@article{Naddafan_Alattar_Dehghani_Malekfar_2024, title={Detecting compressive strain by evaluation of Raman spectroscopy of the multiwall Carbon nanotubes/TiO2 nanocomposites}, volume={11}, url={https://oiccpress.com/international-journal-of-nano-dimension/article/detecting-compressive-strain-by-evaluation-of-raman-spectroscopy-of-the-multiwall-carbon-nanotubes-tio2-nanocomposites/}, abstractNote={Functionalized Multi-walled carbon nanotubes (f-MWCNTs) which are modified using nitric acid and sulfuric acid were evaluated to synthesize a uniform nanocomposite via application of TiO2. The f-MWCNTs-TiO2 nanocomposites have been produced via using the chemical simple two-step method. To characterize the structural analysis, scanning electron microscopy (SEM) imaging, ultraviolet-visible (UV-Vis) spectroscopy, and Raman spectroscopy were utilized. The maximum shift of D, G, and 2G-bands of f-MWCNTs were related to 20 wt. % f-MWCNTs in TiO2 nanoparticles. Moreover, an up-shift of 40 cm-1 was recorded for the MWCNTs (G’-band) for 5 wt. % f-MWCNTs. For 20 wt. % f-MWCNTs/TiO2 (G-band) nanocomposites, was determined by 4.7%. By increasing the amount of f-MWCNTs in f-MWCNs/TiO2 nanocomposite, the compressive strain was increased. Among the four bonds, the G’-band behaved differently against increasing f-MWCNTs. The shifting frequency of G-band indicates the strong interaction between f-MWCNTs and TiO2 nanoparticles. The interaction between f-MWCNTs and TiO2 nanoparticles identified by the Gruneisen parameter. Therefore, a mechanism generated for stress transfer at the interface between f-MWCNTs and TiO2 nanoparticles which is indicated in many significant increases obtained in the mechanical and acoustical properties.}, number={2}, journal={International Journal of Nano Dimension (Int. J. Nano Dimens.)}, publisher={OICC Press}, author={Naddafan, Marzieh and Alattar, Ammar Shaker and Dehghani, Zahra and Malekfar, Rasoul}, year={2024}, month={Feb.}, keywords={Raman spectroscopy, Nanocomposites, Compressive Strain, Multiwalled carbon nanotubes, Titanium dioxide} }