References

 

Ansari AA, Humphrey L (2015) An investigation into the preferential palatability of earthworms (Eisenia fetida) on leaves of Terminalia catappa, Blighia sapida and Hibiscus rosasinensis. Res J Soil Biol 1–7. https://doi.org/10.3923/rjsb.2015.21.27

Arora M, Kaur A (2019) Azolla pinnata, Aspergillus terreus, and Eisenia fetida for faster recycling of nutrients from wheat straw. Environ Sci Pollut Res 26: 32624–32635. https://doi.org/10.1007/s11356-019-06472-5

Azizi AB, Shafiza MS, Noor ZM, Abdullah N (2014) Comparison of bioproduct quality from vermiconversion of spent pleurotus sajor-caju compost and commercial livestock excreta. Sains Malaysiana 43(11): 1699–1705

Beres C, Costa GNS, Cabezudo I, da Silva-James NK, Teles ASC, Cruz APG, Mellinger-Silva C, Tonon RV, Cabra LM, Freitas SP (2017) Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag 68: 581–594. https://doi.org/10.1016/j.wasman.2017.07.017

Bhat SA, Singh J, Vig AP (2018) Earthworms as organic waste managers and biofertilizer producers. Waste Biomass Valor 9 (7): 1073–1086. https://doi.org/10.1007/s12649-017-9899-8

Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44: 666–676. https://doi.org/10.1078/S0031-4056(04)70080-3

Cova LJ, García DE, Castro AR, Medina MG (2007) Efecto perjudicial de Moringa oleifera (Lam.) combinada con otros desechos agrícolas como sustratos para la lombriz roja (Eisenia spp.). Interciencia 32(11): 769–774

Curry JP, Schmidt O (2007) The feeding ecology of earthworms - A review. Pedobiologia 50(6): 463–477. https://doi.org/10.1016/j.pedobi.2006.09.001

Das D, Bhattacharyya P, Ghosh BC, Banik P (2015) Bioconversion and biodynamics of Eisenia foetida in different organic wastes through microbially enriched vermiconversion technologies. Ecol Eng 27(2): 405–423. https://doi.org/10.1016/j.ecoleng.2015.11.012

Dávila I, Robles E, Egüés I, Labidi J, Gullón P (2017) The biorefinery concept for the industrial valorization of grape processing by-products. In Handbook of Grape Processing By-Products (pp. 29–53). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809870-7.00002-8

Domínguez J, Martínez-Cordeiro H, Álvarez-Casas M, Lores M (2014) Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols. Waste Manag Res 32(12): 1235–1240. https://doi.org/10.1177/0734242X14555805

Domínguez J, Sanchez-Hernandez JC, Lores M (2017) Vermicomposting of winemaking by-products. Handbook of Grape Processing By-Products: Sustainable Solutions 55–78. https://doi.org/10.1016/B978-0-12-809870-7.00003-X

Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agric Ecosys Environ 24(1–3): 235–247. https://doi.org/10.1016/0167-8809(88)90069-2

Esmaeili A, Khoram MR, Gholami M, Eslami H (2020) Pistachio waste management using combined composting-vermicomposting technique: Physico-chemical changes and worm growth analysis. J Clean Prod 242: 118523. https://doi.org/10.1016/j.jclepro.2019.118523

Fataei E, Majd KH, Zakeri F, Jeddi EA (2011) An experimental study of vermicomposting with earthworm (Eisenia foetida) growth in edible mushrooms wastes. Int J Bio-Resour Stress Manag 2(1): 66–68

Ferreira T, Hansel FA, Maia CMBF, Guiotoku M, Cunha L, Brown GG (2021) Earthworm-biochar interactions: A laboratory trial using Pontoscolex corethrurus. Sci Total Environ 777: 146147. https://doi.org/10.1016/j.scitotenv.2021.146147

Gómez-Brandón M, Lazcano C, Lores M, Domínguez J (2011) Short-term stabilization of grape marc through earthworms. J Hazard Mater 187(1–3): 291–295. https://doi.org/10.1016/j.jhazmat.2011.01.011

Gong X, Li S, Carson MA, Chang SX, Wu Q, Wang L, An Z, Sun X (2019) Spent mushroom substrate and cattle manure amendments enhance the transformation of garden waste into vermicomposts using the earthworm Eisenia fetida. J Environ Manag 248: 109263. https://doi.org/10.1016/j.jenvman.2019.109263

Gowda NAN, Manvi D (2019) Agro-residues disinfection methods for mushroom cultivation: A review. Agric Rev 40(2): 93–103. https://doi.org/10.18805/ag.R-1735

Gunadi B, Blount C, Edwards CA (2002) The growth and fecundity of Eisenia fetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia 46(1): 15–23. https://doi.org/10.1078/0031-4056-00109

Jackson ML, Barak P (2005) Soil chemical analysis: advanced course: A manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis. Parallel Press, University of Wisconsin-Madison Libraries

King GA, Wollard DC, Irving DE, Borst WM (1990) Physiological changes in aspargus spear tips after harvest. Physiol Plant 80: 393–400. https://doi.org/10.1111/j.1399-3054.1990.tb00058.x

Manan MA, Webb C (2017) Design Aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng 4(1): 511–532

Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to “the enigma of soil animal diversity”: Fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39(2): 85–95. https://doi.org/10.1016/S1164-5563(03)00006-2

Martínez-Cordeiro H, Álvarez-Casas M, Lores M, Domínguez J (2013) Vermicompostaje del bagazo de uva: Fuente de enmienda orgánica de alta calidad agrícola y de polifenoles bioactivos. Recursos Rurais 9 (9): 55–63. https://doi.org/10.15304/rr.id1696

Moody SA, Piearce TG, Dighton J (1995) Selective consumption of decomposing. Soil Biol Biochem 27(9): 1209–1213. https://doi.org/10.1016/0038-0717(95)00024-9

Ndegwa PM, Thompson SA (2001) Integrating composting and vermicomposting in the treatment. Bioresour Technol 76: 107–112. https://doi.org/10.1016/S0960-8524(00)00104-8

Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, Miandad R, Khan MZ, Syamsiro M, Ismail IMI, Pant D (2017) Waste biorefineries: Enabling circular economies in developing countries. Bioresour Technol 241: 1101–1117. https://doi.org/10.1016/j.biortech.2017.05.097

Nogales R, Elvira C, Benítez E, Thompson R, Gomez M (1999) Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality. J Environ Sci Health 34 (1): 151–169. https://doi.org/10.1080/03601239909373189

Nogales R, Cifuentes C, Benítez E (2005) Vermicomposting of winery wastes: A laboratory study. J Environ Sci Health 40(4): 659–673. https://doi.org/10.1081/PFC-200061595

Osono T, Takeda H (2001) Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan. Ecol Res 16(4): 649–670. https://doi.org/10.1046/j.1440-1703.2001.00426.x

Palaniappan S, Alagappan M, Rayar S (2018) Influence of substrate particle size on vermicomposting of pre-processed vegetable waste. Nat Environ Pollut 17(1): 277–286

Paradelo R, Moldes AB, Barral MT (2009) Properties of slate mining wastes incubated with grape marc compost under laboratory conditions. Waste Manag 29: 579–584.

              https://doi.org/10.1016/j.wasman.2008.06.019

Pellegrini A, Lanfranco J, Vacisek A, Gelati P (2014) Capacitación para el reciclado de residuos orgánicos - Fuente de sustratos, abonos y acondicionadores de suelos degradados (Universidad Nacional de La Plata, Ed.; Segunda ed)

Pérez-Godínez EA, Lagunes-Zarate J, Corona-Hernández J, Barajas-Aceves M (2017) Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting. Waste Manag 64: 67–78. https://doi.org/10.1016/j.wasman.2017.03.036

Saparrat MCN, Bucsinszky AMM, Alfio Tournier H, Cabello MN, Arambarri AM (2000) Extracellular ABTS-oxidizing activity of autochthonous fungal strains from Argentina in solid medium. Rev Iberoam Micol 17(2): 64–68. PMID: 15813698

Saparrat MCN, Arambarri AM, Balatti PA (2007) Growth response and extracellular enzyme activity of Ulocladium botrytis LPSC 813 cultured on carboxy-methylcellulose under a pH range. Biol Fertil Soils 44(2): 383–386. https://doi.org/10.1007/s00374-007-0217-7

Saparrat MCN, Rocca M, Aulicino M, Arambarri AM, Balatti PA (2008) Celtis tala and Scutia buxifolia leaf litter decomposition by selected fungi in relation to their physical and chemical properties and lignocellulolytic enzyme activity. Eur J Soil Biol 44(4): 400–407. https://doi.org/10.1016/j.ejsobi.2008.05.005

Saparrat MCN, Balatti PA, Arambarri AM, Martínez MJ (2014) Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases. J Ind Microbiol Biotechnol 41(4): 607–617. Springer Verlag. https://doi.org/10.1007/s10295-014-1408-5

Schuldt M, Rumi A, Gutiérrez- Gregoric D (2005) Estimación de la capacidad de porte en lombricultivos de Eisenia fetida (Oligochaeta, Lumbricidae) con distintas materias orgánicas. Producción Animal 25(1900): 101–109

Singh UB, Malviya D, Khan W, Singh S, Karthikeyan N, Imran M, Rai JP, Sarma BK, Manna MC, Chaurasia R, Sharma AK, Paul D, Oh JW (2018) Earthworm grazed-Trichoderma harzianum biofortified spent mushroom substrates modulate accumulation of natural antioxidants and bio-fortification of mineral nutrients in tomato. Front Plant Sci 9: 1–15. https://doi.org/10.3389/fpls.2018.01017

Suthar S, Singh S (2008) Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci Total Environ 394 (2–3): 237–243. https://doi.org/10.1016/j.scitotenv.2008.02.005

Thalmann A (1968) Zur methodik der Bestimmung der Dehydrogenase activitat im Boden Mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsh. Forsch 21: 249–258

Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut 93 (3): 249–256. https://doi.org/10.1016/S0269-7491(96)00052-8

Troncozo MI, Lješević M, Beškoski VP, Anđelković B, Balatti PA, Saparrat MCN (2019) Fungal transformation and reduction of phytotoxicity of grape pomace waste. Chemosphere 237. https://doi.org/10.1016/j.chemosphere.2019.124458

Troncozo MI, Figoli CB, Franco MEE, Mirífico MV, Bosch A, Rajchenberg M, Balatti PA, Saparrat MCN (2020) Biotransformation of grape pomace from Vitis labrusca by Peniophora albobadia LPSC # 285 (Basidiomycota). Anais Acad Brasil Ci 92(1): 1–16. https://doi.org/10.1590/0001-3765202020181174

Usmani Z, Kumar V, Rani R, Gupta P, Chandra A (2019) Changes in physico-chemical, microbiological and biochemical parameters during composting and vermicomposting of coal fly ash: A comparative study. Int J Environ Sci Technol 16: 4647–4664. https://doi.org/10.1007/s13762-018-1893-6

Zucconi F, Monaco A, Forte M, Bertoldi M (1985) Phytotoxins during the stabilization of organic matter. In Gasser JR K(Ed.) Composting of Agricultural and Other Wastes (pp. 73–86). London: Elsevier Applied Science Publishers