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Abstract
The next generation of photonics and nano-optical devices may be based on two-dimensional(2D) transition 
metal dichalcogenides (TMDs). In this research, molybdenum diselenide () nanosheets, as one important 
member of TMDs, have been synthesized by the solvothermal method and characterized through XRD 
patterns, SEM, and TEM images. Nanosheets were found to have a hexagonal phase based on XRD patterns 
and the crystallinity percentage is 24.8 %.  The lattice constants of the hexagonal phase of  are calculated as 
a= 3.08 ºA, c= 13.72 ºA. The calculated average value of the crystallite size, dislocation density, and micro 
strain are 21.935 nm, 2.138   nm-2 and 9.070, respectively. A few layers of nanosheets without wrinkles were 
observed on TEM and SEM. Next, the synthesized nanosheets were employed to prepare thin films with 
three different thicknesses using the spin coating method.  By employing a continuous wave (CW) Nd : YAG 
laser at 532 nm via a Z-scan approach, this study investigates how thin film thickness affects the thermal 
nonlinear optical (NLO) responses of  nanosheets. The magnitude of NLO coefficients of the prepared thin 
films decreased with increasing film thickness. It is observed that the prepared thin films possess saturable 
absorption (SA) as well as the self-focusing effect. Saturable absorbers and mode-locking devices can be 
developed with  thin films because of their improved NLO properties. 
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INTRODUCTION
The prepared thin films of semiconductor 

materials are having possible use in computers, 
drugs and dye-sensitized solar cell devices. The 
recent innovations in field of thin film technology 
have been attracted to many researchers and 
industries and makes it major field of research 
and development recently [1]. Due to the fact that 
transition metal dichalcogenides (TMDs) exhibit a 
thickness dependence optical property, they have 
gained considerable attention as two-dimensional 
(2D) semiconductors. As materials change from 
bulk to single layer, TMDs transition from indirect 
bandgaps to direct bandgaps, allowing bandgap 
engineering. High carrier mobility and outstanding 
nonlinear optical (NLO) absorption are two of the 

benefits of this novel feature [2].
It has been experimentally demonstrated that 

molybdenum diselenide (MoSe2), as one of the 
most important TMDs, exhibits promising NLO 
properties over a wide range of spectral ranges, 
including giant two-photon absorption, saturable 
absorption, strong nonlinear self-focusing, and 
nonlinear intensity dependent absorption and 
scattering, leading to optical limiting [3, 4]. In 
addition, MoSe2 was reported to have stronger 
saturable absorption (SA) than graphene at the 
wavelength of 800 nm with an imaginary part of 
third-order NLO susceptibility of −1.56 × 10−14 esu 
[5]. In Ref. [6], the main study is to investigate the 
optical properties of purchased MoSe2 nanosheets, 
which had SA and self-focusing phenomena. The 
nonlinear refractive indices were in the range 
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of 10-7 cm2/W 
and the nonlinear absorption 

coefficients were in order of 10-3

 
cm/W.

In photonic and optoelectronic devices, NLO 
property plays an important role in improving their 
performance via the interaction between light and 
matter [7]. A variety of experiments are conducted 
to estimate NLO properties, including nonlinear 
interferometry, degenerate four wave mixing, 
nearly degenerate three wave mixing, beam 
distortion measurement, and moiré reflectometry 
[8]. Despite its simplicity and sensitivity, the Z-scan 
is an excellent method to calculate nonlinear 
coefficients both in magnitude and sign [9].

In many works, NLO properties have been 
investigated, but as far as we know, in majority of 
these works, the experiment was done with the 
help of different pulsed lasers [10-18]. Indeed, The 
NLO properties have been demonstrated to be 
dependent on the laser type (pulsed or CW), pulse 
width, and repetition rate [19, 20]. In addition, 
there is some considerable work is reported on 
the various properties of MoSe2  thin films [21-
24]. However, despite the interest aroused by NLO 
properties, a systematic study of the thickness 
dependent NLO and Z-scan studies on these films 
by a CW laser is lacking.

Given this, in present work, we have fabricated 
the thin films of MoSe2  of different thicknesses 
by spin coating technique and aim to investigate 
NLO responses of MoSe2 thin films with various 
thicknesses using the Z-scan technique in CW 
regime.

MATERIALS AND METHODS
Synthesis of MoSe2 nanosheets 

High purity Se powder and Sodium molybdate 

Na2MoO4.H2O and Ammonium para molybdate 
(NH4)2.MoO4.2H2O) were used for the synthesis of 
MoSe2  by Solvothermal chemical root method. All 
chemicals and solvents used for synthesis of MoSe2 
nanosheets were purchased from commercial 
suppliers (Aldrich or Merck) and used as received. 
In a typical procedure, 0.479 g of Na2MoO4.H2O 
and 0.316 g of Se powder was employed for 
molybdenum source for preparing samples. First, 
precursor materials were added to 10 ml Hydrazine 
monohydrate and 60 ml deionized water, which 
was stirred magnetically until a red color was 
obtained. Next, by adding 1M sodium hydroxide 
solution, the pH of the solution is adjusted to pH 
12. A Teflon-lined autoclave (110 mL) is used to 
sterilize the solution after stirring for 30 minutes. 
We sealed and maintained the autoclave at 200°C 
for 48 hours before allowing it to naturally cool to 
room temperature. We collected a black product 
through centrifugation, washed several times with 
deionized water and absolute ethanol, and finally 
vacuum-dried for 12 hours, resulting in a black 
powder [25, 26]. Schematic of structure of MoSe2 
monolayer illustrate in Fig. 1.

Preparation of MoSe2 Thin Films
Before the coating process, the glass substrates 

were cleaned with soap water, methanol then 
dried carefully to remove impurities present on 
the substrates [23, 27]. The MoSe2  thin film was 
deposited on the Si/SiO2 substrate was achieved 
by spin-coating as the following procedure. First, 
we prepare the solution of dispersed nanosheets 
in DMF. As shown in Fig. 2, 5000 rpm spin coating 
and 100 °C annealing were used to deposit the 
solution. Then, under heating inside a vacuum 

 

 

 

 

 

 

 

 

Fig. 1. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2

  

Fig. 1.  Schematic of structure of  monolayer (a) top view and, (b) side view.
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oven at 70 °C (10 h), MoSe2 was formed as can be 
observed by changing the color of the thin film 
[22]. Finally, the coated substrate was placed at 
the center of a tube furnace (Fig. 2) at ambient 
atmosphere [23]. 

The obtained thin film with one spin coating 
has the smallest thickness, which will be denoted 
by S1. To have higher thicknesses, we repeat the 
number of spin coating. By repeating the spin 
coating for the second time, we will have sample 
S2, and by repeating the spin coating for the third 
time, sample S3 will be obtained. So, we have 
three samples with different thicknesses, which 
we name as S1, S2, and S3.

Z-scan theory
To measure the NLO coefficients including 

refractive and absorption indices of the prepared 
thin films, the Z-scan method was employed. The 
experimental setup is schematically depicted in 
Fig. 3. There was a CW neodymium-doped yttrium 
aluminum garnet (Nd : YAG) laser at 532 nm used 
as the light source. The laser beam was focused 

through the plano-convex lens to obtain the beam 
waist (ω0) of around 42 μm at the position of z = 
0. The power of laser was 50 mW for all samples. 
During the axial movement of the prepared 
sample, using a digital power meter with a closed 
aperture, the far field transmittance intensity 
varied [28]. Thus, it is possible to determine the 
nonlinear refractive coefficient of a material using 
the far field energy density of a beam [29].

A NLO property of materials is saturable 
absorption (SA) under high intensity light, such 
as a laser beam. In the NLO material, incident 
photons absorb electrons in the valence band 
and are excited into the conduction band when 
they interact with the material. As shown in 
Fig. 4a [4], at low incident intensity most of the 
photons are absorbed and this therefore results 
in low transmission. In contrast, for relatively high 
incident laser beam intensities, a large number of 
electrons is excited to fill the conduction band of 
a SA sample whose cross-section of the ground 
state is smaller than that of excited states, and 
the conduction band cannot accept any more 

 

Fig. 2. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2

  

Fig. 2. Procedure of spin coating for preparing  thin film.
 

 

 
Fig. 3.

Fig. 3. The schematic Z-scan experiment setup.
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incoming electrons. Consequently, most of the 
incident photons are not absorbed and transverse 
the material, that is, high transmission, as seen in 
Fig. 4b [4].

Hence, the SA behavior of materials can be 
studied by Z-scan or I-scan techniques via the 
measurement of the transmitted light as a function 
of the incident light [4]. 

It is noteworthy, however, that one of the main 
self-action effects in laser-material interactions is 
self-focusing. The laser beams are able to modify 
their front medium by using nonlinear responses 
of material in this way, allowing them to propagate 
more suitable. Here, one can express the refractive 
index of the material as n=n + n2I(r) in which n0 
refers to linear refraction, n2 denotes nonlinear 
refraction index, and I(r) determine the beam 
intensity distribution along the radial coordinater 

[30]. Therefore, the wave front of the beam 
becomes increasingly distorted as it propagates 
through the medium, as shown in Fig. 5a [31]. It 
appears that the beam is focused on its own since 
the optical rays always propagate perpendicular to 
the wave front. For NLO materials with n2<0 the 
wave front bends in the material as the central 
part propagates faster than the edges Fig. 5b, and 
the beam appears to suffer defocusing [31].

RESULTS AND DISCUSSIONS
Characterization of MoSe2nanosheets

Analyses of the MoSe2 nanosheet structure 
were carried out by SEM, TEM images, and XRD 
pattern. Fig. 6a illustrates the SEM image and Fig. 
6b depicts the TEM image of MoSe2 nanosheet. 
SEM and TEM studies of MoSe2 revealed few layers 
and no wrinkles [6] in the prepared nanosheets.

Fig. 4.Fig. 4. The principle of SA due to the Pauli-blocking. (a) A low-intensity incident laser beam passes through a NLO material with a 
low transmission, (b) while the high intensity one results in high transmission.

 

Fig. 5.
  

Fig. 5. (a) Self-focusing and, (b) self-defocusing of a Gaussian beam.
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The diffraction peaks of typical XRD patterns 
for MoSe2 nanosheets in Fig. 7 can be indexed to 
hexagonal phase. The Scherer formula is used to 
estimate the crystal size, and it is given as below 
[32]:

                                                          
(1)

Where k is approximately equal to 0.94, λ is the 
wavelength of X-ray (1.5406 Å), β is the width of 
the peak at half maximum intensity and θ is the 

diffraction angle. 

                                                   
(2)

The dislocation parameter is a crystallographic 
defect, presents an irregularity within a crystal 
structure. The presence of dislocations (δ) strongly 
influences many of the properties of materials. We 
can calculate the dislocation density of our MoSe2 
sample by the relation below [33]:

                                                                  
(3)

 

 
Fig. 6 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2

Fig. 6. a) SEM and, b) TEM analysis of the synthesized  nanosheets.
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Fig. 7. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2
 

  

Fig. 7. XRD pattern of the synthesized  nanosheets.
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Where, the D is the crystallite size of our 
material. Furthermore, the micro strain ε in the 
MoSe2 was determined using the relation [34]:

                                                     
(4)

The structural parameters of MoSe2 nanosheets 
are given in Table 1.  The calculated average value 
of the crystallite size, dislocation density, and 
micro strain are 21.935 nm; 2.138 ×10-3 nm-2 and 
9.070 ×10-3.

To determine the lattice parameter of 
hexagonal phase of MoSe2 nanosheets, we can use 
the following equation:

                     
(5)

The obtained lattice parameters are reported 
in Table 2. Our calculated values are in very good 
approximation to standard values. 

Moreover, an XRD deconvolution method can 
be used to determine crystallinity percentages 
by separating amorphous and crystalline 
contributions.  The crystallinity can be calculated 
by dividing the integrated area under all XRD peaks 
by the integrated area of all crystalline peaks as 
below equation [35]:

Crystallinity index=

   
(6)

Crystallinity of the synthesized MoSe2 
nanosheets is 24.8 %.

Saturable absorption process of the prepared 
MoSe2 thin film

Saturable absorption is a phenomenon 
caused by the Pauli-blocking effect, where a 
transition state is fully occupied and can no longer 
accept incoming electrons [4]. The nonlinear 
absorption index of prepared MoSe2 thin film 
can be calculated by employing open aperture 
Z-scan. The normalized transmittance T(Z) was 
plotted as a function of position (Z) for three 
different thicknesses are depicted in Fig. 8. As 
can be seen the transmission raises as regards 
position and shows a maximum at focus, which 
indicates the outstanding saturation absorption 
(SA) phenomenon and positive sign of nonlinear 
absorption index. The SA effect is originated in 
the sample due to the dominance of ground state 
linear absorption over the excited state absorption 
[27]. By fitting the experimental open aperture 
data with the below theoretical equation as shown 
in Fig. 8a, the nonlinear absorption index can be 
obtained using the following equation [36, 37]:

           
(7)

Herein, T(z) refers to the normalized 
transmittance, β denotes the nonlinear absorption 
coefficient, , Leff=(1 - e -𝛼l)/𝛼 is the effective 
thickness of the prepared thin films, a refers to 
the linear absorption index at low intensity, L is 

the thickness of the prepared thin films, I0=2P0 /
πω0

2
 denotes the incident intensity at focal point  

calculated to be 1805.39 W/cm2, z0=kω0
2/2  

is 

 

 

Table 2. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2  

 

  

Table 2. The lattice parameter of hexagonal phase of  nanosheets.

Table 1. The structural parameters of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 nanosheets. 
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Table 1. The structural parameters of nanosheets.
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the Rayleigh length obtained about 10.42 mm and 
z is the position of the prepared thin films. Fig. 8b 
illustrates the experimental data with taking into 
account the error bar by repeating the performing 
of the experiment for five times.

Self-focusing analysis the prepared MoSe2 thin film
Self-focusing is a NLO process induced by the 

change in refractive index of materials exposed 
to intense electromagnetic radiation. The closed-
aperture transmittance curves of different 
thickness of the prepared MoSe2 thin film shown in 
Fig. 9, which exhibits positive nonlinear refractive 
coefficient and the self-focusing behavior of the 
prepared thin films. The symmetrical nature of the 
curve was caused by thermally induced nonlinear 
refractive processes due to employing a CW laser 

in experimental setup as a light source. Fig. 9a 
illustrates the experimental data of pure closed-
aperture by fitting with theory. Fig. 9b depicts that 
with taking into account the error bar by repeating 
the performing of the experiment for five times.

Due to these thermal effects, the sample 
behaves as an optical lens (self-focusing effect), 
leading to an overestimation of nonlinear 
parameters obtained by the Z-scan method [31]. 
The nonlinear refractive index is obtained by the 
following equation [7]:

                    
(8)

Herein, S denotes the linear transmittance 
of the aperture found to be 0.36 and ƛ refers to 
the wavelength of laser light [38]. The values of 

 

 
Fig.8. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2  

Fig. 8. Open aperture curves of different thicknesses of the prepared  thin film by a) fitting the experimental data with the theory 
and, b) taking into account the error bar.

 
Fig.9. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2

 

 

 

Fig. 9. Pure closed-aperture curves of different thicknesses of the prepared  thin film by a) fitting the experimental data with the 
theory and, b) taking into account the error bar.

https://www.chemeurope.com/en/encyclopedia/Refractive_index.html


264

Z. Dehghani et al.

Int. J. Nano Dimens., 14 (3): 257-266, Summer 2023

nonlinear coefficients for prepared thin films have 
been tabulated also in Table 3.

Measured data via Z-scan was numerically 
fitted using Sheik Bahae’s theory to evaluate third-
order NLO parameters [9]. Our work demonstrates 
the significant dependence of both nonlinear 
refraction and absorption on the thickness of the 
2D layers. As thickness of the prepared MoSe2 
thin film increases, the magnitude of n2 and β 
decreases.

Since the thermal agitations of particles lead 
to the change in the local temperature, as, the 
samples were illuminated by CW Nd : YAG laser and 
hence, the thermally induced optical nonlinearity 
predominates over electronic nonlinearity. 
Therefore, the optical nonlinearity is found to be 
higher for lower thickness of the MoSe2 thin film 
[32].

The same behaviour has obtained for Cu/glass 
thin films deposited through Thermal Evaporation 
(TE) and Pulsed Laser Deposition (PLD) techniques 
[8]. Also, D. Pamu et al. determined that The 
third order NLO properties of of Bi0.5Na0.5TiO3 
thin films were estimated by Z-scan technique 
employing CW He : Ne laser and the lower 
thickness of thin film exhibited the strongest  
nonlinear refractive index (n2=4.62 × 10-6 cm2/W) 
and nonlinear absorption coefficient (β = 0.796 
cm/W)[39].

The high dependence of the NLO response on 
the film thickness is attributed to the topological 
insulator behavior of the thin film layers. Even 
slight modifications of the optimal thicknesses 
can result to a significant loss of the NLO 
performances [40].

CONCLUSION
A crystalline quality analysis is presented in 

this study using SEM, TEM, and XRD to determine 
the crystalline quality of large-area nanosheets. 
SEM and TEM images confirmed the formation 
of MoSe2 nanosheets. It was determined from 

the XRD patterns that the nanosheets were 
hexagonal (a= 3.08 ºA, c= 13.72 ºA). The structural 
parameters of MoSe2 nanosheets are discussed 
in detail. By employing the Z-scan analysis, the 
nonlinear absorption index, β and nonlinear 
refractive index,  n2 of were obtained for all 
prepared thin films in order of 10-2 (cm/W), and 
10-5 (cm2/W), respectively. By using the CW laser 
regime, the thin film exhibits saturable absorption 
(SA) and self-focusing properties as a result of 
thermal nonlinearity and the signs of the n2 and 
β were positive. Significant NLO properties have 
been found, which are highly dependent on the 
film thickness. The values of nonlinear coefficients 
of the prepared  MoSe2 thin film decreased with 
increasing film thickness. We believe that these 
findings will trigger further research in the field of 
the optical nonlinearities of 2D photonic materials.
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