skip to main content
Menu

Authors

Abstract

Purpose: Biochar is a carbon rich material that showed positive outcomes on plant growth and productivity enduring abiotic stresses. The objective of the present investigation is thus to determine the potential of biochar to mitigate the detrimental impacts of salinity in Lepidium sativum.

Method: Salinity stress was induced by NaC1 at different concentrations ranging from 0 to 5000 mg/L.  Biochar was applied in two concentrations: 0.5 and 1%.. For biochar preparation, dry rice straw was heated at 400 ºC at certain pyrolysis conditions.

Results: The study established that salt medium significantly reduced seed germination and amylase activity, with the highest decrease of 63 and 50.6%, respectively, at 5000 mg/L. The relative permeability of the cell membrane was associated with substantial increases in lipid peroxidation and hydrogen peroxide. The free radicle scavengers’ total phenolic, flavonoid, and proline levels were also induced. The use of prepared biochar at 0.5 and 1% reduced the damaging effects of salt stress by enhancing the activity of the α-amylase enzyme, resulting in a significant rise in germination (95% at 5000 mg/L by 0.5% of biochar). In contrast, the application of 0.5% biochar at 5000 mg/L significantly decreased MDA and hydrogen peroxide concentrations to 24.4 mg/g f wt and 1.39 mM/g d wt, respectively, compared to 48.21 and 1.77 in the control. Positive relationships between the multiple data revealed the largest augmentation of germination, dry weight, and antioxidant chemicals in stressed seedlings with 0.5% biochar. Biochar alleviated the hazardous effects of NaCl on L. sativum by decreasing free radicle formation and lipid peroxidation, thereby enhancing germination and early growth.

Conclusion: The positive impact of biochar on salt stressed seedlings may underline its potential to have opposing NaCl consequences on development and sustain growth.

Keywords

References

Abd El-Hameid AR, Sadak MS (2020) Impact of glutathione on enhancing sunflower growth and biochemical aspects and yield to alleviate salinity stress. Biocatalysis Agri Biotech 29: 101744. http://doi/org/10.1016/j.bcab.2020.101744

Adda A, Regagba Z, Latigui A, Merah O (2014) Effect of salt stress on α-amylase activity, sugars mobilization and osmotic potential of Phaseolus vulgaris L. seeds var.’Cocorose’and’Djadida’duri ng germination. J Biol Sci 14(5): 370-375. http://doi/org/10.3923/ jbs.2014.370.375

Adera F, Yusuf Z, Desta M (2022) Physicochemical properties and biological activities of garden cress (Lepidium sativum L.) seed and leaf oil extracts. Can J Infect Dis Med Microbiol 16:2947836. http://doi/org/10.1155/2022/2947836.

Ahmad P, Abass Ahanger M, Nasser Alyemeni M, Wijaya L, AlamP, Ashraf M (2018) Mitigation of sodium chloride toxicity inSolanum lycopersicum L. by supplementation of Jasmonic acid and Nitric oxide. J Plant Interact 13(1):64–72. http://doi/org/10.1080/17429145.2017.1420830

Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, TranL-SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant
Sci 7:347–347.
http://doi/org/10.3389/fpls.2016.00347

Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2019) Silicon (Si) supplementation alleviates NaCl toxicity in Mung bean (Vigna radiata (L.) Wilczek) through the
modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38(1):70–82.
https://doi.org/10.1007/s00344-018-9810-2

Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during Abiotic stress. Crit Rev Biotechnol 30(3):161-175. https://doi.Org/10.3109/07388550903524243

Akbari M,  Mahna N, Ramesh K,  Mazzuca S (2018) Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Protoplasma 255(5):1-14. https://doi.org/10.1007/s00709-018-1235-z

Akhtar SS, Andersen MN, Liu F (2015) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manag 158:  61-68. https://doi.org/10.1016/j.agwat.2015.04.010

Ashraf MY, Afaf R, Qureshi MS, Sarwar G, Naqwi MH (2002) Salinity induced changes in α-amylase and protease activities and associated metabolism in cotton varieties during germination and early seedling growth stages. Acta Physiol Plant 24:37. https://doi.org/10.1007/s11738-002-0019-3

Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 33:1–18. https://doi.org/10.1007/s11104-010-0464-5.

 Awan S,  Ippolito JA,   Ullman JL,  Ansari K,   Cui L,   Siyal AA (2021) Biochars reduce irrigation water sodium adsorption ratio. Biochar 3:77–87. https://doi.org/10.1007/s42773-020-00073-z  

Bakhoum GS, Sadak MS, Thabet MS (2023) Induction of tolerance in groundnut plants against drought stress and Cercospora leaf spot disease with exogenous application of Arginine and Sodium nitroprusside under field condition. J  Soil Sci Plant Nut. https://doi.org/10.21203/rs.3.rs-3074068/v1

Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil 39: 205–207. https://link.springer.com/article/10.1007/BF00018060

Beesley L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability, and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282e2287. https://doi.org/10.1016/j.envpol.2010.02.003

Birhanie ZM, Yang D, Luan M, Xiao A, Liu L, Zhang C, Biswas A, Dey S,  Deng (2022) Salt stress induces changes in physiological characteristics, bioactive constituents, and antioxidants in kenaf (Hibiscus cannabinus L. ) Antioxidants 11(10): 2005.  https://doi.org/10.3390/antiox11102005

Bose J, Shabala S, Rodrigo-Moreno A (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257. https://doi.org/10.1093/jxb/ert430

Chaganti VN, Crohn DM (2015) Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline-sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 259-260: 45-55. https://doi.org/10.1016/j.geoderma.2015.05.005

Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic (Amsterdam) 86(3): 247-260. https://doi.org/10.1016/S0304-4238(00)00151-5

 Chen S,  Tsang D, He M,  Yuqing S,  Lau LS Y,  Leung R WM, Lau ESC,  Hou D,  Liu A, Mohanty S (2020) Designing sustainable drainage systems in subtropical cities: challenges and opportunities. J Clean Prod 280: 124418.

Chen X, Yang S, Ding J,  Jiang Z, Sun X (2021)Effects of biochar addition on rice growth and yield under water-saving irrigation. Water 13: 209. https://doi.org/10.3390/w13020209

Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013). Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. J Exp Bot 64: 1953-1966. https://doi.org/10.1093/jxb/ert055

Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavengingactivity of the major polyphenols in fresh plums. J Agric FoodChem 51(27):8067-8072. https://doi.org/10.1021/jf034740d

Ciriello M, Formisano L, El-Nakhel C, Kyriacou MC, Soteriou GA, Pizzolongo F (2021) Genotype and successive harvests interaction affects phenolic acids and aroma profile of genovese basil for pesto sauce production. Foods 10:278. https://doi.org/10.3390/foods10020278.

Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. J Integr Biol (15)11. https://doi.org/10.1089/omi.2011.0082

 Dawood MG, El-Awadi ME, Abdel-Baky YR, Sadak MS (2017) Physiological role of ascobin on quality and productivity of sunflower plants irrigated with sodium chloride solution. Agri Eng Inter  16:26.

 Ding Y,  Liu Y, Liu S,  Li Z, Tan X,  Huang X, Zeng G, Zhou L,  Zheng B (2016) Biochar to improve  to improve soil fertility. A review.  Agron Sustain Develop 36(36). https://doi.org/10.1007/s13593-016-0372-z

El- Bassiouny HMS, Abdallah MMS, El-Enany MAM and Sadak MS (2020) Nano-zinc oxide and Arbuscular mycorrhiza effects on physiological and biochemical aspects of wheat cultivars under saline conditions. Pak J Biol Sci  23: 478-490. https://doi.org/10.3923/pjbs.2020.478.490

El-Bially MA, Saudy HS, El-Metwally IM, Shahin MG (2022) Sunflower response to application of L-ascorbate under thermal stress associated with different sowing dates. Gesunde P flanz 74:87 96. https://doi.org/10.1007/s10343-021-00590-2

Elshaikh NA, She D (2018) Decreasing the salt leaching fraction and enhancing water-use efciency for okra using biochar amendments. Commun Soil Sci Plant Anal 49:225–236. https://doi.org/10.1080/00103624.2017.1421657

Foronda DA (2022) Reclamation of a saline-sodic soil with organic amendments and leaching. Environ Sci Proc 16: 56. https://doi.org/10.3390/environsciproc2022016056

Ghafar MA, Akram NA, Saleem MH, Wang J, Wijaya L, Alyemeni MN (2021) Ecotypic morphological and physio-biochemical responses of two differentially adapted forage grasses, Cenchrus ciliaris l. and Cyperus arenarius retz. to drought stress. Sustain 13 (14): 8069. https://doi.org/10.3390/su13148069

Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol Fertil Soils 35:219-230. https://doi.org/ 10.1007/s00374-002-0466-4

Goharrizi jK, Riahi-Madvar A, Rezaee F, Pakzad R, Bonyad FJ Ahsaei MG (2020) Effect of salinity stress on enzymes’ activity, ions concentration, oxidative stress parameters, biochemical traits, content of sulforaphane, and CYP79F1 gene expression level in Lepidium draba Plant. J Plant Growth Regul 39: 1075-1094. https://doi.org/10.1007/s00344-019-10047-6

Gonzalez JA, Gallardo M, Hila LM, Rosa M, Prado FE (2009) Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: Dry matter partitioning. Bot Stud 50:35-42.

 Guo J, Shi G, Guo X, Zhang L, Xu W, Wang Y, Su Z, Hua J (2015) Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress. Plant Sci 238: 33-45. https://doi.org/10.1016/j.plantsci.2015.05.013

Hafez Y, Attia K, Alamery S, Ghazy A, Al-Doss A, Ibrahim E, Rashwan E, El-Maghraby L, Awad A, Abdelaal K. (2020) Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy 10(5): 630. https://doi.org/10.3390/agronomy10050630

Hamed KB, Castagna A, Salem E, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: A comparison of leaf and root antioxidant responses. Plant
Growth Regul 53(3):185-194
. https://doi.org/10.1007/s1072 5-007-9217-8

Hammer EC, Forstreuter M, Rillig MC, Kohler J (2015) Biochar increases Arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl Soil Ecol 96: 114-121. https://doi.org/10.1016/j.apsoil.2015.07.014

Hannachi S, Steppe K, Eloudi M, Mechi L, Bahrini I, Van Labeke MC (2022) Salt stress induced changes in photosynthesis and metabolic profiles of one tolerant (‘Bonica’) and one sensitive (‘Black Beauty’) eggplant cultivars (Solanum melongena L.). Plants 11(5):590. https://doi.org/10.3390/plants11050590

He M, Xu Z, Hou D, Gao B, Cao X, Ok YS , Rinklebe J, Bolan NS, Tsang DCW (2022) Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment. https://doi.org//10.1038/s43017-022-00306-8

Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125 (1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

Hou J, Zhang J, Liu X, Ma Y, Wei Z, Wan H, Liu F (2023) Effect of biochar addition and reduced irrigation regimes on growth, physiology and water use efficiency of cotton plants under salt stress. Industrial Crops Products198. https://doi.org/10.1016/j.indcrop.2023.116702

Hussain S, Jun-hua Z, Chu Z, Lian-feng Z, Xiao-Chuang C, Sheng-miao Y, James AB Ji-jie H, Qian-yu J (2017) Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. J Integr Agric 16 (11): 2357-2374. https://doi.org/10.1016/S2095-3119(16)61608-8

Jacobs M, Angenon G, Hermans C, Thu TT, Roosens NH (2003) Proline accumulation and Δ 1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Science 165(5): 1059-1068. https://doi.org/10.1016/S0168-9452(03)00301-7

Ji X, Tang J, Zhang J (2022) Effects of salt stress on the morphology growth physiological parameters of Juglans microcarpa L. Seedling. Plants 11: 2381. https://doi.org/10.3390/plants11182381

Kammann CI, Linsel S, Go¨ßling JW, Koyro HW (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 345:195-210. https://doi.org/10.1007/s11104-011-0771-5

Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KHM, Ahmad P (2018) 28-homobrassinolide regulates antioxidantenzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8(1): 8735. https://doi.org/10.1038/s41598-018-27032-w

Kazemi R, Ronaghi A, Yasrebi J, Ghasemi-Fasaei R, Zarei M (2019) Effect of shrimp waste-derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress. J Soil Sci Plant Nutr 19 (4): 758-770. https://doi.org/10.1007/s42729-019-00075-2

Khanam MM, Nawal N, Hasanuzzaman M, Karim MF, Rahman A (2022) Response of biochar on growth and yield of aman rice under salt stress. Bangladesh Agron J 25(1): 105-113.  https://doi.org/10.3329/baj.v25i1.62853

Kordrostami M, Rabiei B, Hassani Kumleh H (2017) Biochemical physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23(3):529-544. https://doi.org/10.1007/s12298-017-0440-0

 Kulkarni MG, Street RA, Van Staden J (2007) Germination and seedling growth requirements for propagation of  Dioscorea dregeana (Kunth) Dur. and Schinz — A tuberous medicinal plant. South Afri J Bot 73(1): 131-137. https://doi.org/10.1016/j.sajb.2006.09.002

Laird  D,  Fleming P Wang B,  Horton R,   Karlen D (2010)  Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderm 158 (3–4): 436-442. https://doi.org/10.1016/j.geoderma.2010.05.012

Lashari MS, Liu Y, Li L, Pan W, Fu J, Pan G, Zheng J, Zheng J, Zhang X, Yu X (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Res 144:113-118. https://doi.org/10.1016/j.fcr.2012.11.015

Lashari MS, Ye Y, Ji H,  Li L,  Kibue GW, Lu H, Zheng J, Pan G (2015) Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment. J Sci Food Agric 95: 1321-1327. https://doi.org/10.1002/jsfa.6825

Li J, Zhao C, Zhang M, Yuan F, Chen M (2019) Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Sig  Behav 14(11): 1659705. https://doi.org/10.10 80/155 92324.2019.1659705.

Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem 135(3):1065-1070. https://doi.org/10.1016/j.foodchem.2012.05.068

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265-75. https://pubmed.ncbi.nlm.nih.gov/14907713/

Majidi AH (2022) Effect of different biochar concentration on the growth of three agricultural plants in afghanistan. J Wastes Biomass Manag 4(1): 01-07. https://doi.org/ 10.26480/jwbm.01.2022.01.07

Makhlouf BSI, Khalil SRA, Saudy HS (2022) Efficacy of humic acidsand chitosan for enhancing yield and sugar quality of sugar beet under moderate and severe drought. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-022-00762-7

Mali RG, Mahajan SG, Mehta AA (2007) Lepidium sativum (Garden cress): A review of contemporary literature and medicinal Properties. Orient Pharm Exp Med 7: 331-335. https://doi.org/10.3742/OPEM.2007.7.4.331.

Masto RE, Ansari MA, George J, Selvi V, Ram L (2013) Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecol Eng 58:314–322. https://doi.org/doi:10.1016/j.ecoleng.2013.07.011

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428. https://doi.org/10.1021/ac60147a030

Monteiro MS, Santos C, Soares A, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72: 811-818. https://doi.org/10.1016/j.ecoenv.2008.08.002

Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS- scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Bot 99(6): 1161-1173. https://doi.org/10.1093/aob/mcm052

Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Oliveira-Neto, Damasceno AT, de Assis F, Campos P, Gomes-Filho E, Enéas-Filho J, Prisco JT. (1998) Effect of NaCl-salinity on the expression of a cotyledonary α-amylase from Vigna unguiculata. Revista Brasileira de Fisiologia Vegetal 10(2): 97-100.

Perveen R, Wang X, Jamil Y, Ali Q, Ali S, Zakaria M. Q (2021) Quantitative determination of the effects of he-Ne laser irradiation on seed thermodynamics, germination attributes and metabolites of safflower (Carthamus tinctorius l.) in relation with the activities of germination enzymes.
Agron 11 (7): 1411. https://doi.org/10.3390/agronomy11071411

Plaut Z (2006) Nitrate reductase activity of wheat seedlings during exposure to and recovery from water stress and salinity. Physiol Plantar 30(3): 212-217. https://doi.org/10.1111/j.1399-3054.1974.tb03646.x

Quamruzzaman M, Manik SMN, Shabala S, Zhou M (2021) Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules 11:788. https://doi.org/10.3390/biom11060788

Ragaey MM, Sadak MS, Dawood MFA, Mousa NHS, Hanafy RS, Latef AAHA (2022) Role of signaling molecules sodium nitroprusside and arginine in alleviating salt-induced oxidative stress in wheat. Plants 11:1786. https://doi.org/10.3390/plants11141786

Rahman A, Hossain MS, Mahmud JA, Nahar K, Hasanuzzaman M, Fujita M (2016) Manganese induced salt stress tolerance in rice seedlings: Regulation of ion homeostasis, antioxidant defense And glyoxalase systems. Physiol Mol Biol Plants 22(3): 291-306. https://doi.org/10.1007/s12298-016-0371-1

Ramadan MF, Oraby HF (2020) Lepidium sativum seeds: Therapeutic significance and health-promoting potentialin book: NUTS and seeds in health and disease prevention publisher: Academic Press-Elsevier. https://doi.org/10.1016/B978-0-12-818553-7.00020-6

Ren F, Yang G, Li W, He X, Gao Y, Tian L, Li, F, Wang Z, Liu S (2021) Yield-compatible salinity level for growing cotton (Gossypium hirsutum L.) under mulched drip irrigation using saline water. Agric Water Manag 250. https://doi.org/10.1016/j.agwat.2021.106859

 Rezaie N, Razzaghi F, Sepashkhah AR (2019) Diferent levels of irrigation water salinity and biochar infuence on faba bean yield, water productivity, and ions uptake. Commun Soil Sci Plant Anal 50:611–626.  https://doi.org/10.1080/00103624.2019.1574809

Rosales E, Meijid J, Pazos M, Sanroman MA (2017) challenges and recent advances in biochar as low cost biosobent: From batch assays to continuous flow systems. Bioresour Technol 246: 176-192. https://doi.org/10.1016/j.biortech.2017.06.084

Sadak MS (2016) Mitigation of salinity adverse effects on wheat by grain priming with melatonin. Int J Chem  9(2):85-97.

Sadak MS (2023) Physiological role of Arbuscular Mycorrhizae and vitamin B1 on productivity and    physio-biochemical traits of White Lupine (Lupinus termis L.) under salt stress. Gesunde Pflanzen 75: 1885-1896.  https://doi.org/10.1007/s10343-023-00855-y

Sadak MS, Dawood MG (2023) Biofertilizer role in alleviating the deleterious effects of salinity on wheat growth and productivity. Gesunde Pflanzen 75(2). https://doi.org/10.1007/s10343-022-00783-3.

Sadak MS, Hanafy  RS, Elkady  FMAM, Mogazy AM, Abdelhamid MT (2023) Exogenous Calcium reinforces photosynthetic pigment content and osmolyte, enzymatic, and non-enzymatic antioxidants abundance and alleviates salt stress in bread wheat. Plants 12:1532. https://doi.org/10.3390/plants12071532

Sadak MS,  Marwa MR, Ahmed M (2016) Physiological role of cyanobacteria and glycinebetaine on wheat plant grown under salinity stress. Int J Pharm 9 (7): 78-92.

Sadak MS, Sekara A, Al-ashkar I, Habib-ur-Rahman M, Skalicky M, Brestic M, Kumar A, Sabagh AE,  Abdelhamid MT (2022) Exogenous aspartic acid alleviates salt stress induced decline in growth by enhancing antioxidants and compatible solutes while reducing reactive oxygen species in wheat. Front  Plant Sci 13:987641. https://doi.org/10.3389/fpls.2022.987641.

Saifullah, Dahlawi S, Naeem A, Rengel Z, Naidu, R (2018) Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci Total Environ 625: 320–335. https://doi.org/10.1016/j.scitotenv.2017.12.257

Sarkar A, Pramanik K, Mitra S, Soren T, Maiti TK (2018) Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol  23: 434-442. https://doi.org/10.1016/j.jplph.2018.10.010

Semida WM, Abd El-Mageed TA, Gyushi  MAH, Abd El-Mageed SA, Rady MM, Abdelkhalik A, Merah O, Sabagh AE, El-Metwally IM, Sadak MS  et al. (2023) Exogenous selenium improves physio-biochemical and performance of drought-stressed Phaseolus vulgaris seeded in saline soil. Soil Syst.7: 67. https://doi.org/10.3390/soilsystems7030067

Shaheen SM, Niazi NK, Hassan N,  Bibi I, Wang H,  Tsang D,  Ok YS, Bolan N, Rinklebe J (2019) Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev 64: 216–247. https://doi.org/10.1080/09506608.2018.1473096

 Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24: 2452. https://doi.org/10.3390/molecules24132452

Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, ThukralAK, Bhardwaj R, Alam P, Ahmad P (2016) Pre-sowing seed       treatment with 24-epibrassinolide ameliorates pesticide stress
in Brassica juncea L through the modulation of stress markers.
Front Plant Sci 7:1569. https://doi.org/10.3389/fpls.2016.01569.

 Sharma S, Agarwal N (2011) Nourishing and healing prowess of garden cress (Lepidium sativum Linn) a review. IJNPR 2: 292-297.

Sikder S, Joardar JC (2019) Biochar production from poultry litter as management approach and effects on plant growth. Int Recycl Org Waste Agricul 8 (1): 47-58. . https://doi.org/10.1007/s40093-018-0227-5

Silambarasan N, Natarajan S (2014) Biochemical responses of Sankankuppi (Clerodendron inerme L.) to salinity stress. African J Agricul Resear 9 (15): 1151-1160. https://doi.org/10.5897/AJAR2013.7629

Slama S, Bouchereau A, Flowers T, Abdelly C, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stressAnn Bot 115: 433-447. https://doi.org/doi: 10.1093/aob/mcu239.

Sofy M, Mohamed H, Dawood M, Abu-Elsaoud A, Soliman M (2021) Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Arch Agron Soil Sci 21:1–22. https://doi.org/10.1080/03650340.2021.1949709

Szabados L, Savouré A (2010) Proline: A multifunctional amino acidTrends Plant Sci 15: 89- 97. https://doi.org/10.1016/J.TPLANTS.2009.11.009

Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manag 129:62-68. https://doi.org/10.1016/j.jenvman.2013.05.057

Umbreit WW (1959) BURRIS, RH, and STAUFFER, JF, Manometric Techniques. Minnieap. Burgess Publ. Co . Minneapolis, p. 46.

Vattem DA, Lin YT, Labbe RG, Shetty K (2004) Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens. Innov Food Sci Emerg Technol 5(1): 81-91. https://doi.org/10.1016/j.ifset.2003.09.002

Wang H,  Xiao K,  Yang J,  Yu Z,  Yu  W,  Xu Q,  Wu Q,  Liang S,  Hu  J,  Hou H ,  Liu  B (2020)  Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: A potential phosphorus fertilizer. Water Res174:115629. https://doi.org/10.1016/j.watres.2020.115629

Wang Y, Li X, Li J, Bao Q, Zhang F, Tulaxi G, Wang Z (2016) Salt induced hydrogen peroxide is involved in modulation of antioxidant enzymes in cotton. Crop J 4(6):490-498. https://doi.org/10.1016/j.cj.2016.03.005

Wu X, Wang D, Riaz M, Zhang L, Jiang C (2019) Investigating the effect of biochar on the potential of increasing cotton yield, potassium efficiency and soil environment. Ecotoxicol Environ Saf 182. Article 109451. https://doi.org/10.1016/j.ecoenv.2019.109451

Wu Y, Wang X, Zhang L,  Zheng Y, Liu X, Zhang Y (2023) The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Front Plant Sci 14. https://doi.org/10.3389/fpls.2023.1163451

Yang A, Akhtar SS, Li L, Fu Q, Li Q, Naeem MA, He X, Zhang Z, Sven-Erik Jacobsen S (2020) Biochar mitigates combined effects of drought and salinity stress in quinoa. Agron 10: 912. https://doi.org/10.3390/agronomy10060912

Yang Q,  Zhou H, Bartocci P,  Fantozzi F, Mašek O,. Agblevor FA, Wei Z,  Yang H, Chen H, Lu X, Chen G, Zheng C, Nielsen CP,  McElroy MB (2021) Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat Commun 12: 1698. | https://doi.org/10.1038/s41467-021-21868-z

Yang Z, Vancov T, Penuelas J, Sardans J, Singla A, Alrefaei AF, Song X, Fang Y, Wang W (2021) Optimal biochar application rates for mitigating global warming and increasing rice yield in a subtropical paddy field. Exp Agric 57: 283-299. https://doi.org/10.1038/s41598-024-59352-5

Yoder J, Galinato S, Granatstein D, Garcia-Perez M (2011) Economic tradeoff between biochar and bio oil production via pyrolysis. Biomass Bioenergy 35(5): 1851-1862. https://doi.org/10.1016/j.biombioe.2011.01.026

Yoshiba Y, Kiyouse T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiology 38: 1095-1102. https://doi.org/10.1093/oxfordjournals.pcp.a029093

Younis     U, Malik SA, Rizwan M, Qayyum MF, Ok YS, Shah MHR, Rehman RA, Ahmad N (2016) Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ Sci Poll Res 23(21): 21385–21394. https://doi.org/10.1007/s11356-016-7344-3

Yu SM, Lo SF, Ho THD (2015) Source sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20 (12): 844-857. https://doi.org/10.1016/j.tplants.2015.10.009

Zhang, J, Bai Z, Huang J, Hussain S, Zhao F, Zhu C, Zhu L, Cao X, Jin Q (2019) Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Tillage Res 195: 104372. https://doi.org/10.1016/j.still.2019.104372

Zheng JL, Zhao LY, Shen B, Jiang LH, Zhu AY (2016) Effects of salinity on activity and expression of enzymes involved in ionic, osmotic, and antioxidant responses in Eurya emarginata. Acta Physiol Plantarum 38(3): 1-9.  https://doi.org/10.1007/s11738-015-2040-3

Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559. https://doi.
org/10.1016/S0308-8146(98)00102-2