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Abstract:
Purpose: Integrating vermicompost and hydroponics in rice agriculture presents an innovative and sustainable
solution for transforming organic waste into valuable resources. This review explores the possible utilization
of organic waste into productive resources through vermicompost and hydroponics in rice agriculture.
Method: A comprehensive literature review was conducted to investigate the potential use of vermicompost
derived from organic waste for hydroponic rice agriculture. The available literature was analyzed to reveal
and explore the various aspects of this application.
Results: The literature review reveals that the utilization of vermicompost derived from organic waste in
hydroponic rice agriculture holds the potential to evolve into effective strategies for reducing, reusing, and
recycling or-ganic waste. Vermicompost decreases used inorganic fertilizers, with studies reporting up to 30%
reductions. The application of vermicompost can enhance plant growth by approximately 15% to 30% and
positively impact increasing specific nutrients in plants. Using vermicompost can also increase the average
crop yield by about 5% to 25% compared to other organic materials.
Conclusion: This study found that integrating vermicompost and hydroponics represents a promising
approach for transforming organic waste into productive resources. This integration allows organic waste
to be effectively converted into nutrient-rich vermicompost and valuable growing medium in hydroponic
systems. Scientific research has demonstrated the potential benefits of this approach, including improved
nutrient availability, enhanced plant growth and yield, and reduced environmental impact. By combining the
nutrient-rich properties of vermicompost with the precision and efficiency of hydroponic systems, farmers
can achieve sustainable and resource-efficient crop production.
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1. Introduction

Rice agriculture is crucial in global food security, provid-
ing a staple food for millions worldwide. Predictions in-
dicate that global rice production is projected to increase
significantly, with estimates ranging from 58 to 567 Mt by
2030 (Fukagawa and Ziska, 2019; Mohidem et al., 2022).
However, conventional rice farming practices often pose

significant challenges regarding resource utilization and en-
vironmental sustainability. The excessive use of chemical
fertilizers, water wastage, and improper management of
organic waste contribute to pollution, nutrient depletion,
and ecosystem degradation (Kumar et al., 2022; Mallareddy
et al., 2023; Vinci et al., 2023).
In recent years, innovative approaches have emerged in rice
agriculture, including integrating hydroponic techniques.
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Hydroponic rice cultivation represents a departure from tra-
ditional flooded paddy fields, as it involves growing rice
plants in nutrient-rich water solutions instead of soil. This
method offers several advantages: water conservation, re-
duced land usage, and controlled nutrient delivery to plants
(Velazquez-Gonzalez et al., 2022; Wang et al., 2022). By op-
timizing the nutrient balance and environmental conditions,
hydroponic rice systems can accelerate growth and enhance
yield potential. While still in its experimental stages and
needing refinement, hydroponic rice farming showcases the
potential to revolutionize how rice is grown, contributing to
more sustainable and efficient agricultural practices in the
face of evolving global challenges (Al-hashimi, 2023; Dewi
et al., 2022; Du et al., 2020).
Combining hydroponic techniques with organic ingredients
in rice agriculture presents an innovative approach that mar-
ries modern technology with sustainable farming practices.
Organic waste can be used to integrate with hydroponic
systems. Organic waste is a valuable source of nutrients for
agriculture as it contains essential macronutrients such as
nitrogen, phosphorus, and potassium, as well as micronu-
trients necessary for achieving optimal plant growth and
productivity (Subhash et al., 2015). Diverting organic waste
from landfills, which contributes to methane emissions, a
potent greenhouse gas, and occupies valuable space, can
benefit the environment and improve sustainability in agri-
culture (Nigussie et al., 2016).
One effective method of utilizing organic waste for agri-
culture is vermicomposting (Syarifinnur et al., 2023). Ver-
micomposting is a process that employs earthworms to
decompose organic waste, resulting in nutrient-rich vermi-
compost that can be used as a fertilizer (Alipour et al., 2022;
Sharma et al., 2022; Ngo et al., 2013). Earthworms digest
the organic waste, breaking it into simpler compounds more
readily available to plants (Castillo et al., 2014; Huang et
al., 2014; Ngo et al., 2012). Vermicompost contains high
levels of beneficial microorganisms, enzymes, and plant
growth hormones that enhance plant growth. Utilizing or-
ganic waste through vermicomposting can reduce the need
for synthetic fertilizers and promote sustainable agricultural
practices. In addition, using vermicompost can ultimately
support food security and sustainable agriculture (Chaoui
et al., 2003; Sattolo et al., 2017).
Furthermore, integrating vermicompost from organic waste
with rice hydroponic agriculture is an alternative that can re-
place commonly used growing media such as rock wool, per-
lite, vermiculite, coconut coir, fired clay pellets, expanded
shale, and grow stones. Utilizing vermicompost derived
from organic waste can offer supplementary nutrients for
plant growth. When compared to the use of conventional
materials, the price is lower because its obtained from no
longer used materials and offers a sustainable solution for
managing organic waste (Jouhara et al., 2017; Mousavi et
al., 2017).
In this innovative approach, vermicompost is utilized and
serves as a natural source of fertilization for hydroponic
rice cultivation (Khan and Ishaq, 2011; Rini et al., 2020;
Subhash et al., 2015). The process involves incorporating
vermicompost into the hydroponic setup, allowing the nutri-

ents and beneficial microorganisms to leach into the liquid
solution. This nutrient-rich vermicompost solution is then
introduced into the hydroponic system, replacing the need
for synthetic nutrients (Huang et al., 2014; Gillani et al.,
2022; Pramanik et al., 2010; Villar et al., 2016).
This paper explores the integration of vermicompost and
hydroponics in rice agriculture as a sustainable approach for
transforming organic waste into productive resources. By
synthesizing existing research and case studies, this paper
provides valuable insights into the feasibility and potential
of adopting this innovative approach in rice agriculture. In-
tegrating vermicompost and hydroponics can establish a
promising pathway toward a sustainable and resilient rice
production system. This approach effectively tackles the
ecological and socioeconomic challenges that modern agri-
culture faces.

2. Hydroponic system
A hydroponic system, also known as a soilless culture sys-
tem, is a method of cultivating plants without using soil,
using a nutrient-rich water solution instead (Pathma and
Sakthivel, 2016). This approach has gained popularity as
an alternative to traditional soil-based agriculture because it
can produce high yields in a smaller space, uses less water,
and requires fewer pesticides and fertilizers (Pomoni et al.,
2023; Ekoungoulou and Mikouendanandi, 2020). Hydro-
ponic systems can grow various crops, including vegetables,
herbs, and fruits (Ashok and Sujitha, 2020). They are also
highly customizable, with different hydroponic setups, such
as deep-water culture, nutrient film technique (NFT), and
drip irrigation. With its many advantages, the use of hy-
droponic systems has become increasingly popular among
farmers, gardeners, and researchers looking to explore more
sustainable and efficient ways of growing crops (Sharma
et al., 2018; Jensen et al., 2022).
In recent decades, the modern agriculture industry has
increasingly adopted hydroponic, which involves using
porous growing media that retains air and water in suitable
ratios for plant growth. Hydroponic refers to any method of
plant cultivation without using soil as a rooting medium, and
it has become a crucial component of modern agriculture
due to its ability to sustain profitable crop growth (Savvas
et al., 2013). The success of hydroponics can be attributed
to the development of suitable growing media, such as rock
wool and coir, that possess optimal physical, hydraulic,
and chemical properties (Savvas and Gruda, 2018). Addi-
tionally, advances in plant nutrition and irrigation through
modern fertigation equipment and automation technologies
have contributed to the widespread adoption of hydropon-
ics a leading cultivation technology. Hydroponic systems,
on the other hand, offer a more efficient and sustainable
alternative to conventional farming methods. Hydroponic
systems require less water, space, and resources and can
produce higher crop yields by providing a nutrient-rich wa-
ter solution to the plants. Casey et al. (2022) and Majid
and Khan (2021) investigated the environmental impacts
of hydroponic and soil-based lettuce cultivation. The study
found that the hydroponic system had a lower carbon foot-
print, consumed less water, and produced higher crop yields
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than the soil-based system. Another also reported that the
hydroponic system had a lower nutrient leaching rate and
higher nutrient use efficiency (Fussy and Papenbrock, 2022;
Martinez-Mate et al., 2018).
The success of a hydroponic system depends on several
factors, including the choice of hydroponic growing me-
dia, the quality of the nutrient solution, the pH and EC
levels, and the management of environmental factors such
as light, temperature, and humidity. Proper management of
these factors can help ensure optimal plant growth and yield
in hydroponic systems, making it a promising technology
for sustainable agriculture (Khan et al., 2020; Casey et al.,
2022; Majid and Khan, 2021). Hydroponic growing media
are an essential component of hydroponic systems. They
are materials that provide support and anchorage for the
roots of plants while allowing the delivery of nutrient-rich
solutions to the plants. The choice of hydroponic growing
media depends on several factors, such as the plant species,
the hydroponic system being used, and the availability of
the media. Common types of hydroponic growing media
include Rockwool, perlite, vermiculite, coconut coir, clay
pebbles, and sand (Arcas-Pilz et al., 2022; Zeljkovic et al.,
2022; Lei and Engeseth, 2021).

3. Rice cultivation in the hydroponic system
Rice is the most widely consumed cereal for human con-
sumption, making its production one of the most vital ac-
tivities for the global population. Therefore, considering its
economic and nutritional significance, evaluating the sus-
tainability of this production process could be noteworthy
(Vinci et al., 2023). Rice cultivation has long been associ-
ated with traditional flooded paddies, but recent innovations
in agricultural practices, such as hydroponics, are challeng-
ing this age-old approach (Fischer and Connor, 2018). Hy-
droponics offers a new perspective on rice cultivation by
providing a controlled environment that optimizes water
usage and nutrient delivery. This method involves growing
rice plants in nutrient-rich water solutions, eliminating the
need for vast water fields while promoting efficient nutrient
absorption (Laribi et al., 2023; Putra and Yuliando, 2015).
Hydroponic systems also minimize the risk of pests and
diseases, leading to healthier plants and potentially higher
yields. Although transitioning rice to hydroponics presents
its share of challenges, including adapting the rice plant’s
unique growth habits to this system, the prospect of re-
ducing water consumption, increasing sustainability, and
securing food production in the face of changing climate
conditions makes hydroponic rice cultivation a promising
avenue for the future of agriculture (Al-hashimi, 2023).
Transitioning rice to hydroponics is not without challenges,
however. Rice plants have evolved to thrive in flooded
conditions, with their elongated submerged stems called
’stems’ being a unique adaptation. Adapting these plants
to hydroponic systems requires meticulous adjustment of
factors like water levels, nutrient compositions, and lighting
(Velazquez-Gonzalez et al., 2022). Researchers and farmers
are working to optimize hydroponic systems that simulate
the submerged growth of traditional paddies. Developing
these systems involves understanding the intricate interplay

between nutrient availability, oxygenation, and root devel-
opment while also addressing concerns related to space,
energy, and cost efficiency (Meselmani, 2022; Calişkan and
Calişkan, 2018). Despite these complexities, the potential
rewards of hydroponic rice cultivation, including increased
yields, decreased resource usage, and resilience against
changing climate patterns, make pursuing this innova-tive
approach both valuable and necessary (Preite et al., 2023).
Rice cultivation through hydroponics also intersects with
urban farming, addressing the limitations of available agri-
cultural land in densely populated areas. Urbanization has
reduced arable land, making it increasingly challenging to
sustain local food production (Mamun et al., 2023). Hy-
droponic rice farming offers a viable solution by enabling
cultivation in controlled indoor environments, such as ver-
tical farms or rooftop gardens. This approach not only
maximizes land use efficiency but also reduces the need
for long-distance transportation of food, minimizing the
carbon footprint associated with traditional agriculture. Hy-
droponic methods could contribute to food security and
promote a more sustainable urban lifestyle by bringing rice
cultivation closer to urban centers.

4. Vermicompost and vermicomposting
Vermicompost comes from the word Vermis (Latin), which
means worm. Vermicompost is a process of decom-posing
organic matter using earthworms, which helps to break
down organic matter more quickly and has a higher level of
plant-available nutrients such as nitrogen, phosphorus, and
potassium. Vermicompost also improves water retention
and microbial activity to produce essential hormones for
plants (Alipour et al., 2022; Bhat et al., 2018; Biswas et al.,
2022). Vermicomposting is a sustainable and eco-friendly
method of managing organic waste, which involves using
earthworms to break down organic materials into a nutrient-
rich fertilizer that can be used in gardening, farming, and
other agricultural applications. Compared to traditional
composting, vermicomposting has several advantages, mak-
ing it an increasingly popular method for managing organic
waste (Pattnaik and Reddy, 2009; Ravindran et al., 2019;
Soni et al., 2016).
Another advantage of vermicomposting is the higher nutri-
ent content of the compost. Earthworms break down the
organic materials and add beneficial microorganisms and
enzymes to the compost, resulting in a nutrient-rich fer-
tilizer richer in nitrogen, phosphorus, and potassium than
traditional compost. This higher nutrient content makes
vermicompost an excellent soil amendment for growing
various plants, including vegetables, fruits, and flowers
(Parthasarathi et al., 2016; Soobhany et al., 2017; Zziwa
et al., 2021). Vermicomposting is also a perfect option for
individuals who have limited outdoor space. Unlike tradi-
tional composting, vermicomposting can be done in smaller
spaces like apartments or balconies. Worm bins are easy
to set up and maintain and can be used to convert kitchen
scraps and other organic materials into nutrient-rich ver-
micompost. It makes vermicomposting a more accessible
and convenient option for individuals who live in urban
areas with limited outdoor space (Mancini et al., 2019; Jara-
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Samaniego et al., 2017; Singh et al., 2011).
One significant advantage of vermicomposting is that it
produces high-quality compost in less time than traditional
composting. Earthworms can break down organic materi-
als faster and more efficiently than microbes, resulting in
quicker composting. Vermicomposting can produce high-
quality compost in as little as two to three months, making it
an ideal option for individuals who want to reduce their car-
bon footprint or produce compost for their gardens quickly
(Kauser and Khwairakpam, 2022; Liegui et al., 2021; Vyas
et al., 2022; Zulhipri et al., 2021).
Vermicomposting is a more environmentally friendly option
for managing organic matter than traditional composting.
Vermicomposting is an aerobic process that occurs in the
presence of oxygen. It produces carbon dioxide, less harm-
ful to the environment than methane, a potent greenhouse
gas produced by anaerobic composting. By using vermicom-
posting to manage organic matter, individuals can reduce
their carbon footprint and contribute to a more sustainable
future for the planet (Nigussie et al., 2017; Yasmin et al.,
2022).

5. Vermicompost from organic waste
Improper organic waste management is a serious environ-
mental threat worldwide, leading to a global struggle to bal-
ance waste generation and environmental protection (Enebe
and Erasmus, 2023). Vermicomposting has become increas-
ingly popular in recent years due to its distinct benefits of
reduced operational and maintenance expenses compared to
alternative waste management technologies (Parthasarathy
and Narayanan, 2014; Singh and Singh, 2017). Waste man-
agement is an essential aspect of vermicomposting, and
the success of the process depends on the type of waste
materials used and their management (Deka et al., 2011a;
Li et al., 2020). Using suitable waste materials can help
ensure that the compost is balanced regarding carbon and
nitrogen. The ideal waste materials for vermicomposting
are dry grass clippings and rice straw (Ramnarain et al.,
2019), fruit and vegetable scraps (Garg and Gupta, 2011),
coffee grounds (Adi and Noor, 2009), market organic waste
(Syarifinnur et al., 2020), eggshells (Biswas et al., 2022),
banana steam (Khatua et al., 2018). These materials provide
a range of nutrients and can help maintain a healthy com-
posting environment. This process promotes plant growth
and increases crop yields, all while reducing organic waste
that would otherwise contribute to environmental pollution.
The vermicomposting method has gained popularity due
to its many benefits, including improving the quality of or-
ganic fertilizer and reducing waste (Devi and Khwairakpam,
2020; Rajkhowa et al., 2019; Wani et al., 2013).
However, successful vermicomposting requires careful man-
agement of several critical factors, including the type and
combination of organic matter used, the species and number
of earthworms, and how these elements interact (Arora and
Kaur, 2019; Ganguly and Chakraborty, 2019; Yuvaraj et al.,
2021). One of the primary factors affecting vermicompost
production is the type and combination of organic matter
used as feedstock (Alipour et al., 2022). Earthworms require
diverse organic matter to thrive, including plant residues,

animal manure, and food waste. The ideal feedstock mix
depends on the specific species of earthworms used and
the final vermicompost’s desired properties (Kumlu et al.,
2018; Ramnarain et al., 2019; Suleiman et al., 2017). For
example, a mix of plant residues, such as straw, leaves, and
grass clippings, can create a balanced carbon-to-nitrogen
ratio in the vermicompost, promoting healthy microbial ac-
tivity and nutrient cycling. In addition to the type of organic
matter used, the number and species of earthworms also
play a crucial role in vermicomposting. Different species
of earthworms have varying feeding and burrowing habits,
which can affect the speed and quality of the composting
process (Bakar et al., 2014; Devi and Khwairakpam, 2020;
Mousavi et al., 2017). The research conducted by Kaur
et al. (2010) and Ravindran and Mnkeni (2016), and Singh
et al. (2010) using Eisenia fetida is a common species used
in vermicomposting due to its rapid reproduction and a high
tolerance for a wide range of organic matter types. However,
other species, such as the African nightcrawler (Eudrilus
eugeniae), may be better suited for certain types of feed-
stock, such as animal manure, due to their larger size and
more powerful digestive system (Ashok and Sujitha, 2020;
Esaivani et al., 2015; Soobhany et al., 2015b).
Several measures can be taken to ensure efficiency and ef-
fectiveness for optimal results in the decomposition process
of organic matter using earthworms. It is necessary to pay
attention to the type of earthworm, the number of earth-
worms, and the organic material used. The type commonly
used is the epigeic type of earthworm (Blakemore, 2009;
Liu et al., 2012; Soobhany et al., 2015a; Suthar, 2009).
These earthworms have several characteristics, including
living on the surface of the soil, eating organic matter, being
able to adapt to environmental factors, having high repro-
duction rates, and having resistance to specific treatments.
Some earthworms are epigeic types, such as Eisenia fetida,
Perionix excavates, Eudrillus eugenia, and Eisenia andrei,
which have been widely used in the decomposition process
of organic matter. Types of organic materials commonly
used include market vegetable waste, household waste, mu-
nicipal waste, garden waste, fruit residue, crop residues
such as straw, coffee grounds, and liquid waste. Mixed
materials used in the manufacture of vermicompost include
cow manure, straw, weeds, sawdust, livestock manure, and
goat manure. This difference in composition also causes
the quality of the vermicompost produced to vary (Table 1).

6. Application of vermicompost on crop
performance

Vermicompost, also known as worm castings, is a nutrient-
rich organic fertilizer. This organic fertilizer is a valuable
resource for plant growth and development (Karmegam et
al., 2021; Rehman et al., 2023). The role of vermicompost
in plant growth is primarily due to beneficial microorgan-
isms, enzymes, and nutrients such as nitrogen, phosphorus,
and potassium. These elements provide a well-balanced diet
to the plants, promoting their growth and reducing plant dis-
eases and overall health (Singh et al., 2017; Malinska et al.,
2017). The nutrients in vermicompost are readily available
to plants, which means they can be absorbed quickly and
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Table 1. Several types, the number of earthworm species, and combinations of waste organic matter in making
vermicompost.

Earthworm Species Number of earthworms Types of Organic Waste Supplementary Materials References

Eisenia fetida 20 tails Market vegetable waste Cow dung (Suthar, 2009)

Eisenia fetida 75 tails vegetable waste Cow dung, straw, and weeds (Goswami et al., 2017)

Eisenia Andrei 120 tails Municipal organic waste Compost (Villar et al., 2016)

Eisenia. fetida, Eisenia. Andrei 20 tails Municipal organic waste Sawdust (Suleiman et al., 2017)

E. fetida and Dendrobaena veneta 1.5kg Garden organic waste Cow dung (Yasmin et al., 2022)

Eisenia fetida 50 tails Vegetable and fruit waste Cow dung (Huang et al., 2017)

Eudrilus eugeniae 20 tails Solid organic waste Cow dung and leaf litter (Soobhany et al., 2015b)

Eudrilus eugeniae 1700 tails Food waste Cow dung (Lalander et al., 2015)

Eudrilus eugeniae 100-120 tails Water hyacinth Goat manure (Varma et al., 2016)

Lumbricus rubellus 60 tails Coffee grounds and Kitchen trash Cow dung (Adi and Noor, 2009)

Eudrilus eugeniae 150 tails The rest of the distillation of lemon grass Cow dung (Deka et al., 2011b)

Lumbricus rubellus 36 tails Vegetable waste Cow dung (Bakar et al., 2014)

used for growth. This enhanced nutrient uptake can lead to
healthier and more productive plants (Scaglia et al., 2016).
Hussain et al. (2017) studied the utilization of vermicompost
derived from Salvinia weed, which exhibited a significant
positive impact on the germination, growth, and yield of
lady’s finger plants. In addition to the remarkable improve-
ments in plant growth, vermicompost treatment resulted
in elevated levels of minerals and biochemicals, exceeding
those observed in the control group (Chauhan and Singh,
2020; Verma et al., 2018). Furthermore, vermicompost ap-
plication was vital in reducing the incidence of fruit borer
infection and inducing plant resistance against pests and
diseases (Xiao et al., 2016). (Amooaghaie and Golmoham-
madi, 2017) observed the effects of different percentages of
vermicompost on seedling emergence indices, plant growth,
and essential oil content. The results showed a lower per-
centage of vermicompost (25%) promoted the best seedling
emergence indices. A higher percentage (50%) significantly
impacted various aspects of plant growth, including length,
photosynthetic efficiency, chlorophyll, carotenoid contents,
and the fresh and dry weight of aerial parts and roots. Manh
and Wang (2013) also reported using vermicompost from
rice hulls and coconut husk. According to the study, a
vermicompost mixture resulted in Muskmelon’s (Cucumis
melo L) highest germination rate, plant height, leaf area,
and plant biomass. Syarifinnur et al. (2022) studied the
effect of compost and vermicompost derived from organic
waste obtained from the market on both soil chemical prop-
erties and maize growth. The experimental setup included
three doses of compost (2.5, 5, and 10 t

/
ha), three doses

of vermicompost (2.5, 5, and 10 t
/

ha), and a control group
without compost or vermicompost. During the harvest pe-
riod, ten weeks after the planting phase, measurements
were taken for maize shoot dry weight, cob length, root

dry weight, cob diameter, cob dry weight, and cob with
husk. The findings revealed that compost and vermicom-
post considerably impacted the maize yield. Specifically,
applying 10 t

/
ha of vermicompost resulted in the highest

yield of maize. The effect of vermicompost on crop perfor-
mance is presented in Table 2. The Growth of plants using
vermicompost is superior due to its higher concentration
of nutrients than regular compost. The process of vermi-
composting involving earthworms enhances the availability
of nutrients such as nitrogen, phosphorus, and potassium
in a more readily absorbable form by plants. By utilizing
vermicompost, plants receive improved nutrition, enabling
optimal growth while reducing dependence on chemical
fertilizers. This result is consistent with the research con-
ducted by Subhash et al. (2015), which demonstrates that
the compost obtained from a mixture of 50% Eichhornia
and 50% cow dung underwent GC-MS analysis, resulting
in the identification of 21 peaks listed in Table 3. The high-
est peak area was observed for Benzene, 1,2,4−trimetho
(22.17%), followed by 9-Octadecenoic acid (18.52%) and 1-
Dodecanamine, N,N−D (11.03%). Peaks with areas below
10% were also detected. Similarly, the GC-MS analysis of
vermicompost produced from the same mixture exhibited 12
peaks. The predominant peak area was Benzenepropanoic
acid (95.98%), followed by 2-Propanone, 1-Phenyl-, OXIM
(10.10%). Other peaks displayed areas below 10%. Ben-
zene compound, also known as 3-Phenylpropanoic acid
found in vermicompost, can act as a carbon and energy
source for soil microorganisms, promoting nutrient cycling,
enhancing plant growth, helping to regulate pH, and improv-
ing nutrient retention (Liu et al., 2015; Bhattacharya et al.,
2016; Gerke, 2018; Wagner et al., 2019).
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Table 3. Comparison of GC-MS analysis on compost and vermicompost of Eichhornia and cow dung.

Compost 50% combination of Eichhornia and 50% cow dung Vermicompost 50% combination of Eichhornia and 50% cow dung
Peak Retention

time
Area Height% Name Retention

time
Area Height % Name

1 7.130 0.13 0.30 Acetonyl decyl
ether

5.712 1.45 1.87 Oxirane, (bro-
momethy)

2 8.908 2.80 4.81 Nonane,
3,7−dimethyl-

7.557 -19.90 6.46 Dodecana, 1,1 di-
fluoro

3 9.823 0.20 0.33 Disulfide, dihep-
tyl

8.575 4.39 2.58 Oxirane, (bro-
momethy)

4 10.401 0.21 0.49 Butane, 1-
isocyano-

8.745 1.53 1.98 Oxirane, 2, 2′-
[oxybis(ME

5 13.301 0.85 1.77 1-Tetradecanol 16.010 10.10 2.62 2-Propanone, 1-
Phenyl-, OXIM

6 13.994 1.12 1.82 Tetracyclo[4.1.0.
02,4.03

16.916 -1.62 0.16 Isoxazolidine

7 15.825 4.91 4.30 1-Tetradecanol 17.504 3.32 1.78 1,3-Butadiene-
1,1,4,4-D4

8 15.985 22.17 13.59 Benzene, 1,2,4-
trimetho

17.606 0.06 1.08 O-Toluidine, N-
ethyl-

9 16.212 6.22 5.30 1,2,4-
Trimethoxy-
5-[(1E)

17.722 8.66 4.31 Ethanone, 2-
ethoxy-1,

10 17.136 11.03 7.66 1-
Dodecanamine,
N,N-D

18.246 6.77 4.53 Benzenamine, N-
ethyl-2-methyl

11 17.250 3.02 2.38 1,4-
Naphthalenedione

20.409 -10.73 3.76 Onanoic acid,
methyl

12 17.339 2.51 2.31 Phenol, O-nonyl- 20.684 95.98 68.86 Benzenepropanoic
acid

13 18.043 0.92 1.26 Hexanoic acid, 4-
meth

– – – –

14 19.174 4.05 1.99 3-Hexanone, 1-
(2,5,6,6-TE

– – – –

15 19.276 4.02 2.95 (1S,2S,3S)-2-
allyl-2-(hyd

– – – –

16 19.468 18.52 20.50 9-Octadecenoic
acid

– – – –

17 19.724 7.59 12.73 Methyl ester of 3-
(3,5-D

– – – –

18 19.925 -1.01 -0.29 7-Ethylidene-
6B,7,8,8A-T

– – – –

19 21.135 5.26 7.65 7-Tetradecyne – – – –
20 21.182 6.04 8.52 9-Octadecenoic

acid
- - - -

21 21.417 -0.56 -0.36 2,3-
Diethoxybutane

– – – –
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7. Hydroponic media from vermicompost

Recent studies have demonstrated the benefits of hydroponic
growing media derived from vermicompost. This innova-
tive technique provides a suitable plant growth medium and
a valuable source of essential nutrients for optimal plant
growth (Ansari et al., 2019; Yadav and Parveen, 2023).
These findings suggest that vermicompost-based hydro-
ponic systems may offer a promising solution for enhanc-
ing the productivity and sustainability of agriculture. Re-
searchers have been exploring using vermicompost as a
potential hydroponic growing medium, which offers sev-
eral advantages over conventional growing media such as
soil or rockwool. Studies have reported that vermicom-
post can improve plant growth and yield, increase nutrient
uptake, and reduce environmental impact. One study by
Haghighi et al. (2016) was conducted to investigate the ef-
fectiveness of different materials, including municipal solid
waste compost, peat, perlite, and vermicompost, in pro-
moting the growth of tomatoes (Lycopersicon esculentum
L.) in hydroponic systems. Several material combinations
were examined, and it was evident that including 25% ver-
micompost in the compost notably boosted the yield of
ripe tomatoes compared to the control group. In addition,
using vermicompost, peat, and perlite resulted in notable
improvements in root fresh and dry weight, root volume,
mean photosynthesis, and the number of fruits at all stages
of development, surpassing the control group. Based on
these findings, it can be concluded that incorporating ver-
micompost as a substrate component in hydroponic culture
has the potential to enhance the physiological growth of
tomatoes. Another study by Arancon et al., 2019 research
study investigated the effects of low concentrations of ver-
micompost, derived from food waste, in static hydroponic
systems. For lettuce, concentrations of 1.6% and 3.2% were
tested, while for tomatoes, concentrations of 0.14%, 0.28%,
and 0.56% were examined. The results showed that vermi-
compost significantly affected lettuce yield when nutrient
solution concentrations were reduced to 25% and 50% of
the recommended rate, compared to treatments without ver-
micompost. Even lower concentrations of vermicompost
as a supplement in nutrient solutions reduced to 50% sig-
nificantly increased tomato yields. This improvement in
yield is attributed to the presence of trace amounts of plant
hormones like auxins, cytokinins, gibberellins, and humic
acids in the vermicompost teas, which effectively enhanced
plant growth and yield in static hydroponic systems with
reduced nutrient concentrations, indicating its potential as a
more sustainable and environmentally friendly option for
hydroponic farming.
Using vermicompost as a hydroponic medium has signifi-
cant implications for developing sustainable and ecofriendly
agricultural practices. Vermicompost production can pro-
vide a sustainable solution to waste management as it can
be produced from organic waste materials, such as food
waste and agricultural residues (Alipour et al., 2022; Es-
maeili, 2020). By diverting organic waste from landfills
and using it to produce vermicompost, its possible to reduce
greenhouse gas emissions and create a valuable resource
for agricultural production (Savvas et al., 2013; Nigussie

et al., 2017). The main advantage of vermicompost is that it
can significantly reduce the negative environmental impacts
of conventional hydroponic growing media. Traditional
hydroponic growing media, such as rock wool and perlite,
can be non-renewable and require significant energy to pro-
duce, transport, and generate large amounts of waste. Using
vermicompost can offer a sustainable and environmentally
friendly alternative that can contribute to developing cir-
cular and closed-loop agricultural systems (Kennard et al.,
2020). The utilization of a hydroponic rice system with
vermicompost obtained from organic waste is described in
Fig. 1.

8. Challenges and considerations for
implementing vermicompost and

hydroponics integration
While integrating vermicompost and hydroponics offers
promising benefits for sustainable agriculture, several chal-
lenges and considerations must be addressed to ensure suc-
cessful implementation. Scientific research has identified
these challenges and provides valuable insights into over-
coming them for optimal outcomes.
1. Nutrient Management: Effective nutrient management is
crucial in integrating vermicompost and hydroponics. It is
essential to determine the appropriate nutrient composition
and concentration in the hydroponic solution to meet the
specific nutrient requirements of the plants (Du et al., 2020).
Careful monitoring and adjustment of nutrient levels, pH,
and electrical conductivity are necessary to prevent nutrient
imbalances and ensure optimal plant growth and develop-
ment (Muktamar et al., 2017; Rini et al., 2020).
2. Vermicompost Quality and Stability: The quality and
stability of vermicompost play a vital role in its effective-
ness as a nutrient source in hydroponics. It is essential
to confirm that the vermicompost being used has reached
maturity., well-composted, and free from contaminants or
pathogens (Joshi et al., 2015). Vermicompost production
processes should be carefully managed to maintain consis-
tent nutrient content and microbial activity. Quality control
measures, such as regular testing and monitoring, are essen-
tial to ensure the stability and reliability of vermicompost
(Ganguly and Chakraborty, 2019; Rehman et al., 2023).
3. Disease and Pest Management: While vermicompost
can contribute to disease suppression in hydroponics, it
is crucial to implement proper disease and pest manage-
ment strategies (Jara-Samaniego et al., 2017). Introducing
pathogens or pests through vermicompost can pose a risk to
plant health. Strict sanitation practices, such as proper com-
posting techniques and pathogen control measures, should
be employed to minimize the risk of disease outbreaks. In-
tegrated pest management strategies, including biological
controls, can help address potential pest issues (Arancon
et al., 2019).
4. System Design and Maintenance: The design and main-
tenance of the integrated vermicompost and hydroponic
system require careful consideration. Proper system design
should ensure efficient nutrient delivery, water circulation,
and aeration to promote optimal plant growth (Li et al.,
2018). Regular system maintenance, like cleaning, moni-
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Figure 1. The basic process of a hydroponic rice system using vermicompost from organic waste.

toring of nutrient levels, and preventive measures against
clogging or blockages, is essential for long-term system per-
formance (Bouadila et al., 2022; Li et al., 2022; Wiegmann
et al., 2023).
5. Economic Viability: Assessing the economic viability
of integrating vermicompost and hydroponics is crucial
for practical implementation. The costs associated with
vermicompost production, system setup, and maintenance
should be carefully evaluated and compared to the potential
benefits, such as increased crop yields and reduced input re-
quirements (Folorunso et al., 2023; Gumisiriza et al., 2022).
Economic feasibility studies can provide valuable insights
into the profitability and long-term sustainability of the inte-
grated system (Folorunso et al., 2023; Ekaputri et al., 2021).
By addressing these challenges and considerations, the inte-
gration of vermicompost and hydroponics Rice Agriculture
can be successfully implemented, maximizing the benefits
of both techniques for sustainable agriculture. Continued
scientific research, practical experimentation, and knowl-
edge exchange among practitioners and researchers are es-
sential for advancing the understanding and optimization of
this integration.

9. Future directions and research
opportunities

Integrating vermicompost and hydroponics in agriculture
holds significant potential for sustainable and resource-
efficient crop production. However, there are still several
areas that warrant further investigation and research. Sci-
entific studies have identified vital future directions and
research opportunities to advance the integration of these
techniques and maximize their benefits.

1. Optimization of nutrient formulations: Further research
is needed to optimize nutrient formulations in hydroponic
systems utilizing vermicompost, including determining the
ideal nutrient ratios and concentrations for different crop
species and growth stages. Understanding the nutrient re-
lease dynamics from vermicompost and its interaction with
hydroponic nutrient solutions will contribute to the devel-
opment of precise nutrient management strategies (Nguyen
et al., 2016; Arif et al., 2023; Oliveira et al., 2023; Ng et al.,
2023).
2. Exploration of microbial interactions: The role of mi-
crobial communities in vermicompost and their interac-
tions with hydroponic systems require in-depth exploration
(Thomas et al., 2023; Jiang et al., 2023). Investigating
the specific microbial populations involved in nutrient cy-
cling, disease suppression, and plant growth promotion will
contribute to harnessing the full potential of vermicompost
integration in hydroponics (Cao et al., 2021; Huang et al.,
2014; Chavda and Rajawat, 2015; Wang et al., 2023).
3. Environmental impacts and sustainability assessment:
Assessing the environmental impacts and sustainability as-
pects of vermicompost and hydroponic integration is cru-
cial. Research should focus on quantifying resource use
efficiency, greenhouse gas emissions, water consumption,
and nutrient losses to determine the overall environmental
footprint and identify opportunities for improvement (Ngo
et al., 2013; Sharma et al., 2022; Yadav and Samadder,
2018).
4. Scaling up and commercialization: Integrating vermicom-
post and hydroponics for commercial applications requires
practical research on large-scale system design, operation,
and economics. Evaluating the economic viability, scala-
bility, and feasibility of implementing this integration in
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different agricultural settings will support its widespread
adoption by farmers and stakeholders (Pattillo et al., 2022;
Zhang et al., 2018).
5. Crop-Specific Studies: Conducting cropspecific studies
to assess the performance of vermicompost and hydroponic
integration in different crops is necessary. Understanding
the specific nutrient requirements, growth characteristics,
and responses of various crops to this integration will pro-
vide tailored recommendations and guidelines for optimiz-
ing crop production (Vandam et al., 2017; Gillani et al.,
2022; Pathma and Sakthivel, 2016).
6. Comparison with Conventional Systems: Comparative
studies between vermicompost and hydroponics integration
and conventional soil-based systems can provide valuable
insights into the advantages and limitations of each ap-
proach. Evaluating plant growth, nutrient uptake, water use
efficiency, and economic parameters will help assess the
competitiveness and potential of vermicompost and hydro-
ponic integration (Majid and Khan, 2021; Xu et al., 2018)
By addressing these future directions and research opportu-
nities, the integration of vermicompost and hydroponics can
be further refined and optimized for sustainable agriculture.
Continued collaboration among researchers, practitioners,
and stakeholders is essential to drive innovation, knowledge
exchange, and practical implementation of this integrated
approach.

10. Conclusion
Integrating vermicompost and hydroponics represents
a promising approach for transforming organic waste
into productive resources in hydroponic rice agriculture.
This integration allows organic waste to be effectively
converted into nutrient-rich vermicompost, a valuable
growing medium in hydroponic systems. Scientific research
has demonstrated the potential benefits of this approach,
including improved nutrient availability, enhanced plant
growth and yield, and reduced environmental impact. By
combining the nutrient-rich properties of vermicompost
with the precision and efficiency of hydroponic systems,
farmers can achieve sustainable and resource-efficient crop
production. This integrated approach offers advantages
such as reduced reliance on conventional soil cultivation,
efficient nutrient management, and minimized water and
nutrient losses. Furthermore, it presents a solution for
managing organic waste, reducing landfill contributions,
and promoting a circular economy in agriculture.
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