IRANIAN JOURNAL OF CATALYSIS

Facile one-pot synthesis of pyrimido[4,5-*d*]pyrimidine-2,4-diones in Ionic Liquid and study of their antibacterial activities

Ayoob Bazgir^a, Seyyedeh Cobra Azimi*^b

^aDepartment of Chemistry, Shahid Beheshti University, P.O. Box 1983963113, Tehran, Iran ^bYoung Researchers Club, Rasht Branch, Islamic Azad University, Rasht, Iran

Received 25 December 2012; received in revised form 23 February 2013; accepted 24 February 2013

ABSTRACT

A simple, novel, efficient and three-component procedure for the synthesis of pyrimido[4,5-*d*]pyrimidine-2,4-dione derivatives by the reaction of 6-amino-1,3-dimethyluracil, aldehyde and 2-benzylisothiourea hydrochloride promoted by ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIm]Br) under solvent-free conditions is reported. The presented method is benefited from operational simplicity, simple workup and reusability of ionic liquid. These products were evaluated *in vitro* for their antibacterial activities.

Keywords: Ionic liquid; Pyrimido[4,5-d]pyrimidine-2,4-dione; 6-Amino-uracil; Antibacterial activities.

1. Introduction

Exploiting ionic liquids as solvents and catalysts have attracted much attention in the context of green synthesis [1]. Considerable attention in various fields such as chemistry, biocatalysis, separation science, material synthesis, and electrochemistry are devoted to such liquids [2]. They have several interesting properties such as excellent chemical and thermal stability, non-volatility, non-coordinating nature, good solvating capability, wide liquid range and ease of recycling. Also, they have the capability to dissolve vast ranges of organic and inorganic materials [3]. Although ionic liquids were initially introduced as an alternative green reaction medium, today they have marched far beyond this border, showing their significant role in controlling the reactions as solvent or catalysts [4-11] Pyrimidines and fused pyrimidines represent a broad class of compounds, which have received considerable attention due to their wide range of biological activities [12-15] Among them, the pyrimido[4,5-d]pyrimidines are an important class of annulated uracils with biological significance because of their connection with purine pteridine systems. Compounds with these ring systems have diverse pharmacological activities such as antitumour [16], antioxidant [17], hepatoprotective [18], antiviral [19], antimalarials [20], and anticancer activity [21,22]. Moreover, uracil derivatives are well known for their anti-HIV activities [23].

Based on the above information and due to the synthetic strategies for the construction of novel fused uracil as a biologically active pharmacophore [24-30], we have reported a novel and facile methodology for the synthesis of pyrimido[4,5-*d*]pyrimidine derivatives under [BMIm]Br ionic liquid as a promoter (Scheme 1).

2. Experimental

2.1. General

All chemicals were purchased from Merck or Fluka Chemical Companies. All products were characterized by physical data (mp), and spectral data (IR, ¹H NMR, ¹³C NMR). Melting points were measured on an Electrothermal 9200 apparatus. IR spectra were obtained on a Shimadzu FTIR-8400S spectrometer. ¹H NMR and ¹³C NMR spectra were determined on a BRUKER DRX-300 AVANCE spectrometer at 300.13 and 75.47 MHz, respectively.

^{*}Corresponding author: E-mail: tazimi_2005@yahoo.com. Tel./ Fax: +98 131 2233271.

Scheme 1. [BMIm]Br ionic liquid promoted synthesis of pyrimido[4,5-d]pyrimidines.

2.2. General procedure for preparation of 1,3-dimethyl-7-(benzylthio)-5-phenyl-pyrimido[4,5-d] pyrimidine-2,4(1H,3H,5H,8H)-dione (**4a**)

A mixture of 6-amino-1,3-dimethyluracil (1 mmol), benzaldehyde (1 mmol), and 2-benzylisothiourea hydrochloride (1.5 mmol) was heated at 100 °C using 6.0 mmol (1.3 g) of [BMIm]Br as a promoter. The progress of the reaction was monitored by thin-layer chromatography (TLC). After completion of the reaction, the mixture was washed with water (2×15 mL) and then recrystallized from EtOAc/*n*-hexane (1:3) to afford the pure product (341.0 mg, 87%). The same procedure was also used for the other products listed in Table 1.

The selected spectral data

1,3-dimethyl- 7-(benzylthio)- 5-phenyl-pyrimido [4,5d] pyrimidine -2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4a**): White Solid, m.p. 208-210 °C, IR (KBr, cm⁻¹): 3268, 1683, 1638, 1469, 1283, 1249; ¹H NMR (300.1 MHz, DMSO- d_6 , ppm) δ : 3.09 (s, 3H), 3.43 (s, 3H), 4.35 and 4.50 (AB system, *J*= 12.8 Hz, 2H,), 5.43 (s, 1H), 7.27-7.38 (m, 10H_{arom}), 9.71 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO- d_6 , ppm) δ : 27.8, 29.5, 34.3, 52.9, 88.2, 126.8, 127.7, 128.2, 128.9, 129.0, 129.2, 137.9, 144.5, 149.7, 151.9, 160.7, 165.1.

1,3-dimethyl-7-(benzylthio)-5-(4-chlorophenyl)-

pyrimido [4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4b**): White Solid, m.p. 266-268 °C, IR (KBr, cm⁻¹): 3266, 1683, 1640, 1512, 1472, 1248; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.08 (s, 3H), 3.41 (s, 3H), 4.35 (bd, 2H), 5.44 (s, 1H), 7.29-7.36 (m, 9H_{arom}), 9.72 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ : 27.8, 29.5, 34.3, 52.9, 87.8, 127.7, 128.8, 128.9, 129.0, 129.2, 132.8, 137.8, 143.4, 149.8, 151.9, 160.7, 165.2.

1,3-dimethyl-7-(benzylthio)-5-(4-bromophenyl)-

pyrimido [4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4c**): White Solid, m.p. 258-260 °C, IR (KBr, cm⁻¹): 3266, 1683, 1640, 1511, 1420; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.09 (s, 3H), 3.42 (s, 3H), 4.35 and 4.50 (AB system, *J*= 13.7 Hz, 2H), 5.43 (s, 1H), 7.20-7.54 (m, 9H_{aron}), 9.71 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ : 27.8, 29.5, 34.3, 52.4, 87.7, 121.4, 127.8, 129.0, 129.1, 129.2, 131.9, 137.8, 143.7, 149.8, 151.9, 160.7, 165.2.

1,3-dimethyl-7-(benzylthio)-5-(4-methylphenyl)pyrimido 4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4d**): White Solid, m.p. 270-272 °C, IR (KBr, cm⁻¹): 3265, 1680, 1638, 1557, 1421; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 2.25 (s, 3H), 3.09 (s, 3H), 3.42 (s, 3H), 4.34 and 4.49 (AB system, *J*= 13.0 Hz, 2H), 5.38 (s, 1H), 7.12-7.38 (m, 9H_{arom}), 9.67 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ : 21.1, 27.8, 29.5, 34.3, 52.7, 88.3, 126.7, 127.8, 129.0, 129.2, 129.5, 137.5, 137.9, 141.7, 149.7, 151.9, 160.7, 165.0.

1,3-dimethyl-7-(benzylthio)-5-(4-methoxyphenyl)pyrimido [4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4e**): White Solid, m.p. 234-236 °C, IR (KBr, cm⁻¹); 3273, 1683, 1639, 1512, 1470; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.09 (s, 3H), 3.42 (s, 3H), 3.71 (s, 3H), 4.35 and 4.49 (AB system, *J*= 13.6 Hz, 2H), 5.36 (s, 1H), 6.86-7.40 (m, 9H_{arom}), 9.66 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ : 27.8, 29.5, 34.3, 52.4, 55.6, 88.4, 114.3, 127.7, 128.0, 129.0, 129.2, 136.9, 137.9, 149.6, 151.9, 159.3, 160.7, 164.8.

1,3-dimethyl-7-(benzylthio)-5-(2-chlorophenyl)pyrimido [4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4f**): White Solid, m.p.138-140 °C, IR (KBr, cm⁻¹); 3207, 1693, 1632, 1472, 1286; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.05 (s, 3H), 3.45 (s, 3H), 4.35 and 4.46 (AB system, *J*= 13.4 Hz, 2H), 5.84 (s, 1H), 7.30-7.39 (m, 9H_{arom}), 9.60 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ : 27.7, 29.5, 34.3, 50.9, 86.9, 127.7, 128.2, 128.9, 129.2, 129.9, 130.1, 130.4, 132.0, 137.9, 141.1, 150.4, 151.9, 160.4, 165.2.

1,3-dimethyl-7-(benzylthio)-5-(2-methoxyphenyl)pyrimido [4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4g**). White Solid, m.p. 223-225 °C, IR (KBr, cm⁻¹): 3274, 1676, 1639, 1474, 1285; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.07 (s, 3H), 3.45 (s, 3H), 3.74 (s, 3H), 4.33 and 4.43 (AB system, *J*= 13.4 Hz, 2H), 5.71 (s, 1H), 6.86-7.36 (m, 9H_{arom}), 9.34 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ : 27.7, 29.5, 34.2, 48.4, 55.9, 86.5, 111.8, 120.7, 127.6, 128.7, 128.9, 129.2, 129.7, 131.5, 138.1, 150.6, 152.0, 157.1, 160.5, 165.1.

1,3-dimethyl-7-(benzylthio)-5-(3-nitrophenyl)pyrimido [4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione

Entry	Aldehyde	Product ^b	Yield (%) ^c	m.p. (°C) found	m.p. (°C) reported ^d
1	СНО 2а	4a	87	208-210	208-210
2		4b	77	266-267	266-268
3	Br CHO 2c	4c	82	259-261	258-260
4	H ₃ C — CHO 2d	4d	83	271-273	270-272
5	H ₃ CO-CHO 2e	4e	80	233-235	234-236
6	Cl 2f	4f	75	139-140	138-140
7	Сно ОСН ₃ 2g	4g	79	222-224	223-225
8	CHO O ₂ N 2h	4h	77	232-234	232-234
9	Бг 2i	4i	75	176-178	177-179
10	F-CHO 2j	4j	85	238-239	238-240

Table 1. Synthesis of pyrimido[4,5-*d*]pyrimidine-2,4-diones **4a-j**^a.

^aReaction time= 2 h.

^bAll products were characterized by ¹H NMR, ¹³C NMR and IR spectral data and comparision of their melting points with those of authentic samples.

^cIsolated yield.

^dReference 26.

(**4h**): White Solid, m.p. 232-234 °C, IR (KBr, cm⁻¹): 3244, 1681, 1639, 1527, 1473, 1350; ¹H NMR (300.1 MHz, DMSO- d_6 , ppm) δ : 3.09 (s, 3H), 3.43 (s, 3H), 4.38 and 4.51 (AB system, J= 13.7 Hz, 2H), 5.66 (s, 1H), 7.26-8.15 (m, 9H_{arom}), 9.81 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO- d_6 , ppm) δ : 27.8, 29.6, 34.2, 52.4, 87.3, 121.6, 123.3, 127.8, 129.0, 129.2,130.8, 133.6, 137.8, 146.3, 148.3, 150.0, 151.9, 160.8, 165.6.

1,3-dimethyl-7-(benzylthio)-5-(3-bromophenyl)pyrimido[4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4i**): White Solid, m.p. 177-179 °C, IR (KBr, cm⁻¹): 3247, 1681, 1637, 1474, 1284; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.10 (s, 3H), 3.43 (s, 3H), 4.37 and 4.49 (AB system, *J*= 13.7 Hz, 2H), 5.47 (s, 1H), 7.25-7.48 (m, 9H_{arom}), 9.73 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ: 27.8, 29.5, 34.3, 52.5, 87.5, 122.2, 125.9, 127.8, 129.0, 129.2, 129.7, 131.1, 131.4, 137.8, 146.9, 149.9, 151.9, 160.7, 165.3.

1,3-dimethyl-7-(benzylthio)-5-(4-fluorophenyl)pyrimido [4,5-*d*]pyrimidine-2,4(1*H*,3*H*,5*H*,8*H*)-dione (**4j**): White Solid, m.p. 238-240 °C, IR (KBr, cm⁻¹): 3257, 1685, 1639, 1474; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.09 (s, 3H), 3.43 (s, 3H), 4.35 and 4.51 (AB system, *J*= 13.7 Hz, 2H), 5.45 (s, 1H), 7.12-7.38 (m, 9H_{arom}), 9.71 (s, 1H, NH); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ : 27.8, 29.5, 34.3, 52.2, 88.0, 115.7 (d, ²*J*_{CF}= 21.2 Hz), 127.8, 128.9 (d, ³*J*_{CF}= 8.1 Hz), 129.1, 129.2, 137.8, 140.8, 149.8, 151.9, 160.7, 161.4 (d, ¹*J*_{CF}= 214.2 Hz), 165.1.

Table 2. Optimization of the reaction conditions^a.

Entry	Condition ^b	Catalyst	Yield (%) ^c
1	Solvent-free/ 120 °C	<i>p</i> -TSA	85 ^d
2	Solvent-free/ 100 °C	<i>p</i> -TSA	61 ^d
3	Solvent-free/ 120 °C	-	<30 ^d
4	EtOH (reflux)	<i>p</i> -TSA	<38 ^d
5	EtOH (reflux)	HCl	<35 ^d
6	Solvent-free/ 25 °C	[BMIm]BF ₄	-
7	Solvent-free/ 100 °C	[BMIm]BF ₄	53
8	Solvent-free/ 25 °C	[BMIm]Cl	-
9	Solvent-free/ 25 °C	[BMIm]Br	<43
10	Solvent-free/ 100 °C	[BMIm]Cl	<35
11	Solvent-free/ 100 °C	[BMIm]Br	87

^aA mixture of 6-amino-1,3-dimethyluracil (1), benzaldehyde (2a), and 2-benzylisothiourea hydrochloride (3).

^bReaction time= 2 h.

^cIsolated yield.

^dReference 26.

6-Amino-5-((6-amino-1,2,3,4-tetrahydro-1,3dimethyl-2,4-dioxopyrimidin-5-yl) (phenyl)methyl)-1,3-dimethyl pyrimidine-2,4(1*H*,3*H*)-dione (**5**): White Solid, m.p. 306-308 °C, IR (KBr, cm⁻¹): 3456, 3389, 3201, 2998, 1698; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ: 3.14 (s, 6H), 3.32 (s, 6H), 5.58 (s, 1H), 7.08-7.21 (m, 5H_{arom}), 7.44 (bs, 4H, NH₂); ¹³C NMR (75.5 MHz, DMSO-*d*₆, ppm) δ: 28.4, 30.4, 35.8, 86.6, 125.3, 127.0, 128.1, 140.1, 151.0, 154.7, 163.4.

1,3,7,9-tetramethyl-5-phenyl-9,10-dihydropyrido[2,3d:6,5-d']dipyrimidine-2,4,6,8(1*H*,3*H*,5*H*,7*H*)-tetraone (**8**): White Solid, m.p >310 °C, IR (KBr, cm⁻¹): 3500, 3389, 3200, 3000, 1780, 1740; ¹H NMR (300.1 MHz, DMSO-*d*₆, ppm) δ : 3.36 (s, 6H, 2CH₃), 3.50 (s, 6H, 2CH₃), 5.21 (s, 1H, CH), 7.10-7.36 (m, 5H_{arom}), 9.06 (bs, 1H, NH).

3. Results and Discussion

We first studied a reaction between 6-amino-1,3dimethyluracil, benzaldehyde and 2-benzyl isothiourea hydrochloride by screening the reaction conditions. To determine the optimum conditions, we examined the

Table 3. The effect of [BMIm]Br recycling on the 4ayield ^a.

Entry	Cycle	Yield (%) ^b
1	fresh	87
2	first recycle	86
3	second recycle	84

^aReaction conditions: A mixture of 6-amino-1,3-dimethyluracil **1** (1.0 mmol), benzaldehyde **2a** (1.0 mmol), and 2-benzyl isothiourea hydrochloride **3** (1.5 mmol), (6.0 mmol, 1.3 g) of [BMIm]Br at 100 °C.

^bIsolated yields.

influence of the reaction temperature, choice of solvent, and the type of IL (Table 2). Throughout the reaction, the conditions were optimized for a 100% conversion. It could be seen that the best result was obtain with 6.0 mmol (1.3 g) of [BMIm]Br at 100 °C (Table 2, Entry 11). After optimizing the conditions, we next examined the generality of these conditions to other substrates using several aromatic aldehydes electron-withdrawing and bearing electrondonatingroups (Scheme 1). The results are summarized in Table 1. As indicated in Table 1, in all cases the reaction gives the products in good yields and prevents problems associated with solvent use such as cost, handling, safety and pollution. The ionic liquid is recovered from the aqueous extracts of the reaction mixtures by evaporation of water under reduced pressure. It retains almost the early activity after recovery when reused in the next successive cycles (Table 3). During our investigation on the synthesis of pyrimido[4,5-d]pyrimidine-2,4,7-triones, we found that in the absence of urea, 6-amino-1,3-dimethyluracil and benzaldehyde with similar conditions to ([BMIm]Br / 100 °C) gave 5-aryl -1,3,7,9tetramethylpyrido [2,3 d:6,5-d] dipyrimidine-2,4,6,8tetrone 8 in 30-40% yields (Scheme 2). The structures of compounds 4a-j were confirmed by IR, ¹H and ¹³C NMR spectroscopy. The IR spectrum of compound 4a, for example, show absorption bands at 3268, 1683 and 1638 cm⁻¹ indicating the presence of N-H and C=O groups in this molecule. Aromatic protons of this compound were seen at δ 7.27-7.38 in its ¹H NMR spectrum resonating with proper integrals and splittings. Aliphatic region of this spectrum exhibits two singlet peaks at δ 3.09 and 3.43 arising from protons of the two methyl groups along with the characteristic sharp signal of the methine proton at

Scheme 2. Synthesis of 1,3,7,9-tetramethyl-5-phenyl-9,10-dihydropyrido[2,3-*d*:6,5-*d*']dipyrimidine-2,4,6,8(1*H*,3*H*,5*H*,7*H*)-tetraone in the presence of [BMIm]Br ionic liquid.

 $\delta = 5.43$ and AB system the benzylic methylene protons at δ 4.50. In addition, there is one singlet signal appeared at δ 9.71 in the spectrum accounting for the presence of the N-H group in the molecule. The ¹³C NMR spectrum of **4a** displays 17 distinct lines with appropriate chemical shifts corresponding to the structure of this compound.

The reaction can be mechanistically considered as proceeding via the initial formation of the intermediate **5**, by in situ condensation reaction of the aldehyde with 6-amino-1,3-dimethyluracil. Then, the intermediate **5** was converted to imine **6**. The subsequent addition of 2-benzylisothiourea hydrochloride to the imine **6** followed by cyclization of the intermediate **7** resulted in the corresponding products **4a-j** and ammonia (Scheme 3).

Finally, the synthesized pyrimido[4,5-*d*]pyrimidine derivatives **4a-j** were screened for antimicrobial activity. The microorganisms used in this study were Escherichia coli ATCC 25922, Pseudomonas aeruginusa ATCC 85327 (as gram-negative bacteria), Bacillus subtilis ATCC465, and Staphylococcus

aureus ATCC 25923 (as gram-positive bacteria). The minimum inhibitory concentrations (MIC) of compounds **4a-j** were determined by microdilution method [31] (Table 4). As can be seen from Table 4, good antibacterial activities were observed for most of the compounds against all species of gram-positive and gram-negative bacteria used in this study.

4. Conclusions

In this paper, we have introduced a straightforward, efficient, and cost-effective synthesis of pyrimido[4,5*d*]pyrimidine-2,4-(1*H*,3*H*,5*H*,8*H*)-dione derivatives in presence of ionic liquid 1-butyl-3the methylimidazolium bromide ([BMIm]Br) under solvent-free conditions. High yields, short reaction times, simplicity of operation, and easy workup are some advantages of the presented approach. Also neither additional catalyst nor solvent is necessary Almost most of the compounds exhibited good to excellent antibacterial activity against all the tested strains.

Scheme 3. Plausible mechanism for the synthesis of pyrimido[4,5-*d*]pyrimidine derivatives in the presence of [BMIm]Br ionic liquid.

Product	Escherichia coli	Pseudomonas aeruginus	Bacillus subtilis	Staphylococcus aureus
4 a	8	32	16	64
4b	а	128	8	32
4 c	4	8	16	128
4d	16	64	128	32
4e	32	16	8	64
4f	a	8	128	128
4 g	16	8	16	32
4h	а	64	a	16
4i	а	16	32	128
4 j	a	32	64	8
Norfloxacin	<2	20	2	16
Tetracycline	а	a	4	4

Table 4. MIC (mg/mL) values of products 4a-j.

^aNot active

Acknowledgement

We gratefully acknowledge financial support from the Research Council of Shahid Beheshti University.

References

- A. Khalafi-Nezhad, B. Mokhtari, Tetrahedron Lett. 45 (2004) 6737-6739.
- [2] T. Welton, Chem. Rev. 99 (1999) 2071-2083.
- [3] N. Jain, A. Kumar, S. Chauhan, Tetrahedron 61 (2005) 1015-1060.
- [4] A.R. Hajipour, I. Mahboobi Dehban, Iran. J. Catal. 2 (2012) 147-151.
- [5] A.R. Hajipour, F. Rafiee, Iran. J. catal. 2 (2012) 23-26.
- [6] A. Bamoniri, A.R. Pourali, S.M.R. Nazifi, Iran. J. catal. 2 (2012) 185-189.
- [7] M.M. Khodaei, A.R. Khosropour, S. Ghaderi, J. Iran. Chem. Soc. 3 (2006) 69-72.
- [8] H.Y. Guo, Y.Yu, Chin. Chem. Lett. 21 (2010) 1435-1438.
- [9] X. Mi, S. Luo, J.P. Cheng, J. Org. Chem. 70 (2005) 2338-2341.
- [10] D.C. Chen, H.Q. Ye, H. Wu, Chin. Chem. Lett. 18 (2007) 27-29.
- [11] A. Davoodnia, S. Allameh, A.R. Fakhari, Chin. Chem. Lett. 21 (2010) 550-553.
- [12] A. Clark, Pharm Res. 13 (1996) 1133-1141.
- [13] R.G. Melik-Ogandzhanyan, V.E. Khachatryan, A.S. Gapoyan, Russ. Chem. Rev. 54 (1985) 262-276.
- [14] G.W. Rewcastle, A.J. Bridge, D.W. Fry, J.R. Rubin, W.A. Denny, J. Med. Chem. 40 (1997) 1820-1826.
- [15] J.E. Gready, C. McKinlay, M.G. Gebauer, Eur. J. Med. Chem. 38 (2003) 719-728.
- [16] Y.S. Sanghhvi, S.B. Larson, S.S. Matsumoto, L. D. Nord, D.F. Smee, R.C. Willis, T. H. Avery, R.K. Robins, G.R. Revankar, J. Med. Chem. 32 (1989) 629-637.

- [17] J.P. De la Cruz, T. Carrasco, G. Ortega, F. Sanchez De la Cuesta, Lipid 27 (1992) 192-194.
- [18] V.J. Ram, A. Goel, S. Sarkhel, P.R. Maulik, Bioorg. Med. Chem. 10 (2002) 1275-1280.
- [19] R.B. Tenser, A. Gaydos, K.A. Hay, Antimicrob. Agents Chemother. 45 (2001) 3657-3659.
- [20] E. Campaigne, R.L. Ellis, M. Bradford, J. Ho, J. Med. Chem. 12 (1996) 339-342.
- [21] A.I. Diaa, M.E. Amira. E.A. Elham, Arkivoc vii (2009) 12-25.
- [22] A. Diaa Eur. J. Med. Chem. 44 (2009) 2776-2781.
- [23] M.S. Novikov, O.N. Ivanova, A.V. Ivanov, A.A. Ozerov, V.T. Valuev-Elliston, K. Temburnikar, G.V. Gurskaya, S.N. Kochetkov, C. Pannecouque, J. Balzarini, K.L. Seley-Radtke, Bioorg. Med. Chem. 19 (2011) 5794-5802.
- [24] M. Dabiri, S.C. Azimi, H.R. Khavasi, A. Bazgir. Tetrahedron 64 (2008) 7307-7311.
- [25] R. Ghahremanzadeh, S.C. Azimi, N. Gholami, A. Bazgir. Chem. Pharm. Bull. 56 (2008) 1617-1620.
- [26] M. Dabiri, S.C. Azimi, H. Arvin-Nezhad, Heterocycles 75 (2008) 87-93.
- [27] M. Dabiri, H. Arvin-Nezhad, H.R. Khavasi, A. Bazgir. Tetrahedron 63 (2007) 1770-1774.
- [28] M. Dabiri, H. Arvin-Nezhad, H.R. Khavasi, A. Bazgir. J. Heterocycl. Chem. 44 (2007) 1009-1011.
- [29] K. Jadidi, R. Ghahremanzadeh, A. Bazgir, Tetrahedron 65 (2009) 2005-2009.
- [30] K. Rad-Moghadam, S.C. Azimi, Tetrahedron 68 (2012) 9706-9711.
- [31] NCCLS, "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria, which Grows Aerobically," 5th ed., Approved Standard M7- A5, NCCLS, Villanova, PA, 2000.