TY - EJOUR AU - Jagadabhi, P. S. AU - Wani, S. P. AU - Kaushal, M. AU - Patil, M. AU - Vemula, A. K. AU - Rathore, A. PY - 2024 DA - January TI - Physico‑chemical, microbial and phytotoxicity evaluation of composts from sorghum, finger millet and soybean straws T2 - International Journal of Recycling of Organic Waste in Agriculture VL - 8 L1 - https://oiccpress.com/international-journal-of-recycling-of-organic-waste-in-agriculture/article/physico%e2%80%91chemical-microbial-and-phytotoxicity-evaluation-of-composts-from-sorghum-finger-millet-and-soybean-straws/ DO - 10.1007/s40093-018-0240-8 N2 - Purpose Composting is an environmentally sustainable alternative for bioconversion of agricultural residues into a nutrient rich product that can enhance soil fertility/microbial diversity and thereby improve agricultural productivity. The goal of the current study was to evaluate the decomposition pattern of the agro-residues and assess the maturity and phytotoxicity of the composts obtained using physico-chemical, microbial and statistical analyses. The study also attempted to determine a threshold germination index (GI) to serve as a maturity index for the composts by conducting seed germination assays with tomato, chickpea and soybean seeds. Methods Three agricultural residues/straws of Eleusine coracana (finger millet), Sorghum bicolor (sorghum) and Glycine max (soybean) were subjected to aerobic composting for a period of 60 days to study the impact of saw dust on the decomposition pattern and the ultimate compost quality/characteristics. Results The results showed efficient decomposition pattern of the agricultural residues characterized by high temperature profiles (up to 70 °C), high microbial activity, a sharp decrease in C/N ratio of the composting materials, i.e., from an initial 41–61 to final 10–17. Conclusions Statistical evaluation of seed germination assays showed that only the compost obtained from sorghum straw+saw dust was mature and free from any phytotoxicity as all the tested seeds showed higher and statistically significant GIs. It was difficult to attribute a single threshold GI value to indicate maturity of compost and could not further be applied to different types of composts as different seeds responded differently to the same compost. IS - 3 PB - OICC Press KW - Compost, Phytotoxicity, Maturity , Straw , Germination index (GI) , Seed germination EN -