [25] Y. Wang, K. Sarris, D.R. Sauer, S.W. Djuric, Tetrahedron Lett., 47 (2006) 4823-4826.
- [26] T. Benincori, F. Sannicolo, J. Heterocycl. Chem., 25 (1988) 1029-1033.
- [27] K. Nagata, T. Itoh, H. Ishikawa, A. Ohsawa, Heterocycles, 61 (2003) 93-96.
- [28] M. Currini, F. Epifano, F. Montanari, O. Rosati, S. Taccone, Synlett, (2004) 1832-1834.
- [29] R. Trivedi, S.K. De, R.A. Gibbs, J. Mol. Catal. A: Chem., 245 (2005) 8-11.
- [30] N.D. Kokare, J.N. Sangshetti, D.B. Shinde, Synthesis, (2007) 2829-2834.
- [31] R. Varala, A. Nasreen, R. Enugala, S.R. Adapa, Tetrahedron Lett., 48 (2007) 69-72.
- [32] K. Bahrami, M.M. Khodaei, I. Kavianinia, J. Chem. Res., 12 (2006) 783-784.
- [33] M. Chakrabarty, R. Mukherjee, S. Karmakar, Y. Harigaya, Montash. Chem., 138 (2007) 1279-1282.
- [34] A.A. Mohammadi, J. Azizian, N. Karimi, Heterocycles, 78 (2009) 2337-2342.
- [35] C.W. Phoon, P.Y. Ng, A.E. Ting, S.L. Yeo, M.M. Sim, Bioorg. Med. Chem. Lett., 11 (2001) 1647-1650.
- [36] A. Ben-Alloum, S. Bakkas, M. Soufiaoui, Tetrahedron Lett., 38 (1997) 6395-6396.
- [37] A. Bunge, H-J. Hamann, J. Liebscher, Tetrahedron Lett., 50 (2009) 524-526; (b) A. Bunge, H.J. Hamann, E. McCalmont, J. Liebscher, Tetrahedron Lett., 50 (2009) 4629-4632.
- [38] D. Azarifar, K. Khosravi, F. Soleimani, Synthesis, (2009) 2553-2556; (b) D. Azarifar, K. Khosravi, Synlett, (2010) 2755-2758; (c) D. Azarifar, K. Khosravi, Eur. J. Chem., 1 (2010) 15-19; (d) D. Azarifar, K. Khosravi, Z. Najminejad, K. Soleimani, J. Iran. Chem. Soc., 9 (2012) 321-326.
- [39] D. Azarifar, Z. Najminejad, K. Khosravi, Synth. Commun., 43 (2013) 826-836.
- [40] (a) D. Azarifar, M. Pirhayati, B. Maleki, M. Sanginabadi, R. Nejat Yami, J. Ser. Chem. Soc., 10 (2010) 1181-1189; (b) D. Azarifar, B. Maleki, M. Setayeshnazar, Phosphorus, Sulfur Silicon Relat. Elem., 184 (2009) 2097-2102.

[41] (a) B.C. Ranu, R. Jana, S.S. Dey, Chem. Lett., 33 (2004) 274-275; (b) Y. Li, Y.L. Wang, J.Y. Wang, Chem. Lett. 35 (2006) 460-461; (c) R. Fazaeli, H. Aliyan, Appl. Catal., A., 353 (2009) 74-79; (d) S. Paul, M. Gupta, R. Gupta, Synth. Commun. 32 (2002) 3541-3547; (d) Y. Kawashita, C. Ueba, M. Hayashi, Tetrahedron Lett., 47 (2006) 4231-4233.