skip to main content
Menu
Original Article

Effects of bio-fertilizers on the seedling of rice (Oryza sativa L.) in in-vitro and in-vivo conditions under salt stress

Authors

Abstract

Purpose: Rice is the most important staple crop around the globe which has been prone to low productivity due to various abiotic factors. To address this challenge, we researched to describe the effect of biofertilizers on the morpho-physiology of rice seedlings in-vitro and in-vivo conditions under salt stress.

Method: The effects of biofertilizers on the growth characteristics of Rice were assessed in in-vitro and under salt stress in in-vivo on the open-pollinated, non-aromatic rice variety Pk-386. Different treatments of the individual biofertilizer and the biofertilizer combination were used to assess their effects on germination, plant length, fresh weight, dry weight, moisture percentage, vigor, and chlorophyll content of the leaves.

Results: In in-vitro, the best root length was obtained from Biozote + Trichoderma (BT) of (7.00) cm. A substantial increase in plant fresh weight was obtained from Reclaimer (R) with a weight of (47.33) milligrams. In in-vivo, the longest shoot length was observed in Reclaimer’s 0 mM (15.23), and the highest root length was obtained from the Reclaimer (R) 75 mM of (12.33). Vigor (2517.66) in Reclaimer’s 75 Mm. A fresh weight of (900.33) milligrams was obtained from Reclaimer’s 75 mM. The Reclaimer (R) 25 mM treatment with (78.80 %) moisture was found to have the highest moisture percentage.

Conclusion: Based on the findings of this study, biofertilizer, and biofertilizer mixture in in-vitro conditions have resulted in a considerable increase in rice seedling growth. In contrast, in-vivo conditions, Reclaimer treatment shows remarkable results.

Keywords

References

Ahmed B, Zaidi A, Khan M S, Rizvi A, Saif S, Shahid M (2017) Perspectives of plant growth promoting rhizobacteria in growth enhancement and sustainable production of tomato. In: Almas Z, Khan MS (eds) Microbial strategies for vegetable production, 1st edn. Springer Cham, Switzerland, pp. 125-149. https://doi.org/10.1007/978-3-319-54401-4_6

Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2): 173-181. https://doi.org/10.1016/j.micres.2006.04.001

Aloo BN, Mbega ER, Tumuhairwe JB, Makumba BA (2022) Microbial biostimulants for sustainable agriculture and environmental bioremediation (1st ed.). CRC Press. eBook ISBN9781003188032

Akbari P, Ghalavand A, Modarres Sanavy AM, Alikhani MA (2011) The effect of biofertilizers, nitrogen fertilizer and farmyard manure on grain yield and seed quality of sunflower (Helianthus annus L.). J Agric Sci Technol 7(1): 173- 184.

Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Mariziah M (2003) N2 fixation, nutrient accumulation and plant growth promotion by rhizobacteria in association with oil palm seeding. Pak J Biol Sci 6:1269-1272. https://doi.org/10.3923/pjbs.2003.1269.1272

Bai Y, Chang Y, Hussain M, Lu B, Zhang J, Song X, Lei X, Pei D (2020) Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms 8(5): 694. https://doi.org/10.3390/microorganisms8050694

Bangash N, Mahmood S, Akhtar S, Hayat MT, Gulzar S, Khalid A (2021) Formulation of biofertilizer for improving growth and yield of wheat in rain-dependent farming system. Environ Technol Innov 24:101806. https://doi.org/10.1016/j.eti.2021.101806

Chahal GK, Kaur A, Ghai N (2022) Mitigation of salt stress with Azospirillium and Azotobacter inoculation in maize (Zea mays L.). Cereal Res Commun 50(4): 915-927. https://doi.org/10.1007/s42976-022-00252-7

El-Shanshoury AR (1995) Interactions of Azotobacter chroococcum, Azospirillum brasilense and Streptomyces mutabilis, in relation to their effect on wheat development. J Agron Crop Sci 175(2): 119-127. https://doi.org/10.1111/j.1439-037x.1995.tb01137.x

Fukagawa NK, Ziska LH (2019) Rice: Importance for global nutrition. J Nutr Sci Vitaminol 65(Supplement): 2-3. https://doi.org/10.3177/jnsv.65.s2

Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research (2nd ed.). John Wiley & Sons. ISN: 36688

Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206: 131-140. https://doi.org/10.1016/ j.micres.2017.08.016

Hara S, Morikawa T, Wasai S, Kasahara Y, Koshiba T, Yamazaki K, Fujiwara T, Tokunaga T, Minamisawa K (2019) Identification of Nitrogen-fixing Bradyrhizobium associated with roots of field-grown Sorghum by metagenome and proteome analyses. Front Microbiol 12(10): 407. https://doi.org/10.3389/fmicb.2019.00407

Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: A review. Ann Microbiol 60(4): 579-598. https://doi.org/10.1007/s13213-010-0117-1

Ibarra-Galeana JA, Castro-Martínez C, Fierro-Coronado RA, Armenta-Bojórquez AD, Maldonado-Mendoza IE (2017) Characterization of phosphate-solubilizing bacteria exhibiting the potential for growth promotion and phosphorus nutrition improvement in maize (Zea mays L.) in calcareous soils of Sinaloa, Mexico. Ann Microbiol 67(12): 801-811. https://doi.org/10.1007/s13213-017-1308-9

Kahrl F, Li Y, Su Y, Tennigkeit T, Wilkes A, Xu J (2010) Greenhouse gas emissions from nitrogen fertilizer use in China Environ Sci Policy 13: 688–694. https://doi.org/10.1016/j.envsci.2010.07.006

Keshtal MM, Rizk TY, Abdou ET (2008) Sunflower response to mineral nitrogen, organic and bio-fertilizers under two different levels of salinity [Conference session]. Proc. 17th International Sunflower Conference, Córdoba, Spain.

Khodadadi R, Ghorbani nasrabadi R, Olamaee M, Naini SN (2020) Effect of Azotobacter and Azospirillum on growth and physiological characteristics of Barley (Hordeum vulgare) under salinity stress. Water Soil 34(3): 649-660. https://doi.org/10.22067/jsw.v34i3.81093

Khan MN, Shah H, Qurashi AH, Abbasi SS (2017) Biozote performance on Wheat in on-farm trials: Farmers’ Perceptions. Sci Technol Develop 36(3): 147-151. https://doi.org/10.3923/std.2017. 147.15

Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci 11:591911. https://doi.org/10.3389/fpls.2020.591911

Matsunami M, Toyofuku K, Kimura N, Ogawa A (2020) Osmotic stress leads to significant changes in rice root metabolic profiles between tolerant and sensitive genotypes. Plant J  9(11): 1503. https://doi.org/10.3390/ plants9111503

Mahrous N, Ragab A, Abotaleb H, Taha M, El-Metwally M (2014) Effect of inorganic, organic and biofertilizers on yield and yield components of sunflower under newly reclaimed soilsJ Plant Prod Sci 5(3): 427-441. https://doi.org/10.21608/jpp.2014.53660

Nugroho BD, Toriyama K, Kobayashi K, Arif C, Yokoyama S, Mizoguchi M (2018) Effect of intermittent irrigation following the system of rice intensification (SRI) on rice yield in a farmer’s Paddy fields in Indonesia. Paddy Water Environ 16(4): 715-723. https://doi.org/10.1007/s10333-018-0663-x

Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10: 01741https://doi.org/10.3389/fpls.2019.01741

Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J (2022) Bioprospecting plant growth promoting Rhizobacteria for enhancing the biological properties and phytochemical composition of medicinally important crops. Mol 27(4): 1407. https://doi.org/10.3390/molecules27041407

Sabir A, Yazici MA, Kara Z, Sahin F (2012) Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR). J Sci Food Agric 92(10): 2148-2153. https://doi.org/10.1002/jsfa.5600

Sayyed RZ, Arora NK, Reddy MS (2019) Plant growth promoting rhizobacteria for sustainable stress management: Volume 1: Rhizobacteria in abiotic stress management (1st ed., pp. 21-34). Springer Nature.

Sumbul A, Ansari RA, Rizvi R, Mahmood I (2020) Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi J Biol Sci 27(12): 3634-3640. https://doi.org/10.1016/j.sjbs.2020.08.004

Tiwari S, Yadav MC, Dikshit N, Yadav VK, Pani DR, Latha M (2020) Morphological characterization and genetic identity of crop wild relatives of rice (Oryza sativa L.) collected from different ecological niches of India. Gene Resour Crop Evol 67(8): 2037-2055. https://doi.org/10.1007/s10722-020-00958-9

Vassilev N, Vassilev M, Lopez A, Martos V, Reyes A, Maksimovic I, et al (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99: 4983–4996. https://doi.org/10.1007/s00253-015-6656-4, PMID

Vessey JK (2003) Root growth, mycorrhizal frequency and soil microorganisms in strawberry as affected by biopreparations. Plant Soil 255(2): 571-586. https://doi.org/10.1023/a:1026037216893

Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in IndiaSoil Biol Biochem 70: 33-37. https://doi.org/10.1016/j.soilbio.2013.12.001

Woo SL, Hermosa R, Lorito M, Monte E (2022) Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 21(5): 312-326. https://doi.org/10.1038/ s41579-022-00819-5

Yang X, Wang B, Chen L, Li P, Cao C (2019) The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep 9(1): 1-12 . https://doi.org/10.1038/s41598-019-40161-0

Yousefi S, Kartoolinejad D, Bahmani M, Naghdi R (2016) Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress. J Sustain 36(2): 107-120. https://doi.org/10.1080/10549811.2016.1256220

Zhang A, Liu D, Hua C, Yan A, Liu B, Wu M, Liu Y, Huang L, Ali I, Gan Y (2016) The arabidopsis gene zinc finger protein 3(ZFP3) is involved in salt stress and osmotic stress response. PLoS One 11(12): e0168367. https://doi.org/10.1371/journal.pone.0168367

Zaidi A, Khan MS (2018) Microbial strategies for vegetable production (1st ed.). (pp.99-123). Springer. ISBN: 978-3-319-54400-7.